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Abstract. A number of algorithms for computing the simulation preorder on Kripke structures
and on labelled transition systems are available. Among them, the algorithm by Ranzato and Tap-
paro [2007] has the best time complexity, while the algorithm by Gentilini et al. [2003] – successively
corrected by van Glabbeek and Ploeger [2008] – has the best space complexity. Both space and time
complexities are critical issues in a simulation algorithm, in particular memory requirements are cru-
cial in the context of model checking when dealing with large state spaces. Here, we propose a new
simulation algorithm that is obtained as a space saving modification of the time efficient algorithm
by Ranzato and Tapparo: a symbolic representation of sets is embedded in this algorithm so that any
set of states manipulated by the algorithm can be efficiently stored as a set of blocks of a suitable
state partition. It turns out that this novel simulation algorithm has a space complexity comparable
with Gentilini et al.’s algorithm while improving on Gentilini et al.’s time bound.
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1. Introduction

The simulation preorder is widely used both as a behavioural relation between concurrent systems [7,
14, 17] and in model checking as an appropriate abstraction to reduce state spaces [2, 5]. In particular,
in model checking one is often interested in quotienting the concrete state space w.r.t. simulation equiv-
alence. The simulation problem consists in computing the greatest simulation preorder Rsim among the
states of a given Kripke structure or of a given labelled transition system (LTS). Simulation equivalence is
then the equivalence relation obtained as symmetric reduction of the preorder Rsim, namely Rsim∩R

−1
sim.

It is not hard to reduce the simulation problem for LTSs to that for Kripke structures, and conversely,
algorithms on Kripke structures can be easily adapted to LTSs.
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A simulation algorithm should address both time and space efficiency issues, since memory require-
ment is clearly a critical problem in the context of model checking. Among the algorithms for computing
the simulation preorder, the most well known are by Henzinger, Henzinger and Kopke [13], Bloom and
Paige [3], Bustan and Grumberg [4], Tan and Cleaveland [18], Gentilini, Piazza and Policriti [10] and
Ranzato and Tapparo [15]. Let Σ denote the state space, � the transition relation and Psim the partition
of Σ induced by simulation equivalence. As far as time complexity is concerned, the most efficient al-
gorithm is that by Ranzato and Tapparo [15], here denoted by RT, which runs in O(|Psim||�|)-time and
O(|Psim||Σ| log |Σ|)-space, where a bit space complexity measure is considered. On the other hand, the
algorithm by Gentilini, Piazza and Policriti [10], that was originally flawed and has been successively
corrected by van Glabbeek and Ploeger [11], has the best space complexity in O(|Psim|2+|Σ| log |Psim|).
However, Gentilini et al.-van Glabbeek and Ploeger’s algorithm, here denoted by GPP-GP, runs in
O(|Psim|2|�|)-time and in this respect is therefore significantly less efficient than RT.

The efficiency of the best available simulation algorithms RT and GPP-GP actually depends on the
fact that they solve the simulation problem in terms of a so-called coarsest partition problem. In this
equivalent formulation, the simulation relation is efficiently represented in a symbolic way through a
partition P of the state space Σ and a relation R ⊆ P × P among the blocks of P . In these algorithms,
two distinct states s and t that will be eventually determined to be simulation equivalent are symbolically
represented as belonging to a same block of the partition P instead of being separately represented in an
explicit way. On the other hand, the relation R between blocks of P allows us to represent the simulation
preorder as a relation between blocks of simulation equivalent states. The space complexity crucially
depends on this kind of representation: while an explicit representation of a relation on the state space Σ

takes O(|Σ|2)-space, a partition-relation pair �P,R� can be represented in O(|Σ| log |Psim| + |Psim|2)-
space, where |Σ| log |Psim| accounts for the relation that maps each state in Σ to the block of P containing
it and |Psim|2 is the space needed for storing the relation R.

Compared to GPP-GP, the algorithm RT relies on a faster approach to solve a coarsest partition
problem. Very roughly, both algorithms iteratively refine a partition-relation pair �P,R� that is main-
tained as an over-approximation of �Psim, Rsim�. The main difference is that RT also stores and main-
tains some additional information that is needed for refining �P,R� and this allows us to save the time
to recompute at any iteration such information from scratch. On the other hand, this time benefit gives
rise to the space loss of RT w.r.t. GPP-GP, which is therefore due to the need of RT of storing this
additional information.

Here, we propose a simulation algorithm, denoted by SA, that keeps as much as possible the fast
approach of RT andimproves the space complexity of RT. The main feature of SA is the use of an
additional state partition Q to symbolically represent all the concrete information maintained between
different iterations. Interestingly, it turns out that it is sufficient to define Q as the coarsest partition that
refines P and strongly progresses (in the sense of Sangiorgi and Walker [16]) to P , meaning that Q is
stable w.r.t. the predecessor sets of the blocks of P . We show that in SA such a compact representation
of the information needed for computing the simulation preorder leads to an effective space saving w.r.t.
RT, but needs additional time to update it. More precisely, let Psp be the coarsest partition refinement of
Psim that strongly progresses to Psim and let �Psp,Psim denote the existential abstract transition relation
between Psp and Psim, i.e., for any B ∈ Psp and C ∈ Psim, (B,C) ∈ �Psp,Psim iff there exist s ∈ B

and t ∈ C such that s� t. Then, the space complexity of SA is O((|Psim||Psp| + |Σ|) log |Psp|) while
its time complexity is O(|Psim||�| + |Psim|2|�Psp,Psim |). The cubic factor |Psim|2|�Psp,Psim | represents
the price to pay for saving space in RT. While in general |Psim| ≤ |Psp|, we show experimentally on a
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significant set of benchmarks that for relatively large state spaces |Psim| ≈ |Psp|, since their sizes differ
on average by less than 1%. Hence, on the one hand SA retains a space complexity comparable with
that of GPP-GP while improving the time complexity of GPP-GP, and on the other hand SA improves
the space complexity of RT while significantly worsening the time complexity of RT. We think that
this algorithm SA therefore sheds new light on the trade-off between time and space efficiency in the
simulation problem.

The rest of the paper is organized as follows. Section 2 introduces the notation and the algorithms SA

is based on. Section 3 illustrates the new algorithm SA together with a simple example. Section 4 proves
the correctness and complexity bounds of SA and describes how to adapt it to LTSs. Finally, Section 5
reports on the experimental evaluation of SA on a number of benchmarks and discusses the trade-off
between time and space efficiency between the algorithms SA,RT and GPP-GP. A preliminary version
of this paper appeared in [8].

2. Background

2.1. Notation

Let Σ be a finite state space. Given a relation R ⊆ Σ × Σ, the set R(s)
def
= {t ∈ Σ | (s, t) ∈ R} is

the R-image of s ∈ Σ. A partition P of Σ is a set of nonempty subsets of Σ, called blocks, that are
pairwise disjoint and whose union gives Σ. Part(Σ) denotes the set of partitions of Σ. Hence, given
P ∈ Part(Σ), P (s) denotes the block of P that contains s. If P,Q ∈ Part(Σ) then Q � P , i.e. P is
coarser than Q (or Q refines P ), if for any s ∈ Σ, Q(s) ⊆ P (s). If Q � P and B ∈ Q then parentP (B)

denotes the unique block in P that contains B. Given P ∈ Part(Σ) and a subset S ⊆ Σ, called splitter,
Split(P, S) denotes the partition obtained from P by replacing each block B ∈ P with its nonempty
subsets B ∩ S and B � S, where we also allow no splitting, namely Split(P, S) = P (this happens
precisely when S is a union of some blocks of P ).

We consider finite transition systems (Σ,�) consisting of a finite set of states Σ and a transition
relation �⊆ Σ×Σ. The predecessor/successor transformers pre,post : ℘(Σ) → ℘(Σ) (sometimes also
denoted by pre�,post�) are defined on the powerset of Σ as usual, i.e., for Y ⊆ Σ, pre(Y )

def
= {s ∈

Σ | ∃t ∈ Y. s � t} and post(Y )
def
= {t ∈ Σ | ∃s ∈ Y. s � t}. Notice that both pre and post are

additive operators, i.e., they preserve unions of sets. By s � Y we mean that s ∈ pre(Y ). We denote
by �∃ and �∀, respectively, the abstract existential and universal transition relations on sets of states,
i.e., if S1, S2 ⊆ Σ then S1 �∃ S2 when S1 ∩ pre(S2) �= ∅ and S1 �∀ S2 when S1 ⊆ pre(S2). If
P,Q ∈ Part(Σ) then �P,Q⊆ P × Q denotes the abstract existential transition relation between blocks
in P and Q.

Given a set AP of atomic propositions (of some temporal language), a Kripke structure (Σ,�, �)

over AP consists of a transition system (Σ,�) together with a state labeling function � : Σ → ℘(AP).
We use the following notation: for any s ∈ Σ, [s]�

def
= {s� ∈ Σ | �(s) = �(s�)} denotes the equivalence

class of a state s w.r.t. the labeling �, while P�
def
= {[s]� | s ∈ Σ} ∈ Part(Σ) is the state partition induced

by �.

2.2. Simulation

A relation R ⊆ Σ× Σ is a simulation on a Kripke structure K = (Σ,�, �) if for any s ∈ Σ:
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Figure 1. A Kripke structure.

(1) R(s) ⊆ [s]�;

(2) for any t ∈ Σ, if s� t then R(s) �∀ R(t).

A state s� ∈ R(s) is called a simulator of s. The empty relation is a simulation and simulation relations
are closed under union, so that the largest simulation relation exists. It turns out that the largest simulation
is a preorder (i.e., a reflexive and transitive relation) called simulation preorder (on K) and denoted by
Rsim. Thus, for any s ∈ Σ, Rsim(s) is the set of all simulators of s. Simulation equivalence∼sim⊆ Σ×Σ

is the symmetric reduction of Rsim, namely ∼sim
def
= Rsim ∩ R

−1
sim and Psim ∈ Part(Σ) denotes the state

partition corresponding to the equivalence ∼sim.
Let us recall that a relation R ⊆ Σ×Σ is a bisimulation if both R and R−1 are simulation relations.

The largest bisimulation relation exists and is an equivalence relation called bisimulation equivalence
whose corresponding state partition is denoted by Pbis ∈ Part(Σ). Let us also recall the notion of strong
(bisimulation) progression [16]. Given two relations R,S ⊆ Σ × Σ, R strongly progresses to S when
(s, t) ∈ R implies that:

(1) if s� v then there exists w ∈ Σ such that t �w and (v, w) ∈ S;

(2) if t �w then there exists v ∈ Σ such that s� v and (v, w) ∈ S.

When R and S specialize to the equivalence relations induced, respectively, by two partitions Q and R,
we obtain the following notion of strongly progressing partitions: the partition Q strongly progresses to
P when for all B ∈ P and E ∈ Q, if E ∩ pre(B) �= ∅ then E ⊆ pre(B). It is easy to see that the
partition Pbis strongly progresses to both Psim and Pbis itself.

As a running example, consider the Kripke structure in Figure 1, where Σ = {1, 2, 3, 4, 5, 6, 7}
and the labeling � induces the partition P� = {{1, 2, 3}, {4, 5}, {6, 7}}, whose blocks are depicted as
rectangles. In this example, the simulation preorder Rsim is given by Rsim(1) = {1}, Rsim(2) =

Rsim(3) = {1, 2, 3}, Rsim(4) = Rsim(5) = {4, 5}, Rsim(6) = {6} and Rsim(7) = {6, 7}. Hence,
the simulation partition is Psim = {{1}, {2, 3}, {4, 5}, {6}, {7}}. We will describe in Section 3 how our
algorithm SA computes the simulation preorder on this example.

2.3. Simulation Algorithms

Let us recall the two simulation algorithms SA is based on, namely Henzinger, Henzinger and Kopke’s
algorithm HHK [13], and Ranzato and Tapparo’s algorithm RT [15].
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2.3.1. Algorithm HHK

The algorithm HHK [13] works by iteratively refining a relation between states of the input Kripke
structure until a fixpoint is reached, that is, the simulation preorder Rsim. We do not need to recall the full
HHK algorithm here but merely its main data structures. The current relation between states is explicitly
represented through a family of sets of states �Sim(s)�s∈Σ indexed on the whole state space Σ: for any
state s ∈ Σ, Sim(s) ⊆ Σ represents the current set of states that are candidates to simulate s. Thus,
the current family of sets �Sim(s)�s∈Σ represents a relation that approximates from above the simulation
preorder, i.e., for any state s ∈ Σ, Rsim(s) ⊆ Sim(s). At any iteration of HHK, some set Sim(s) is
selected and pruned so that the output family of sets provides exactly the simulation preorder Rsim. The
O(|Σ||�|)-time implementation of HHK relies on the maintenance of the following information, that is
used for refining the current relation Sim:

(A) For any state t ∈ Σ, HHK maintains a set of states Remove(t) ⊆ Σ such that if s� t then Sim(s)

is pruned to Sim(s) � Remove(t).

(B) HHK maintains an integer matrix Count(s, t), indexed on states s, t ∈ Σ, such that Count(s, t) =

|post(s)∩Sim(t)|, i.e. Count(s, t) stores the number of transitions from s to some state in Sim(t).

These data structures are crucial for obtaining the O(|Σ||�|) time bound time. However, they have the
serious drawback of a quadratic space complexity. In fact, HHK needs Ω(|Σ|2 log |Σ|)-space because
the integer matrix Count is explicitly stored and takes exactly |Σ|2 log |Σ| space, �Sim(s)�s∈Σ needs
|Σ|2 space in the worst case and �Remove(s)�s∈Σ takes |Σ|2 log |Σ| space in the worst case.

2.3.2. Algorithm RT

The algorithm RT [15] is recalled in Figure 2. RT is obtained as a modification of HHK that is based
on the idea of representing an over-approximation of the simulation preorder Rsim through a so-called
partition-relation pair �P,Rel� (PR for short), where P ∈ Part(Σ) is a partition of Σ and Rel ⊆ P × P

is a reflexive relation on P . A PR �P,Rel� induces the following relation R�P,Rel� ⊆ Σ × Σ between
states:

R�P,Rel�(s)
def
= ∪ {B ∈ P | (P (s), B) ∈ Rel∗}

where Rel∗ is the transitive closure of Rel . It turns out that R�P,Rel� is a preorder relation. Hence, while
in HHK the family of sets �Sim(s)�s∈Σ is an over-approximation of the simulation preorder Rsim, in
RT we have that the current PR �P,Rel� approximates from above Rsim, namely, Rsim ⊆ R�P,Rel�.
More precisely, this means that the partition P is maintained as an over-approximation of the simulation
partition Psim, i.e. Psim � P , so that if P (s) �= P (t) then s and t are not simulation equivalent. On the
other hand, the reflexive relation Rel is maintained in such a way that Rel∗ is an over-approximation of
the simulation preorder, meaning that if a pair (B,C) of blocks of P does not belong to the relation Rel ,
then no state s ∈ B is simulated by a state t ∈ C.

Partition-relations pairs are partially ordered as follows: �P �,Rel �� is coarser than �P,Rel� when
P ≺ P � or P = P � implies Rel ⊆ Rel �. It turns out (see [15, Lemma 4.4]) that the simulation
problem can be equivalently formulated as the problem of finding the coarsest partition-relation pair that
represents the simulation preorder, namely, a pair �P,Rel� such that:

(1) P � P�;
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RT(PartitionRelation �P,Rel�) {1
forall B ∈ P do Remove(B) := Σ � pre(∪Rel(B));2
initializeCount();3
while ∃B ∈ P such that Remove(B) �= ∅ do4

Remove := Remove(B);5
Remove(B) := ∅;6
Bprev := B;7
Pprev := P ;8
P := Split(P,Remove);9
newBlocksP := P � Pprev;10
if newBlocksP �= ∅ then11

updateRel();12
updateCount();13
updateRemove();14

RemoveList := {D ∈ P | D ⊆ Remove};15
forall C ∈ P such that C ∩ pre(Bprev) �= ∅ do16

forall D ∈ RemoveList such that Rel(C, D) do17
Rel(C, D) := ff ;18
forall s ∈ pre(D) do19

Count(s, C)--;20
if Count(s, C) = 0 then Remove(C) := Remove(C) ∪ {s};21

}22

Figure 2. RT Simulation Algorithm.

(2) ∀B,C ∈ P. B �∃ C ⇒ ∪Rel(B) �∀ ∪Rel(C).

The algorithm RT takes in input a PR �P�,Rel �� determined by the state labeling �, where P� is the
partition induced by � and Rel � is the identity relation, i.e. Rel � = {(B,B) | B ∈ P�}. RT iteratively
refines the current PR �P,Rel� until a fixpoint is reached, namely when �P,Rel� represents a simulation
relation.

In RT, representing the relations as partition-relation pairs allows to save both space and time w.r.t.
HHK. The intuition is that refining a partition and the corresponding relation between blocks can be
more efficient than refining a relation between states. Consider the example in Figure 1: the states 4 and
5 have the same label as well as the same set of simulators, hence they may correctly (and efficiently) be
represented as a single (abstract) state. Storing a PR �P,Rel� rather that an explicit relation �Sim(s)�s∈Σ

on the whole state space, requires |Psim|2 space instead of |Σ|2. Moreover, Rel is stored as a resizable
boolean matrix so that insert operations take amortized constant time.

As the blocks of P play the role of (abstract) states, similarly to HHK, RT maintains for any block
B ∈ P a set of remove states Remove(B) ⊆ Σ and an integer table Count(s, B), indexed on states
s ∈ Σ and blocks B ∈ P , where Count(s, B) stores the number of transitions from s to some state
in ∪Rel(B), i.e., Count(s, B)

def
=

�
C∈Rel(B) |post(s) ∩ C|. These two data structures need, respec-

tively, O(|Psim||Σ| log |Σ|) and O(|Σ||Psim| log |Σ|) space. Finally, each state must have a pointer to
the block of P containing it. Overall, it turns out that the space complexity of RT is therefore in
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O(|Σ||Psim| log |Σ|). It is worth remarking that we are considering here a space bit-complexity mea-
sure where integers and pointers cannot be stored in constant space.

As far as time complexity is concerned, the O(|Psim||�|) time bound of RT crucially depends on the
following properties.

• The Count table allows to perform the test Count(s, C) = 0 at line 21 in constant time. This test
logically corresponds to check whether s �∈ pre(∪Rel(C)).

• The update functions at lines 12-14 for the data structures Rel , Count and Remove after a split
operation work as follows: if a block B is split into two new blocks B1 and B2 then Rel(Bi) =

Rel(B), Remove(Bi) = Remove(B) and Count(s, Bi) = Count(s, B).

• If Bi and Bj are two blocks successively selected by the main while-loop at line 4 such that
Bi ⊆ Bj then we have that Remove(Bi)∩Remove(Bj) = ∅. As a consequence of this property:

� A split operation Split(P,Remove) at line 9 can be done in O(|Remove |)-time. Thus, the
overall cost of all the split operations is in O(|Psim||Σ|)-time.

� If some block D is selected at line 17 as a subset of Remove(B) then for any block B� ⊆ B

which is selected at some successive iteration of the main while-loop it turns out that any
block E contained in D cannot be selected at line 17 as a subset of Remove(B�

). This is
the key property to prove that the overall time complexity of the for-loop at lines 16-21 is in
O(|Psim||�|).

3. A New Simulation Algorithm

As discussed above, RT has been designed as a symbolic partition-based version of HHK, where two
distinct states s and t that will be eventually determined to be simulation equivalent are symbolically rep-
resented as belonging to a same block of a state partition P . However, RT maintains two data structures
that are still partially explicit: (1) in the family {Remove(B)}B∈P any Remove(B) ⊆ Σ is represented
as a set of explicit states; (2) the rows of the integer table {Count(s, B)}s∈Σ,B∈P are explicitly in-
dexed on the whole state space Σ. We introduce here a new simulation algorithm that makes RT fully
symbolic. The idea is to use an additional state partition Q in order to symbolically represent the data
structure Remove in terms of blocks of Q and to replace the semi-symbolic integer table Count with a
fully symbolic data structure that represents the abstract transition relation between blocks of Q and P .
This allows us to save space in RT, although this space saving will give rise to a price to pay in time
complexity for maintaining these fully symbolic data structures. This new simulation algorithm, called
SA, is described in Figure 3.

3.1. Embedding an additional partition in RT

The basic idea of the algorithm SA is to maintain an additional state partition Q, finer than the partition
P already maintained by the algorithm RT, that allows us to have the following invariant property: for
any B ∈ P , any remove set Remove(B) can be represented as (the union of) a set of blocks of Q. Of
course, such a partition Q should be as coarse as possible in order to have this invariant property satisfied.
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SA(PartitionRelation �P,Rel�) {1
Q := P ;2
forall C ∈ P do Q := Split(Q,pre(C));3
computePreEE(P );4
initializeRemove();5
while ∃B ∈ P such that (Remove(B) �= ∅) do6

Remove := Remove(B);7
Remove(B) := ∅;8
Bprev := B;9
Pprev := P ;10
P := Split(P,∪Remove);11
newBlocksP := P � Pprev;12
Qprev := Q;13
forall C ∈ newBlocksP do14

Remove(C) := Remove(parentPprev
(C));15

Q := Split(Q,pre(C));16

newBlocksQ := Q � Qprev;17
if newBlocksP �= ∅ then18

updateRel();19
if newBlocksQ �= ∅ then20

computePreEE(P );21
updateRemove();22

else23
computePreEE(newBlocksP );24

RemoveList := {D ∈ P | D ⊆ ∪Remove};25
forall C ∈ P such that C ∩ pre(Bprev) �= ∅ do26

S := ∅;27
forall D ∈ RemoveList such that Rel(C, D) do28

Rel(C, D) := ff ;29
forall E ∈ preEE (D) do S := S ∪ {E};30

if S �= ∅ then31
forall D ∈ P such that Rel(C, D) do32

forall E ∈ preEE (D) do S := S � {E};33

forall E ∈ S do Remove(C).append(E);34

}35

Figure 3. SA Simulation Algorithm.

The algorithm RT initializes and modifies a remove set at lines 2, 6 and 21, whereas the updateRe-
move() function at line 14 does not affect the remove sets. At line 2, Remove(B) is initialized as Σ �
pre(∪Rel(B)). Then, after selecting a block B ∈ P , at line 6 RT make the corresponding Remove(B)

empty. Finally, a remove set Remove(C) can be modified at line 21, where the states in the set pre(D)�
pre(∪Rel(C)), for some D ∈ P , are added to Remove(C). Recall that any set ∪Rel(B) ⊆ Σ is a union
of blocks of P and that the predecessor operator pre is additive. Thus, in order to represent the remove
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sets through sets of blocks of Q, it is enough to have a partition Q such that any predecessor set pre(C),
for some block C ∈ P , is a union of blocks of Q. This leads to define Q as the coarsest refinement
of P that satisfies this condition. Let us observe that the stability of Q w.r.t. the predecessor sets of the
blocks of P precisely corresponds to the notion of strong progression [16]. Hence, Q can be equivalently
defined as the coarsest partition that refines P and strongly progresses to P . We denote this partition by
sp(P ) so that the invariant property that we have to guarantee becomes Q = sp(P ). This is achieved by
the algorithm SA as follows:

• The initialization of Q is performed at lines 2 and 3 by iteratively splitting P for all the predecessor
sets pre(C), where C ∈ P . This guarantees exactly that Q = sp(P ) initially holds.

• On the other hand, the partition P is refined by the split operation at line 11. Hence, in order to
satisfy the invariant Q = sp(P ) we need to split the current partition Q for all the predecessor
sets pre(C) where C is a newly generated block of P at line 11. This is done by the for-loop at
lines 14-16.

This allows us to represent any remove set Remove(B) as a set of blocks of the partition Q. At the
exit of SA, the partition Q will be Psp

def
= sp(Psim), namely the coarsest partition refinement of Psim that

strongly progresses to Psim. Such a representation of the remove sets therefore takes O(|Psim||Psp| log |Psp|)
space. Since Pbis strongly progresses to Psim, we have that Pbis � Psp so that Pbis � Psp � Psim holds.
Hence, |Psim| ≤ |Psp| ≤ |Pbis|. To the best of our knowledge, there is no theoretical estimate of |Psp|
in terms of |Psim|. As expected, we observed experimentally (see Section 5) that |Psp| tends to be much
closer to |Psim| rather than to |Pbis|, so that |Psim||Psp| is comparable to |Psim|2.

3.2. Exploiting abstract transitions

The semi-symbolic integer table {Count(s, B)}s∈Σ,B∈P is used in RT at line 21 to test in constant time
whether a state s ∈ pre(D) is such that s ∈ pre(∪Rel(C)) and this is done in order to add all the states in
pre(D)�pre(∪Rel(C)) to Remove(C). In SA, the remove sets are represented in terms of blocks of Q,
and since Q is stable w.r.t. blocks of P , we have that if some state s ∈ pre(D) � pre(∪Rel(C)) must be
added to Remove(C), then the whole block of Q that contains s can be inserted. Instead of adding single
states to Remove(C) we then add entire blocks E of Q, and this must be done exactly when no state in E

can reach a state in ∪Rel(C), i.e., when E ��∃ ∪Rel(C). We therefore need to determine the blocks E of
Q that belong to pre�∃(D)�pre�∃(∪Rel(C)). Similarly to RT, in order to test whether E �∃ ∪Rel(C)

we could rely on a symbolic table {Count(E,B)}E∈Q,B∈P such that Count(E,B) stores the number of
abstract transitions �∃ from the block E ∈ Q to some block B ∈ Rel(C). However, differently from the
explicit Count table in RT, this kind of abstract information cannot be easily updated through different
iterations, hence in SA such an abstract Count table should be recomputed each time from scratch. We
then take a different approach: we store and maintain the abstract transition relation �∃⊆ Q × P from
blocks of Q to blocks of P so that we can compute on-the-fly the set of blocks

{E ∈ Q | E �∃ D, E ��∃ ∪Rel(C)}

to be added to Remove(C). More precisely, the relation �∃ is stored as the predecessor preEE : for
any block B ∈ P , preEE (B) is a list containing all the blocks E in Q such that E�∃B. Now, the
for-loop at lines 28-30, while refining the relation Rel , collects in the set S (this can be implemented
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computePreEE(ListOfBlocks L) {
forall B ∈ L do preEE (B) := ∅;
forall B ∈ L do

forall y ∈ B do
forall x ∈ pre({y}) such that Q(x) unmarked do

preEE (B).append(Q(x));
mark(Q(x));

forall E ∈ preEE (B) do unmark(E);
}

initializeRemove() {
forall B ∈ P do

forall C ∈ P such that Rel(B,C) do
forall E ∈ preEE (C) do mark(E);

forall E ∈ Q do
if E marked then

unmark(E);
else

Remove(B).append(E);

}

updateRel() {
Resize the matrix Rel ;
forall B ∈ newBlocksP do

forall C ∈ P do
Rel(B,C) := Rel(parentPprev

(B),parentPprev
(C));

forall C ∈ newBlocksP do
forall B ∈ P � newBlocksP do

Rel(B,C) := Rel(parentPprev
(B),parentPprev

(C));

}

updateRemove() {
forall B ∈ P do

forall E ∈ Remove(B) do
replace E with {F ∈ newBlocksQ | F ⊆ E};

}

Figure 4. Auxiliary functions.

through suitable markings of blocks) the blocks E that have an abstract transition to one of the blocks
D that have been removed from Rel(C). Then, lines 31-34 add to Remove(C) those blocks in S that
have no further abstract transitions to some block that still belongs to Rel(C). We show in the next
section that, even if a piece of information is computed on-the-fly, exploiting preEE leads to an overall
time complexity that still improves that of the GPP-GP algorithm. Moreover, storing the data structure
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1 2 3 4 5 6 7 ⇒

1

2 3 4 5 6 7 ⇒

1

2 3 4 5

6

7

Figure 5. Refinements of the partition-relation.

preEE takes exactly |�Psp,Psim | log |Psp| space (notice that |�Psp,Psim | ≤ |�| always holds).
The function computePreEE() that computes the data structure preEE is given in Figure 4. Notice

that given a list L of blocks of P a call computePreEE(L) computes the predecessor list preEE (B)

for all the blocks B ∈ L. The function initializeRemove() in Figure 4 initializes {Remove(B)}B∈P

taking advantage of the data structure preEE . The updateRel() function in Figure 4 updates the resizable
boolean matrix Rel and works exactly as in RT. It is called at line 19 each time the partition P is refined.
Finally, the updateRemove() function in Figure 4 is called at line 22 each time the partition Q is refined
and simply replaces in all the remove lists the old blocks of Q with the corresponding new blocks of Q

that are generated by a split operation. Notice at lines 14-16 that the partition Q can be refined only when
P is refined.

3.3. An example

Let us illustrate an example showing how SA computes the simulation preorder for the Kripke structure
in Figure 1. The diagrams in Figure 5 show how the computation of SA refines the current partitions
P and Q and the relation Rel between blocks of P , where dashed, respectively solid, boxes represent
blocks of the partition P , respectively Q, and if B and C are two blocks in P such that C ∈ Rel(B) then
C is drawed above B. Blocks are compactly denoted whitout curly brackets and commas.

The input PR is �P�,Rel�� where P� = {B1, B2, B3} with B1 = 123, B2 = 45, B3 = 67, and Rel�
is the identity relation on the blocks of P�. The initialization phase computes the partition Q by splitting
P� w.r.t. the predecessor sets of every block of P�. The resulting partition is Q = {E0, E1, E2, E3, E4}
with E0 = 1, E1 = 23, E2 = 45, E3 = 6, E4 = 7, which is strictly finer than P�. The situation is
depicted by the diagram on the left of Figure 5. Next, for every block B ∈ P� the set Remove(B) is
built up as the set of blocks E ∈ Q such that there is no existential transition from E to Rel�(B) = {B}.
This initializes the remove sets as follows:

Remove(B1) = {E1, E2, E3, E4}, Remove(B2) = {E2, E4}, Remove(B3) = {E0, E1}.

Let the first iteration choose the block B1 ∈ P . Remove(B1) is emptied and the initial partition P is
split w.r.t. the set of states in ∪i=1,..,4Ei. This yields the refined partition P = {B�

1, B
��
1 , B2, B3}, where

the block B1 is split into B�
1 = 1 and B��

1 = 23. Such a change for P does not affect the partition Q since
Q = sp(P ). On the other hand, Rel and Remove are updated so that Rel(B�

1) = Rel(B��
1 ) = {B�

1, B
��
1}

and Remove(B�
1) = Remove(B��

1 ) = ∅. Next, the relation Rel is refined by removing the pairs of
blocks (C, D) ∈ P × P such that C ∩ pre(B1) �= ∅ and D ⊆ ∪i=1,4Ei: this removes the block B��

1

from Rel(B�
1). Moreover, since there is no E ∈ Q such that E ∈ preEE (B��

1 ) the remove relation is not
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further modified. Summing up, at the end of the first iteration of the main while-loop, we have that:

Rel(B�
1) = {B�

1} Remove(B�
1) = ∅

Rel(B��
1 ) = {B�

1, B
��
1} Remove(B��

1 ) = ∅
Rel(B2) = {B2} Remove(B2) = {E2, E4}
Rel(B3) = {B3} Remove(B3) = {E0, E1}

as depicted by the diagram in the middle of Figure 5.
Let the second iteration choose the block B2 ∈ P so that Remove(B2) is set to empty and P is split

w.r.t. E2 ∪ E4 = {4, 5, 7}. The refined partition is P = {B�
1, B

��
1 , B2, B

�
3, B

��
3}, where the block B3

is split into B�
3 = 6 and B��

3 = 7. Consequently, Q is split w.r.t. pre(B��
3 ) = {5, 6, 7} and is therefore

refined to Q = {E0, E1, E
�
2, E

��
2 , E3, E4} with E�

2 = 4, E��
2 = 5. Rel and Remove are updated so that

Rel(B�
3) = Rel(B��

3 ) = {B�
3, B

��
3} and Remove(B�

3) = Remove(B��
3 ) = {E0, E1}. The lines 26-34 of

this second iteration remove B��
3 from Rel(B�

3) and adds the blocks E3 and E4 to Remove(B�
3). At the

end of the second iteration, we have then:

Rel(B�
1) = {B�

1} Remove(B�
1) = ∅

Rel(B��
1 ) = {B�

1, B
��
1} Remove(B��

1 ) = ∅
Rel(B2) = {B2} Remove(B2) = ∅
Rel(B�

3) = {B�
3} Remove(B�

3) = {E0, E1, E3, E4}
Rel(B�

3) = {B�
3, B

��
3} Remove(B�

3) = {E0, E1}

as depicted by the diagram on the right of Figure 5. The third iteration chooses B�
3 ∈ P and leaves

untouched both P and Q and the relation Rel . A final iteration chooses the unique block whose remove
set is nonempty, that is B��

3 , and does not modify P , Q and Rel . The output of SA is therefore as follows:

Psim = {1, 23, 45, 6, 7};
Psp = {1, 23, 4, 5, 6, 7};

Rel(1) = {1}, Rel(23) = {1, 23}, Rel(45) = {45}, Rel(6) = {6}, Rel(7) = {6, 7}.

Let us notice that Psp ≺ Psim and that Pbis ≺ Psp because Pbis = {1, 2, 3, 4, 5, 6, 7}. This example
shows the space saving of SA compared to both RT and HHK. Compared to the explicit algorithm HHK,
in SA (likewise RT) the sets of equivalent states {2, 3} and {4, 5} are represented as blocks. On the other
hand, SA obtains a similar space saving over RT by representing the remove sets as sets of blocks of Q

instead of as sets of explicit states, for instance, Remove(B1) is represented as {E1, E2, E3, E4} instead
of {2, 3, 4, 5, 6, 7}.

4. Correctness and Complexity

It turns out that the correctness of SA follows as a consequence of the correctness of RT and of the
properties described above.

Theorem 4.1. (Correctness)
For any finite Kripke structure K, the algorithm SA on input �P�,Rel �� always terminates and outputs a
PR that induces the simulation preorder Rsim on K.
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Proof:
The proof relies on the correctness of the RT algorithm on input �P�,Rel �� and on a correspondence be-
tween the iterations of SA and RT. Let {�P i

SA,Rel iSA�}i∈[1,n] and {�Removei
SA(B)�B∈P i

SA
}i∈[1,n] be the

sequence of PRs and remove sets computed in some sequence of iterations of SA, where �P i
SA,Rel iSA�

and �Removei
SA(B)�B∈P i

SA
are the PR and the remove sets at the entry of the i-th iteration of the main

while-loop of SA, so that �P 1
SA,Rel1SA� = �P�,Rel ��. Then, we show that RT can correspondingly

compute a sequence of PRs {�P i
RT,Rel iRT�}i∈[1,n] and remove sets {�Removei

RT(B)�B∈P i
RT

}i∈[1,n] such
that, for any i ∈ [1, n]:

(1) P i
SA = P i

RT;

(2) for any B ∈ P i
SA = P i

RT, Rel iSA(B) = Rel iRT(B);

(3) for any B ∈ P i
SA = P i

RT, ∪Removei
SA(B) = Removei

RT(B).

As a consequence of this, both termination and correctness of SA follow, respectively, from termination
and correctness of RT.
First of all notice that from the invariant property Q = sp(P ) of SA discussed above we also have the
following invariant property of the main while-loop of SA:

for any B ∈ P, pre(B) and pre(RelSA(B)) are unions of some blocks of Q (∗)

At the beginning, i.e., for i = 1, it is clear that P 1
SA = P 1

RT = P� and Rel1SA = Rel1RT = Rel �. As far as
property (3) is concerned, note that Remove1

RT(B) = Σ�pre(∪Rel1RT(B)) and Remove1
SA(B) = {E ∈

Q1
SA | E ��∃ Rel1SA(B)}. By property (∗) and since Rel1SA = Rel1RT we have that Σ�pre(∪Rel1RT(B))

is the union of the set of blocks E of Q such that E ��∃ RelSA(B), that is, ∪Remove1
SA(B) =

Remove1
RT(B).

Assume now that the three properties hold at the beginning of the i-th iteration of SA and RT and let us
prove that they still hold at the end of the i-th iteration.

(1) Let B ∈ P i
SA be the block chosen by SA such that Removei

SA(B) �= ∅. By inductive hypothe-
sis (1) and (3), P i

SA = P i
RT so that B ∈ P i

RT and Removei
RT(B) �= ∅. Then, SA and RT update

their partition as follows: P i
SA is refined to Split(P i

SA,∪Removei
SA(B)) and P i

RT is refined to
Split(P i

RT,Removei
RT(B)). Hence, P

i+1
SA = P

i+1
RT .

(2) Both SA and RT update the relation Rel in two steps. First, for every block C that is split into
two new blocks C1 and C2, both algorithms set Rel(C1) = Rel(C2) = Rel(C). The second
step may prune a set Rel(C), for all C ∈ P such that C ∩ pre(Bprev) �= ∅. In particular, SA

and RT remove from Rel(C), respectively, the sets {D ∈ P
i+1
SA | D ⊆ ∪Removei

SA(Bprev)}
and {D ∈ P

i+1
RT | D ⊆ Removei

RT(Bprev)}. By point (1) above and by inductive hypothesis on
property (3), these two sets are identical, so that Rel i+1

SA (C) = Rel i+1
RT (C).

(3) As far as the remove sets are concerned, the i-th iteration in SA updates the remove sets as fol-
lows: (i) Removei+1

SA (B) = ∅; (ii) if a block C ∈ P is split into two new blocks C1 and C2

then Removei+1
SA (C1) = Removei+1

SA (C2) = Removei
SA(C) (line 15) and these sets are possibly

updated at line 22 so that they contain blocks of the possibly updated partition Q; and (iii) for all
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C ∈ P sucht that C∩pre(Bprev) �= ∅, the following set of blocks of Q is added to Removei
SA(C):

{E ∈ Q | E →∃ Removei
SA(B), E �→∃ ∪Rel i+1

SA (C)}.

Similarly, the i-th iteration in RT makes the following updates: (i) Removei+1
RT (B) = ∅; (ii) for

every block C that is split into two new blocks C1 and C2, Removei+1
RT (C1) = Removei+1

RT (C2) =

Removei
RT(C); and (iii) for all C ∈ P such that C ∩ pre(Bprev) �= ∅, the following set is added

to Removei
RT(C): {s ∈ Σ | s�Removei

RT(B), s �� ∪Rel i+1
RT (C)} = pre(Removei

RT(B)) �
pre(∪Rel i+1

RT (C)). Clearly, after the first two steps (i) and (ii) the remove sets remain the same
in both algorithms because by inductive hypothesis ∪Removei

SA = Removei
RT. Let Rem =

∪Removei
SA = Removei

RT. We have shown at point (2) that Rel i+1
SA (C) = Rel i+1

RT (C), so we
denote them by Rel(C). It is therefore enough to check that:

∪{E ∈ Q | E →∃ Rem, E �→∃ ∪Rel(C)} = pre(Rem) � pre(∪Rel(C)).

(⊆) Since E �→∃ ∪Rel(C) we have that E ∩ pre(∪Rel(C)) = ∅. Since E →∃ Rem , we
have that E ∩ pre(D) �= ∅ for some D ∈ P such that D ⊆ Rem . Since E ∈ Q and
Q = sp(P ), from E ∩ pre(D) �= ∅ we have that E ⊆ pre(D) ⊆ pre(Rem). Hence,
E ⊆ pre(Rem) � pre(∪Rel(C)).

(⊇) Notice that Rem is a union of a set of blocks of P , hence we have that pre(Rem) is a union of
a set of blocks of Q since Q = sp(P ), . Moreover, by property (∗) above, we also have that
pre(∪Rel(C)) is a union of set of blocks of Q. Hence, if s ∈ pre(Rem) � pre(∪Rel(C))

then Q(s) →∃ Rem and Q(s) �→∃ ∪Rel(C).
��

Space and time bounds for SA are as follows, where we assume, as usual in model checking, that the
transition relation � is total (viz., ∀s ∈ Σ.∃t ∈ Σ. s � t) so that |Σ| ≤ |�| and |Psp| ≤ |�Psp,Psim | ≤
|Psp||Psim| and this allows us to simplify the expression of the time bound.

Theorem 4.2. (Complexity)
The algorithm SA runs in O((|Psp||Psim|+ |Σ|) log |Psp|)-space and O(|Psim||�|+ |Psim|2|�Psp,Psim |)-
time.

Proof:
Space complexity. The algorithm SA relies on the following data structures, where a space bit-complexity
measure is considered:

• The state partitions Q and P that take, respectively, O(|Psp| log |Σ|) and O(|Psim| log |Σ|).

• Any state in Σ has a pointer to the block of Q containing it and any block of Q has a pointer to the
block of P containing it. These take, respectively, O(|Σ| log |Psp|) and O(|Psp| log |Psim|).

• The resizable boolean matrix {Rel(B,C)}B,C∈P that takes O(|Psim|2).

• The remove lists {Remove(B)}B∈P that takes O(|Psim||Psp| log |Psp|).

• The lists of existential predecessors {preEE (B)}B∈P that takes O(|�Psp,Psim | log |Psp|).
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Thus, the overall space complexity is in O((|Psp||Psim| + |Σ|) log |Psp|).

Time complexity. Let us analyze the time complexity of SA. Some points of the proof are similar to
analogous points of the proof of complexity of RT in [15, Theorem 7.1]. For the sake of completeness,
some of them are here recalled. Also, since the transition relation is supposed to be total, let us remark
that |Q| ≤ |�Q,P | holds.
Let It denote the sequence of iterations of the main while-loop for some run of SA, where for any
i, j ∈ It , i < j means that j follows i. Moreover, for any i ∈ It , let Bi denote the block selected by the
while-loop at line 6 and �P i,Rel i� denotes the PR at the entry point of the for-loop at line 26.
The key property of the remove sets is the following: For any i, j ∈ It ,

Bi ⊆ Bj & j < i ⇒ (∪Remove(Bi)) ∩ (∪Remove(Bj)) = ∅ (∗)

Let us prove this property (∗). At iteration j, Remove(Bj) is set to ∅ at line 8. If Bj generates, by
the splitting operation at line 11, two new blocks B1, B2 ⊆ Bj then their remove sets are set to ∅
at line 15. Successively, SA may add at line 34 of some iteration k ≥ j a block E to the remove
set Remove(C) of a block C ⊆ Bj only if E ∈ preEE (D) for some D ∈ Relk(C). We also have
that ∪Relk(C) ⊆ ∪Rel j(Bj) so that pre(∪Relk(C)) ⊆ pre(∪Rel j(Bj)). Thus, if Bi ⊆ Bj and
i > j then ∪Remove(Bi) ⊆ pre(∪Rel j(Bj)). Therefore, (∪Remove(Bj)) ∩ (∪Remove(Bi)) ⊆
(∪Remove(Bj)) ∩ pre(∪Rel j(Bj)). Since ∪Remove(Bj) ∩ pre(∪Rel j(Bj)) = ∅ always holds at the
beginning of the main while-loop, we have that (∪Remove(Bi)) ∩ (∪Remove(Bj)) = ∅.
As a consequence of (∗), it turns out that

�
i∈It |∪Remove(Bi)| ≤ |Psim||Σ|. Let us prove this inequality.

For any block E ∈ Psim of the final partition we define the following subset of iterations: ItE
def
= {i ∈

It | E ⊆ Bi}. Thus,

�
i∈It | ∪Remove(Bi)| ≤ [by definition of ItE]

�
E∈Psim

�
i∈ItE

| ∪Remove(Bi)| ≤ [as the sets in {∪Remove(Bi)}i∈ItE are pairwise disjoint]
�

E∈Psim
|Σ| =

|Psim||Σ|.

Let us also show that the overall number of newly generated blocks by the splitting operation at line 11
is 2(|Psim| − |P�|), namely it is in O(|Psim|). In fact, let {P i}i∈[1,n] be the sequence of partitions
computed by SA where P 0 is the initial partition P�, Pn is the final partition Psim and for all i ∈
[0, n − 1], P i+1 � P i. The number of newly generated blocks by one splitting operation that refines
P i to P i+1 is clearly given by 2(|P i+1| − |P i|), so that the overall number of newly generated blocks is�n−1

i=0 2(|P i+1| − |P i|) = 2(|Psim| − |P�|).
The time complexity bound for SA is then shown by the following points.

• It is not hard to implement a standard splitting procedure Split in such a way that any call
Split(P, S) scans all the states in S and takes O(|S|) time (see [15, Section 7]).

• The initializations of Q (lines 2-3), preEE (line 4), and Remove (line 5) take time, respectively,
O(

�
B∈P |pre(B)|) = O(|�|), O(|�|) and O(|P ||�Q,P |). Thus, the initialization phase takes

O(|�| + |P ||�Q,P |) time, i.e., O(|�| + |Psim||�Psp,Psim |).
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• Each call Split(P,∪Remove) at line 11 takes O(|∪Remove(Bi)|) time, so that the overall time
complexity of line 14 is bounded by

�
i∈It |∪Remove(Bi)| ≤ |Psim||Σ|.

• Each call to the function updateRel() at line 19 takes the time for resizing the boolean matrix Rel
plus |newBlocksP ||Psim|. Since the boolean matrix that stores Rel is resizable, each operation
at the first line of the function updateRel() that adds a new entry to this resizable matrix has an
amortized cost which is in O(|Psim|): in fact, the resizable matrix is just a resizable array A of
resizable arrays so that when we add a new entry we need to add a new entry to A and then a
new entry to each array in A. Thus, the overall time complexity of resizing the matrix Rel is in
O(|Psim|2). Moreover, since

�
i∈It |newBlocksPi | is in O|Psim|), we have that the overall time

complexity of calling updateRel() at line 19 is in O(|Psim|2).

• Each split of the partition Q takes O(|pre(C)|) time and therefore O(|�|)-time. This is done for
all the new blocks of P so that the overall time complexity of splitting the partition Q at line 16 is
in O(|Psim||�|)-time.

• Each call to computePreEE() takes O(|�|) time. This function is called at lines 21 and 24 at most
O(|Psim|) time so that the overall time complexity of lines 21 and 24 is in O(|Psim||�|).

• Each call to updateRemove() takes O(|P ||Q|) time. This function is called at line 22 at most
O(|Psim|) time so that the overall time complexity of line 25 is in O(|Psim|2|Psp|).

• The difference between lines 26-30 in SA and lines 16-19 in RT, apart from the O(1) operation
S := ∅ at line 27, lies in the fact that at lines 16 and 19 in RT by means of C ∩ pre(Bprev)

and s ∈ pre(D) we traverse the concrete transition relation � while in SA at lines 26 and 30 by
means of C∩pre(Bprev) and E ∈ preEE (D) we traverse instead the abstract existential transition
relation �Q,P . As shown in [15, Theorem 7.1] — this proof is lengthy and not simple, we refer
the interested reader to [15, Theorem 7.1] — the overall time complexity of lines 16-19 in RT

is in O(|Psim||�|). As a consequence, the overall time complexity of lines 26-30 in SA is in
O(|Psim||�Psp,Psim |).

• Lines 32-34 in SA are executed only when S �= ∅. Notice that S can be nonempty only when at
least a pair (C, D) has been removed from Rel at line 29. Thus, the overall number of times that
lines 32-34 are executed is in O(|Psim|2). Moreover, lines 32-34 take O(|�P,Q|) time. Therefore,
the overall time complexity of lines 31-34 is in O(|Psim|2|�Psp,Psim |).

Thus, summing up and recalling that, by totality of the transition relation, we have that |Psim|2|Psp| ≤
|Psim|2|�Psp,Psim |, it turns out that the time complexity of SA is in O(|Psim||�|+|Psim|2|�Psp,Psim |). ��

Table 1 sums up the time and space complexities for the simulation algorithms RT, GPP-GP and
SA.

4.1. Adapting SA to LTSs

The algorithms discussed so far compute the simulation preorder on Kripke structures, but they can be
easily adapted to work over LTSs. The LTS version of the algorithm RT is given by Abdulla et al. [1].
For each block B, instead of a single set Remove(B), this modified algorithm maintains a family of sets
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Algorithm Space complexity Time complexity

RT O(|Psim||Σ| log |Σ|) O(|Psim||�|)

GPP-GP O(|Psim|2 + |Σ| log |Psim|) O(|Psim|2|�|)

SA O((|Psp||Psim| + |Σ|) log |Psp|) O(|Psim||�| + |Psim|2|�Psp,Psim |)

Table 1. Space and time complexities.

Removea(B) indexed over the labels a ∈ L of the LTS: a set Removea(B) stores all the states that have
no a-transition to a state that belong to some block C such that (B,C) ∈ Rel . Similarly, the Count table
is lifted to a table {Counta(s, B)}s∈Σ,B∈P,a∈L whose additional third dimension takes into account the
label of the transitions from s to some state in ∪Rel(B). Both space and time complexities of this mod-
ified algorithm increase of a multiplicative factor |L|: the space complexity is O(|L||Psim||Σ| log |Σ|)
while the time complexity is O(|L||Psim||Σ| + |Psim||�|).

Following the approach of [1], the algorithm SA can be adapted to LTSs as well. A first issue
concerns the additional partition Q. More precisely, for any B ∈ P and a ∈ L, any set Removea(B)

must still be represented as a set of blocks of the partition Q. In order to have this invariant satisfied, it
is enough to consider a partition Q such that any a-predecessor set prea(C), for some label a ∈ L and
some block C ∈ P , is a union of blocks of Q. Hence, it is sufficient to iterate the split operations in
lines 3 and 16 for any a-predecessor set prea(C), where a ranges over L. Moreover, the labeled abstract
transition relation �Q,P ⊆ Q × P is represented by {preEEa(B)}B∈P,a∈L, where for any E ∈ Q, we
have that E ∈ preEEa(B) iff there exists s1 ∈ E and s2 ∈ B such that s1

a−→ s2.
Analogously to RT, this change entails an increase for space and time complexities of a multiplicative

factor |L|. More precisely, the space bound O((|L||Psp||Psim| + |Σ|) log |Psp|) takes into account the
third dimension of the remove sets {Removea(B)}B∈P,a∈L. On the other hand, the time complexity
is O(|Psim||�| + |Psim|2|�Psp,Psim | + |L|(|Psim|2|Psp| + |Psim||Σ|)), and this takes into account the
additional time spent to split the partition P , whose overall time complexity is O(|L||Psim||Σ|), and to
call the updateRemove() function, whose overall time complexity is O(|L||Psim|2|Psp|).

5. Experimental Evaluation and Discussion

A prototype of the SA algorithm has been developed in C++ and has been evaluated on a number of
benchmarks. Our benchmarks include systems taken from publicly available examples in the VLTS
(Very Large Transition Systems) benchmark suite [19], CWB-NC (The Concurrency WorkBench of
New Century) [6] and mCRL2 (micro Common Representation Language 2) [12]. All these models
are represented as labeled transition systems. Since we implemented the version of SA in Figure 3 that
considers a Kripke structure as input, we exploit a procedure by Dovier et al. [9] that transforms a LTS
M into a Kripke structure M � in such a way that bisimulation and simulation equivalences on M and
M � coincide. This transformation acts as follows: any labeled transition s1

l−→ s2 is replaced by two
unlabeled transitions s1�n and n�s2, where n is a new node that is labeled with l, while all the original
states in M have the same label. This labeling provides an initial partition of the states of M � which
is denoted by Pinit. Hence, this transformation grows the size of the system as follows: the number of
transitions is doubled and the number of states of M � is the sum of the number of states and transitions
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Input Output Experim. Results
Model |Σ| |�| |Pinit| |Psim| |Psp| |Pbis| |�Psp,Psim | Time(s) Space(MB)

ABP-lossy [6] 187 260 4 32 32 32 48 0.20 0.02
ABP-lossy-2 [6] 1821 3280 12 1004 1004 1004 2456 0.24 0.65
ABP-safe [6] 123 148 4 40 40 40 53 0.10 0.02
two-link-netw [6] 8408 13638 4 336 375 448 883 0.32 0.76
one pump [6] 15774 17926 22 3193 3193 3193 5345 35.74 5.75
cwi 1 2 [19] 4339 4774 27 2401 2401 2401 2701 1.45 1.66
cwi 3 14 [19] 18548 29104 3 123 123 123 122 0.91 1.68
vasy 0 1 [19] 1513 2448 3 21 21 21 32 0.10 0.13
vasy 1 4 [19] 5647 8928 7 87 87 87 118 0.51 0.44
vasy 8 24 [19] 33290 48822 12 1423 1423 1423 2200 5.61 3.42
vasy 8 38 [19] 47345 76848 82 963 963 963 1582 6.26 4.34
vasy 10 56 [19] 67005 112312 13 8048 8048 8048 17308 42.16 18.59
vasy 18 73 [19] 91789 146086 18 15618 15618 15618 27975 268.29 47.42
brp [12] 22716 24336 5 591 591 591 648 1.38 1.79
leader [12] 1520 2256 3 47 47 47 46 0.22 0.14
mpsu [12] 202 300 15 145 145 145 229 0.90 0.04
par [12] 209 236 6 58 58 58 67 0.50 0.03
parallel [12] 8000 14000 286 1540 1540 1540 2640 3.44 6.07
tree [12] 2049 2048 3 43 43 43 59 0.70 0.15
lift3-final [12] 14230 19836 17 1573 1573 1573 2388 2.27 1.57
cabp [12] 2096 3264 6 210 213 216 411 0.50 0.18
scheduler [12] 32 38 6 30 30 30 36 0.00 0.01
dining-phil-4 [12] 418 600 21 418 418 418 600 0.74 0.47
dining-phil-5 [12] 1642 2500 26 1642 1642 1642 2500 1.95 5.87

Table 2. Results of the experimental evaluation.

of M .
We ran our implementation of SA on M � on an Intel Core 2 Duo 1.86 GHz PC with 2GB RAM

running Linux. Table 2 reports the size of the input model, the number of blocks of Psim, Psp and Pbis,
the size of the existential transition relation �Psp,Psim from Psp to Psim, the execution time in seconds and
the allocated memory in MB (this has been obtained by means of glibc-memusage). Table 3 provides,
respectively, the comparisons between the size of the partition Psp w.r.t. the size of the state space Σ, the
size of Psim w.r.t. Psp and the size of the abstract transition relation �Psp,Psim w.r.t. the concrete transition
relation �. We may therefore observe that (1) the average reduction by Psp of the concrete state space is
72.28%; (2) the average decrease of Psp w.r.t. Psim is 0.49%, namely the size of Psp tends to be close to
that of simulation equivalence Psim; (3) the average decrease of the number of arcs of �Psp,Psim w.r.t. �
is 70.14%, i.e. |�Psp,Psim | ≈ |�|/3.

This suggests the following comparison of the theoretical time and space complexities between SA

on one side and RT and GPP-GP on the other side, that we summarized above in Table 1. The time
complexity of SA may significantly improve the time complexity of GPP-GP as much as the size of the
abstract transition relation �Psp,Psim is smaller than that of the concrete transition relation �. However,
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Comparison
Model % |Psp|/|Σ| % |Psim|/|Psp| % |�Psp,Psim |/|�|

ABP-lossy [6] 17.11 100.00 18.46
ABP-lossy-2 [6] 55.13 100.00 74.88
ABP-safe [6] 32.52 100.00 35.81
two-link-netw [6] 4.46 89.60 6.47
one pump [6] 20.24 100.00 29.82
cwi 1 2 [19] 55.34 100.00 56.58
cwi 3 14 [19] 0.66 100.00 0.42
vasy 0 1 [19] 1.39 100.00 1.31
vasy 1 4 [19] 1.54 100.00 1.32
vasy 8 24 [19] 4.27 100.00 4.51
vasy 8 38 [19] 2.03 100.00 2.06
vasy 10 56 [19] 12.01 100.00 15.41
vasy 18 73 [19] 17.02 100.00 19.15
brp [12] 2.60 100.00 2.66
leader [12] 3.09 100.00 2.04
mpsu [12] 71.78 100.00 76.33
par [12] 27.75 100.00 28.39
parallel [12] 19.25 100.00 18.86
tree [12] 2.10 100.00 2.88
lift3-final [12] 11.05 100.00 12.04
cabp [12] 10.16 98.59 12.59
scheduler [12] 93.75 100.00 94.74
dining-phil-4 [12] 100.00 100.00 100.00
dining-phil-5 [12] 100.00 100.00 100.00

Average 27.72 99.51 29.86

Table 3. Experimental comparison.

the time complexity of RT still continues to be the best. As far as space complexity is concerned, the
space complexity of SA may be only moderately worse than the space complexity of GPP-GP because
|Psp| ≈ |Psim|. On the other hand, the space complexity of SA may significantly improve the space
complexity of RT when Psp provides a notable reduction of the concrete state space Σ. Moreover, in large
models where RT runs out of memory, the space efficiency of SA might be crucial for the computation
of the simulation preorder. For instance, if we consider the models vasy 10 56 and vasy 18 73, SA is
able to compute the simulation preorder, whereas [15, Section 8] shows that RT fails in out of memory.
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