
Event Structure Semantics of Parallel Extrusion
in the Pi-calculus

Silvia Crafa1, Daniele Varacca2, and Nobuko Yoshida3

1 Dip. di Matematica - Univ. Padova
2 PPS - CNRS & Univ. Paris Diderot

3 Dept. of Computing - Imperial College London

Abstract. We give a compositional event structure semantics of the π-calculus.
The main issues to deal with are the communication of free names and the extru-
sion of bound names. These are the source of the expressiveness of the π-calculus,
but they also allow subtle forms of causal dependencies. We show that free name
communications can be modeled in terms of “incomplete/potential synchroniza-
tion” events. On the other hand, we argue that it is not possible to satisfactorily
model parallel extrusion within the framework of stable event structures. We pro-
pose to model a process as a pair (E ,X) where E is a prime event structure and
X is a set of (bound) names. Intuitively, E encodes the structural causality of the
process, while the set X affects the computation on E so as to capture the causal
dependencies introduced by scope extrusion. The correctness of our true concur-
rent semantics is shown by an operational adequacy theorem with respect to the
standard late semantics of the π-calculus.

1 Introduction

In the study of concurrent and distributed systems, the true-concurrent semantics
approach takes concurrency as a primitive concept rather than reducing it to nondeter-
ministic interleaving. One of the by-products of this approach is that the causal links
between the process actions are more faithfully represented in true-concurrent models.

Prime event structures [14] are a causal model for concurrency which is particu-
larly suited for the traditional process calculi such as CCS and CSP since they directly
represent causality and concurrency simply as a partial order and an irreflexive binary
relation. Winskel [18] proposed a compositional event structure semantics of CCS, that
has been proved to be operationally adequate with respect to the standard labelled tran-
sition semantics, hence sound with respect to bisimilarity [20]. Similar results have been
proved for variants of the π-calculus, namely for a restricted typed subcalculus [17] and
for the internal πI-calculus [5], which are however less expressive than the full calculus.
In this paper we extend this result to the full π-calculus.

The main issues when dealing with the full π-calculus are name passing and the
extrusion of bound names. These two ingredients are the source of the expressiveness
of the calculus, but they are problematic in that they allow complex forms of causal
dependencies, as detailed below.

1.1 Free Name Passing

Compared to pure CCS, (either free or bound) name passing adds the ability to
dynamically acquire new synchronization capabilities. For instance consider the π-
calculus process P = n(z).(z〈a〉 | m(x)), that reads from the channel n and uses the
received name to output the name a in parallel with a read action on m. Hence a syn-
chronization along the channel m is possible if a previous communication along the
channel n substitutes the variable z exactly with the name m. Then, in order to be com-
positional, the semantics of P must also account for “potential” synchronizations that
might be activated by parallel compositions, like the one on channel m.

To account for this phenomenon, we define the parallel composition of event struc-
tures so that synchronization events that involve input and output on different channels,
at least one of which is a variable, are not deleted straight away. Moreover, the events
produced by the parallel composition are relabelled by taking into account their causal
history. For instance, the event corresponding to the synchronization pair (z〈a〉,m(x))
is relabelled into a τ action if, as in the process P above, its causal history contains a
synchronization that substitutes the variable z with the name m.

1.2 The Causal Links Created by Name Extrusion

Causal dependencies in π-calculus processes arise in two ways [1, 8]: by nesting
prefixes (called structural or prefixing or subject causality) and by using a name that has
been bound by a previous action (called link or name or object causality). While subject
causality is already present in CCS, object causality is distinctive of the π-calculus.
The interactions between the two forms of causal dependencies are quite complex. We
illustrate them by means of examples.

Parallel Scope Extrusion. Consider the two processes P = (νn)(a〈n〉.n(x)) and Q =
(νn)(a〈n〉 | n(x)). The causal dependence of the action n(x) on the output a〈n〉 is clear
in the process P (i.e. there is a structural causal link), however, a similar dependence
appears also in Q since a process cannot synchronize on the fresh name n before re-
ceiving it along the channel a (i.e. there is an objective causal link). Now consider the
process P1 = (νn)(a〈n〉 | b〈n〉): in the standard interleaving semantics of π-calculus
only one output extrudes, either a〈n〉 or b〈n〉, and the other one does not. As a conse-
quence, the second (free) output depends on the previous extruding output. However,
in a true concurrent model we can hardly say that there is a dependence between the
two parallel outputs, which in principle could be concurrently executed resulting in the
parallel/simultaneous extrusion of the same name n to two different threads reading
respectively on channel a and on channel b.

Dynamic Addition of New Extruders. We have seen that a bound name may have
multiple extruders. In addition, the coexistence of free and bound outputs allows the
set of extruders to dynamically change during the computation. Consider the process
P2 = (νn)(a〈n〉 |n(z)) | a(x).(x〈b〉 |c〈x〉). It can either open the scope of n by extruding
it along the channel a, or it can evolve to the process (νn)(n(z) | n〈b〉 | c〈n〉) where the
output of the variable x has become a new extruder for both the actions with subject n.
Hence after the first synchronization there is still the possibility of opening the scope of
n by extruding it along the channel c.

The Lesson we Learned. The examples above show that the causal dependencies in-
troduced by the scope extrusion mechanisms distinctive of the π-calculus can be under-
stood in terms of the two ingredients of extrusion: name restriction and communication.

1. The restriction (νn)P adds to the semantics of P a causal dependence between every
action with subject n and one of the outputs with object n.

2. The communication of a restricted name adds new causal dependencies since both
new extruders and new actions that need an extrusion may be generated by variable
substitution.

A causal semantics for the π-calculus should account for such a dynamic additional
objective causality introduced by scope extrusion. In particular, the first item above hints
at the fact that we have to deal with a form of disjunctive (objective) causality. Prime
event structures are stable models that represent disjunctive causality by duplicating
events and so that different copies causally depend on different (alternative) events. In
our case this amounts to represent different copies of any action with a bound subject,
each one causally depending on different (alternative) extrusions. However, the fact that
the set of extruders dynamically changes complicates the picture since new copies of
any action with a bound subject should be dynamically spawned for each new extruder.
In this way the technical details quickly become intractable, as discussed in Section 6.

In this paper we follow a different approach, that leads to an extremely simple tech-
nical development. The idea is to represent the disjunctive objective causality in a so-
called inclusive way: in order to trace the causality introduced by scope extrusion it is
sufficient to ensure that whenever an action with a bound subject is executed, at least one
extrusion of that bound name must have been already executed, but it is not necessary to
record which output was the real extruder. Clearly, such an inclusive-disjunctive causal-
ity is no longer representable with stable structures like prime event structures. How-
ever, we show that an operational adequate true concurrent semantics of the π-calculus
can be given by encoding a π-process simply as a pair (E ,X) where E is a prime event
structure and X is a set of (bound) names. Intuitively, the causal relation of E encodes
the structural causality of a process. Instead, the set X affects the computation on E : we
define a notion of permitted configurations, ensuring that any computation that contains
an action whose subject is a bound name in X , also contains a previous extrusion of that
name. Hence a further benefit of this semantics is that it clearly accounts for both forms
of causality: subjective causality is captured by the causal relation of event structures,
while objective causality is implicitly captured by permitted configurations.

2 The π-calculus
In this section we illustrate the synchronous, monadic π-calculus that we consider. We
assume a countably-infinite set of names and a countably-infinite set of variables ranged
over by m, ..,q and by x, .,z, respectively. Let a,b,c range over both names and variables.

Prefixes π ::= a(x) | a〈b〉 Definitions A(x̃, p̃ | z,n) = PA

Processes P,Q ::= ∑i∈I πi.Pi | P | Q | (νn)P | A〈x̃, p̃ | z,n〉

The syntax consists of the parallel composition, name restriction, finite summation of
guarded processes and recursive definition. In ∑i∈I πi.Pi, I is a finite indexing set; when

(IN LATE)

a(x).P
a(x)
−−→ P

(OUT)

a〈b〉.P
a〈b〉
−−→ P

(COMM)

P
a(x)
−−→ P′ Q

a〈b〉
−−→ Q′

P | Q
τ

−−→ P′{b/x} | Q′

(PAR)

P
α

−−→ P′

P | Q
α

−−→ P′ | Q

(OPEN)

P
a〈n〉
−−→ P′ n 6= a

(νn)P
a(n)
−−→ P′

(CLOSE)

P
a(x)
−−→ P′ Q

a(n)
−−→ Q′

P | Q
τ

−−→ (νn)(P′{n/x} | Q′)

(RES)

P
α

−−→ P′

(νn)P
α

−−→ (νn)P′

(SUM)

Pi
α

−−→ P′i i ∈ I

∑i∈I Pi
α

−−→ P′i

(REC)

PA{ỹ,q̃/x̃,p̃}{w,m/z,n}
α

−−→ P′ A(x̃, p̃ | z,n) = PA

A〈ỹ, q̃ | w,m〉
α

−−→ P′

Fig. 1. Labelled Transition System of the π-calculus

I is empty we write 0, or we simply omit it; we denote by + the binary sum. A process
a(x).P can perform an input at a and the variable x is the placeholder for the name so
received. The output case is symmetric: a process a〈b〉.P can perform an output along
the channel a. Notice that an output can send a name (either free or restricted) or a
variable.

We assume that every constant A has a unique defining equation A(x̃, p̃ | z,n) = PA.
The symbol p̃, resp. x̃, denotes a tuple of distinct names, resp. variables, that correspond
to the free names, resp. variables, of PA. n, resp. z, represents an infinite sequence of
distinct names N → Names, resp. distinct variables N → Variables, that is intended
to enumerate the (possibly infinite) bound names, resp. bound variables, of PA. The
parameters n and z do not usually appear in recursive definitions in the literature. The
reason we add them is that we want to maintain the following Basic Assumption: Every
bound name/variable is different from any other name/variable, either bound or free.
In the π-calculus, this policy is usually implicit and maintained along the computation
by dynamic α-conversion: every time the definition A is unfolded, a copy of the process
PA is created whose bound names and variables must be fresh. This dynamic choice is
difficult to interpret in the event structures. Hence, in order to obtain a precise semantic
correspondence, our recursive definitions prescribe all the names and variables that will
be possibly used in the recursive process (see [5] for some examples).

The sets of free and bound names and free and bound variables of P, denoted by
fn(P),bn(P), fv(P),bv(P), are defined as usual but for constant processes, whose defini-
tions are as follows: fn(A〈x̃, p̃ | z,n〉)= { p̃}, bn(A〈x̃, p̃ | z,n〉)= n(N), fv(A〈x̃, p̃ | z,n〉)=
{x̃} and bv(A〈x̃, p̃ | z,n〉) = z(N). The operational semantics is given in Figure 1
in terms of an LTS (in late style1) where we let α,β range over the set of labels

1 We could as well choose the early style semantics. However, in that case the event structure
corresponding to a simple input process would be the sum of all possible (infinite) variable
instantiations. Instead, the use of late semantics allows a cleaner and more intuitive approach.

{τ,a(x),a〈b〉,a(n)}. The syntax of labels shows that the object of an input is always
a variable, whereas the object of a free output is either a variable (e.g. b(x) or a〈x〉)
or a name. On the other hand, the object of a bound output is always a name, since
it must occur under a restriction. Moreover, thanks to the Basic Assumption, the side
conditions in rules (PAR) and (RES) are not needed anymore.

3 Event Structures
This section reviews basic definitions of prime event structures [7, 14, 19].
Definition 1 (Labelled Event Structure). Let L be a set of labels. A labelled event
structure is a tuple E = 〈E,≤,^,λ〉 s.t.

– E is a countable set of events;
– 〈E,≤〉 is a partial order, called the causal order;
– for every e ∈ E, the set [e) := {e′ | e′ < e}, called the enabling set of e, is finite;
– ^ is an irreflexive and symmetric relation, called the conflict relation, satisfying

the following: for every e1,e2,e3 ∈ E if e1 ≤ e2 and e1 ^ e3 then e2 ^ e3.
– λ : E → L is a labelling function that associates a label to each event in E.

Intuitively, labels represent actions, and events should be thought of as occurrences of
actions. Labels allow us to identify events which represent different occurrences of the
same action. In addition, labels are essential when composing two event structures in a
parallel composition, as they identify which events correctly synchronise.

We say that the conflict e2 ^ e3 is inherited from the conflict e1 ^ e3, when e1 < e2.
If a conflict is not inherited we say that it is immediate. If two events are not causally
related nor in conflict they are said to be concurrent.

The notion of computation is usually captured in event structures in terms of config-
urations. A configuration C of an event structure E is a conflict free downward closed
subset of E, i.e. a subset C of E satisfying: (1) if e ∈C then [e) ⊆C and (2) for every
e,e′ ∈ C, it is not the case that e ^ e′, that is e and e′ are either causally dependent
or concurrent. In other words, a configuration represents a run of an event structure,
where events are partially ordered. The set of configurations of E , partially ordered
by inclusion, is denoted as L(E). An alternative notion of computation can be defined
in terms of labelled transition systems of event structures. Such a definition allows to
more directly state (and prove) that the computational steps of a π-calculus process are
reflected into its event structure semantics.

Definition 2 (LTS of event structures). Let E = 〈E,≤,^,λ〉 be a labelled event

structure and let e be one of its minimal events with λ(e) = β. Then we write E β−→ Ebe,
where Ebe is the event structure 〈E ′,≤|E ′ ,^|E ′ ,λE ′〉with E ′ = {e′∈E | e′ 6=e and e′ 6^e}.

Roughly speaking, Ebe is E minus the event e, and minus all events that are in conflict
with e. The reachable LTS with initial state E corresponds to the computations over E .

Event structures have been shown to be the class of objects of a category [20].
Moreover, it is easily shown that an isomorphism in this category is a label-preserving
bijective function that preserves and reflects causality and conflict. We denote by E1 ∼=
E2 the fact that there is an isomorphism between E1 and E2.

We review here an informal description of several operations on labelled event struc-
tures, that we are going to use in the next section. See [19] for more details.

– Prefixing a.E . This operation adds to the event structure a new minimal element,
labelled by a, below every other event in E .

– Prefixed sum ∑i∈I ai.Ei. This is obtained as the disjoint union of copies of the event
structures ai.Ei. The conflict relation is extended by putting in conflict every pair
of events belonging to two different copies of ai.Ei.

– Restriction (or Hiding) E \X where X ⊆ L is a set of labels. This is obtained by
removing from E all events with label in X and all events that are above (i.e.,
causally depend on) one of those.

– Relabelling E [f] where L and L′ are two sets of labels and f : L→ L′. This operation
just consists in composing the labelling function λ of E with the function f . The
new event structure is labelled over L′ and its labelling function is f ◦λ.

The parallel composition of two event structures E1 and E2 gives a new event structure
E ′ whose events model the parallel occurrence of pairs of events e1 ∈ E1 and e2 ∈ E2.
In particular, when the labels of e1 and e2 match according to an underlying synchroni-
sation model, E ′ records (with an event e′ ∈ E ′) that a synchronisation between e1 and
e2 is possible, and deals with the causal effects of such a synchronisation.

Technically, the parallel composition is defined as the categorical product followed
by restriction and relabelling [20]. The categorical product represents all conceivable
synchronisations, relabelling implements a synchronisation model by expressing which
events are allowed to synchronise, and hiding removes synchronisations that are not per-
mitted. The synchronisation model underlying the relabelling operation is formalised by
the notion of synchronisation algebra, that is a partial binary operation •S defined on
L∗ := L]{∗} where ∗ is a distinguished label. If αi are the labels of events ei ∈ Ei, then
the event e′ ∈ E ′ representing the synchronisation of e1 and e2 is labelled by α1 •S α2.
When α1 •S α2 is undefined, the synchronisation event e′ is given a distinguished label
bad, indicating that this event is not allowed and should be deleted.

Definition 3 (Parallel Composition of Event Structures). Let E1,E2 two event struc-
tures labelled over L, let •S be a synchronisation algebra, and let fS : L∗ → L′ =
L∗∪{bad} be a function defined as fS(α1,α2) = α1•S α2, if S is defined on (α1,α2), and
fS(α1,α2) = bad otherwise. The parallel composition E1‖SE2 is defined as the categor-
ical product followed by relabelling and restriction: E1‖SE2 = (E1 ×E2)[fS]\{bad}.
The subscripts S are omitted when the synchronisation algebra is clear from the context.

Example 4. We show a simple example of parallel composition. Consider the set of la-
bels L = {α,β,α,τ} and the synchronisation algebra obtained as the symmetric closure
of the following rules: α•α = τ, α•∗= α, α•∗= α, β•∗= β and undefined otherwise.
Consider the two event structures E1,E2, where E1 = {a,b},E2 = {a′}, with a≤1 b and
λ1(a) = α,λ1(b) = β,λ2(a′) = α. The event structures are represented as follows:

E1 :
β

E2 : E3 :
β β

α α α τ α

where dotted lines represent immediate conflict, while the causal order proceeds up-
wards along the straight lines. Then E3 := E1‖E2 is the event structure 〈E3,≤,^,λ〉
where E3 = {e:=(/0,a,∗),e′:=(/0,∗,a′),e′′:=(/0,a,a′),d:=({e},a′,∗),d′′:=({e′′},a′,∗)},
and the ordering, immediate conflict and the labelling are as in the picture above.

We say that an event structure E is a prefix of an event structure E ′, denoted E ≤ E ′

if there exists E ′′ ∼= E ′ such that E ⊆ E ′′, no event in E ′′ \E is below any event of E,
and conflict and order in E are the restriction of those in E ′′. Winskel [18] has shown
that the class of event structures with the prefix order is a large CPO, and thus the
limits of countable increasing chains exist. Moreover all operators on event structures
are continuous. We will use this fact to define the semantics of the recursive definitions.

4 Free Name Passing
We present the event structure semantics of the full π-calculus in two phases, dealing

separately with the two main issues of the calculus. We start in this section discussing
free name passing, and we postpone to the next section the treatment of scope extrusion.

The core of a compositional semantics of a process calculus is parallel composition.
When a process P is put in parallel with another process, new synchronizations can be
triggered. Hence the semantics of P must also account for “potential” synchronizations
that might be activated by parallel compositions. In Winskel’s event structure semantics
of CCS [18], the parallel composition is defined as a product in a suitable category
followed by relabelling and hiding, as we have presented in Section 3. For the semantics
of the π-calculus, when the parallel composition of two event structures is computed,
synchronisation events that involve input and output on different channels cannot be
hidden straight away. If at least one of the two channels is a variable, then it is possible
that, after prefixing and parallel composition, the two channels will be made equal.

We then resort to a technique similar to the one used in [5]: we consider a gener-
alized notion of relabelling that takes into account the history of a (synchronization)
event. Such a relabelling is defined according to the following ideas:

– each pair (a(x),a〈b〉) made of two equal names or two equal variables is relabelled
τx→b, to indicate that it represents a legal synchronization where b is substituted for
x. Moreover, such a substitution must be propagated in all the events that causally
depend on this synchronization. However, after all substitutions have taken place,
there is no need to remember the extra information carried by the τ action, than the
subscripts of the τ events are erased.

– Synchronisations pairs, like (a(x),b〈c〉), involving different channels (at least) one
of which is a variable, are relabelled (a(x),b〈c〉)x→c, postponing the decision whether
they represent a correct synchronization or not.

– Each pair (n(x),m〈b〉) made of two different names is relabelled bad to denote a
synchronization that is not allowed.

Definition 5 (Generalised Relabelling). Let L and L′ be two sets of labels, and let
Pom(L′) be the set of pomsets (i.e., partially ordered multisets) over L′. Given an event
structure E = 〈E,≤,^,λ〉 with labels in L, and a function f : Pom(L′)× L −→ L′,
we define the relabelling operation E [f] as the event structure E ′ = 〈E,≤,^,λ′〉 with
labels in L′, where λ′ : E −→ L′ is defined by induction on the height of an element of
E: if h(e) = 0 then λ′(e) = f (/0, λ(e)), if h(e) = n+1 then λ′(e) = f (λ′([e)), λ(e)).

In words, an event e is relabelled with a label λ′(e) that depends on the (pomset of)
labels of the events belonging to its causal history [e).

In the case of π-calculus with free names, let L = {a(x),a〈b〉,τ | a,b ∈ Names∪
Variables, x ∈ Variables} be the set of labels used in the LTS of π-calculus without
restriction. We define the relabelling function needed by the parallel composition oper-
ation around the extended set of labels L′ = L∪{(α,β)x→b | α,β ∈ L}∪{τx→b, bad},
where bad is a distinguished label. The relabelling function fπ : Pom(L′)× (L′]{∗}×
L′]{∗})−→ L′ is defined as follows (we omit the symmetric clauses):

fπ(X ,〈a(y),a〈b〉〉) = τy→b fπ(X ,〈a(x),y〈c〉〉) =
{

τx→c if αy→a ∈ X
(a(x),y〈c〉)x→c otherwise

fπ(X ,〈n(y),m〈b〉〉) = bad fπ(X ,〈y(x),a〈n〉〉) =
{

τx→n if αy→a ∈ X
(y(x),a〈n〉)x→n otherwise

fπ(X ,〈y(x),∗〉) =
{

a(x) if αy→a ∈ X
y(x) otherwise fπ(X ,〈y〈b〉,∗〉) =

{
a〈b〉 if αy→a ∈ X
y〈b〉 otherwise

fπ(X ,〈α,∗〉) = α fπ(X ,〈α,β〉) = bad otherwise

The extra information carried by the τ-actions, differently from that of “incomplete
synchronization” events, is only necessary in order to define the relabelling, but there
is no need to keep it after the synchronization has been completed. Hence we apply a
second relabelling er that simply erases the subscript of τ actions.

The semantics of the π-calculus is then defined as follows by induction on processes,
where the parallel composition of event structure is defined by

E1‖πE2 = ((E1×E2) [fπ][er]) \{bad}
To deal with recursive definitions, we use an index k to denote the level of unfolding.

{|0 |}k = /0 {|∑i∈I πi.Pi |}k = ∑i∈I πi.{|Pi |}k {|P | Q |}k = {|P |}k ‖π {|Q |}k

{|A〈ỹ, q̃ | w,m〉 |}0 = /0 {|A〈ỹ, q̃ | w,m〉 |}k+1 = {|PA{ỹ,q̃/x̃,p̃}{w,m/z,n}|}k

Recall that all operators on event structures are continuous with respect to the prefix
order. It is thus easy to show that, for any k, {|P |}k ≤ {|P |}k+1. We define {|P |} to be the
limit of the increasing chain ...{|P |}k ≤{|P |}k+1 ≤{|P |}k+2..., that is {|P |} = supk∈N {|P |}k
Since all operators are continuous w.r.t. the prefix order we have the following result:

Theorem 6 (Compositionality). The semantics {|P |} is compositional, i.e. {|P | Q |}=
{|P |} ‖π {|Q |}, {|∑i∈I πi.Pi |}= ∑i∈I πi.{|Pi |},

Example 7. As an example, consider the process P = n(z).(z〈a〉 | m(x)) . The synchro-
nization along the channel m can be only performed if the previous synchronization
along n substitutes the variable z with the name m. Accordingly, the semantics of the
process P is the leftmost event structure depicted below, denoted by EP. Moreover, the
rightmost structure corresponds to the semantics of the process P | n〈m〉 | n〈p〉.

z〈a〉
QQQQQQ (z〈a〉,m(x))x→a m(x)

mmmmmm

n(z)

p〈a〉 m(x) m〈a〉
III
τx→a m(x)

uuu
n〈p〉 τz→p

HHH
EP τz→m n〈m〉

The following theorem shows that the event structure semantics is operationally
correct. Indeed, given a process P, the computational steps of P in the LTS of Section 2
are reflected by the semantics {|P |}.

Theorem 8 (Operational Adequacy). Let β ∈ {a(x),a〈b〉,τ}. Suppose P
β

−−→ P′ in

the π-calculus. Then there exists E such that {|P |}
β

−−→ E and E ∼={|P′ |}. Conversely,

suppose {|P |}
β

−−→ E ′. Then there exists P′ such that P
β

−−→ P′ and {|P′ |}∼=E ′.

Note that the correspondence holds for the labels in the LTS of the calculus. Labels
that identify “incomplete synchronizations” have been introduced in the event structure
semantics for the sake of compositionality, but they are not considered in the theorem
above since they do not correspond to any operational step. Moreover, the semantics is
clearly not fully abstract in any reasonable sense, since interleaving equivalences are
less discriminating than the corresponding causal equivalences on event structures.

5 Scope Extrusion
In this section we show how the causal dependencies introduced by scope extrusion

can be captured by event structure-based models. As we discussed in Section 1, the
communication of bound names implies that any action with a bound subject causally
depends on a dynamic set of possible extruders of that bound subject. Hence dealing
with scope extrusion requires modelling some form of disjunctive causality. Prime event
structures are stable models that represent an action α that can be caused either by the
action β1 or the action β2 as two different events e,e′ that are both labelled α but e
causally depends on the event labeled β1 while e′ is caused by the event labelled β2.
In order to avoid the proliferation of events representing the same action with different
extruders, we follow here a different approach, postponing to the next section a more
detailed discussion on the use of prime event structures.

5.1 Event Structure with Bound Names

We define the semantics of the full π-calculus in terms of pairs (E ,X), where E is
a prime event structure, and is a X a set of names. We call such a pair an event structure
with bound names. Intuitively, the causal relation of E encodes the structural causality
of a process, while the set X records bound names. Given a pair (E , X) we define a
notion of permitted configurations: a configuration that contains an action whose sub-
ject is a bound name, is permitted if it also contains a previous extrusion of that name.
Objective causality is then implicitly captured by permitted configurations.

Definition 9 (Semantics). The semantics of the full π-calculus is inductively defined as
follows, where k denote the level of unfolding of recursive definitions, and we write E k

P,
resp. Xk

P, for the first, resp. the second, projection of the pair {|P |}k:

{|∑i∈I πi.Pi |}k = (∑i∈I πi.E k
Pi

,
S

i∈I Xk
Pi

) {|P | Q |}k = (E k
P ‖π E k

Q , Xk
P ∪Xk

Q)

{|A〈ỹ, q̃ | w,m〉 |}0 = (/0,{w(N)}) {|(νn)P |}k = (E k
P , Xk

P ∪{n})

{|A〈ỹ, q̃ | w,m〉 |}k+1 = (E k
PA{ỹ,q̃/x̃,p̃}{w,m/z,n}

, {w(N)}) {|0 |}k = (/0, /0)

It is easy to show that, for any k, E k
P ≤ E k+1

P and Xk
P = Xk+1

P = XP. Then the semantics
of a process P is defined as the following limit: {|P |} = (supk∈N E k

P , XP) .

The semantics is surprisingly simple: a restricted process (νn)P is represented by a
prime event structure that encodes the process P where the scope of n has been opened,
and we collect the name n in the set of bound names. As for parallel composition, the
semantics {|P | Q |} is a pair (E ,X) where X collects the bound names of both {|P |}
and {|Q |} (recall that we assumed that bound names are pairwise different), while the
event structure E is obtained exactly as in the previous sections. This is since the event
structures that get composed correspond to the processes P and Q where the scope of
any bound name has been opened. The following property can be immediately proved.

Proposition 10. Let P,Q be two processes, then {|(νn)P | Q |}= {|(νn)(P | Q) |}.

Example 11. Consider the process P = (νn)(a〈n〉 | n(z)) | a(x).(x〈b〉 | c〈x〉), whose
first synchronization produces a new extruder c〈n〉 for the bound name n. The semantics
of P is the pair (EP,{n}), where EP is the following event structure:

τ n〈b〉 c〈n〉 x〈b〉 c〈x〉

n(z) a〈n〉 τ

@@@@ wwww
a(x)

xx

In order to study the operational correspondence between the LTS semantics of the
π-calculus and the event structure semantics above, we first need to adapt the notion of
computational steps of the pairs (E ,X). The definition of labelled transitions between
prime event structures, i.e., Definition 2, is generalized as follows.

Definition 12 (Permitted Transitions). Let (E ,X) be a labelled event structure with
bound names. Let e be a minimal event of E with λ(e) = β. We define the following
permitted labelled transitions:

– (E ,X)
β−→ (Ebe, X), if β ∈ {τ,a(x),a〈b〉} with a,b 6∈ X.

– (E ,X)
a(n)−→ (Ebe, X\{n}), if β = a〈n〉 with a 6∈ X and n ∈ X.

According to this definition, the set of bound names constrains the set of transitions
that can be performed. In particular, no transition whose label has a bound subject is
allowed. On the other hand, when a minimal event labeled a〈n〉 is consumed, if the
name n is bound, the transition’s labels records that this event is indeed a bound output.
Moreover, in this case we record that the scope of n is opened by removing n from the
set of bound names of the target pair. Finally, observe that the previous definition only
allows transitions whose labels are in the set L = {τ,a(x),a〈b〉,a(n)}, which is exactly
the sets of labels in the LTS of Section 2.

Theorem 13 (Operational Adequacy). Let be β∈{a(x),a〈b〉,a(n),τ}. Suppose P
β

−−→ P′

in the π-calculus. Then there exists E s.t. {|P |}
β

−−→ E and E ∼= {|P′ |}. Conversely,

suppose {|P |}
β

−−→ E ′. Then there exists P′ s.t. P
β

−−→ P′ and {|P′ |} ∼= E ′.

5.2 Subjective and Objective Causality

Given an event structure with bound names (E ,X), Definition 12 shows that some
configurations of E are no longer allowed. For instance, if e is minimal but its label has
a subject that is a name in X , e.g, λ(e) = n(x) with n ∈ X , then the configuration {e} is
no longer allowed since the event e requires a previous extrusion of the name n.

Definition 14 (Permitted Configuration). Let (E ,X) be an event structure with bound
names. For an event e ∈ E define e ↑= {e′ | e ≤ e′}. Given a configuration C of E , we
say that C is permitted in (E ,X) whenever, for any e∈C whose label has subject n with
n ∈ X,

– C \ e ↑ is permitted, and
– C \ e ↑ contains an event whose label is an output action with object n.

The first item of the definition above is used to avoid circular definitions that would
allow wrong configurations like {n〈m〉,m〈n〉} with X = {n,m}. Now, the two forms of
causality of the π-calculus can be defined using event structures with bound names and
permitted configurations.

Definition 15 (Subjective and Objective Causality). Let P be a process of the π-
calculus, and {|P |}= (Ep,XP) be its semantics. Let be e1,e2 ∈ EP, then

– e2 has a subjective dependence on e1 if e1 ≤EP e2;
– e2 has a objective dependence on e1 if (i) the label of e1 is the output of a name in

X which is also the subject of the label of e2, and if (ii) there exists a configuration
C that is permitted in (E ,X) and that contains both e1 and e2.

Example 16. Let consider again the process P in Example 11. The configurations C1 =
{a〈n〉,n(z)} and C2 = {τ,c〈n〉,n(z)} are both permitted by {|P |}, and they witness the
fact that the action n(z) has an objective dependence on a〈n〉 and on c〈n〉. We could
also say that n(z) objectively depends either on a〈n〉 or on c〈n〉.

Example 17. Let be P = (νn)(a〈n〉 | b〈n〉 | n(x)), then {|P |}= (EP,{n}) where EP has
three concurrent events. In this process there is no subjective causality, however the ac-
tion n(x) has an objective dependence on a〈n〉 and on b〈n〉 since both C1 = {a〈n〉,n(x)}
and C2 = {b〈n〉,n(x)} are permitted configurations.

Example 18. Let be P = (νn)(a〈n〉.b〈n〉.n(x)), then {|P |} = (EP,{n}) where EP is a
chain of three events. According to the causal relation of EP, the action n(x) has a
structural dependence on both the outputs. Moreover, the permitted configuration C =
{a〈n〉,b〈n〉,n(x)} shows that n(x) has an objective dependence on a〈n〉 and on b〈n〉. In
this case we do not know which of the two outputs really extruded the bound name,
accordingly to the inclusive disjunctive causality approach we are following.

5.3 The Meaning of Labelled Causality

In this paper we focus on compositional semantics, studying a true concurrent se-
mantics that operationally matches the LTS semantics of the π-calculus. Alternatively,
one could take as primitive the reduction semantics of the π-calculus, taking the per-
spective that only τ-events are “real” computational steps of a concurrent system. There-
fore one could argue that the concept of causal dependency makes only sense between
τ events. In this perspective, we propose to interpret the causal relation between non-τ
events as an anticipation of the causal relations involving the synchronizations they will
take part in. In other terms, non-τ events (from now on simply called labelled events)
represent “incomplete” events, that are waiting for a synchronization or a substitution
to be completed. Hence we can prove that in our semantics two labelled events e1 and
e2 are causally dependent if and only if the τ-events they can take part in are causally
dependent. This property is expressed by the following theorem in terms of permitted
configurations. Recall that the parallel composition of two event structures is obtained
by first constructing the cartesian product. Therefore there are projection morphisms
π1,π2 on the two composing structures. Let call τ-configuration a configuration whose
events are all τ-events. Note that every τ-configuration is permitted.

Theorem 19. Let P be a process. A configuration C is permitted in {|P |} if and only if
there exists a process Q and a τ-configuration C′ in {|P | Q |} such that π1(C′) = C.

Let e1,e2 be two labelled events of {|P |} = (Ep,Xp). If e1,e2 are structurally de-
pendent, i.e., e1 ≤EP e2, then such a structural dependence is preserved and reflected in
the τ-actions they are involved in because of the way the parallel composition of event
structures is defined. On the other hand, let be e1,e2 objectively dependent. Consider
the parallel composition (EP||πEQ,XP ∪XQ) for some Q such that there is a τ event e′2
in EP || πEQ with π1(e′2) = e2 and [e′2) is a τ-configuration. Then there must be an event
e′1 ∈ [e′2) such that π1(e′1) = e1.

6 Disjunctive Causality
As we discussed in Section 1, objective causality introduced by scope extrusion

requires for the π-calculus a semantic model that is able to express some form of dis-
junctive causality. In the previous section we followed an approach that just ensures
that some extruder (causally) precedes any action with a bound subject. However, we
could alternatively take the effort of tracing the identity of the actual extruders. We
could do it by duplicating the events corresponding to actions with bound subject and
letting different copies depend on different, alternative, extruders. Such a duplication
allows us to use prime event structures as semantics models. In this section we discuss
this alternative approach showing to what extent it can be pursued.

As a first example, the semantics of the process P = (νn)(a〈n〉 | b〈n〉 | n(x)), con-
taining two possible extruders for the action n(x), can be represented by left-most prime
event structure in Figure 2. When more than a single action use as subject the same
bound name, each one of these actions must depend on one of the possible extruders.
Then the causality of the process (νn)(a〈n〉 | b〈n〉 | n(x).n(y)), represented by the right-
most event structure in Figure 2, shows that the two read actions might depend either
on the same extruder or on two different extrusions.

n(x) n(x)

a(n) b(n)

n(y) n(y) n(y) n(y)

n(x)

AA }}
n(x)

AA }}

a(n)

~~~~~~~~
b(n)

@@@@@@@@

Fig. 2.

Things get more complicate when dealing with the dynamic addition of new ex-
truders by means of communications. In order to guarantee that there are distinct copies
of any event with a bound subject that causally depend on different extruders, we have
to consider the objective causalities generated by a communication. More precisely,
when the variable x is substituted with a bound name n by effect of a synchroniza-
tion, (i) any action with subject x appearing in the reading thread becomes an action
that requires a previous scope extrusion, and (ii) the outputs with object x become new
extruders for any action with subject n or x. To exemplify, consider the process P′ =
(νn)(a〈n〉 | b〈n〉 | n(z)) | a(x).(x〈a〉 | c〈x〉) that initially contains two extruders for n, and
with the synchronization along the channel a evolves to (νn)(b〈n〉 | n(z) | n〈a〉 | c〈n〉).
Its causal semantics can be represented with the following prime event structure:

n〈a〉 n(z)

vvvv

c〈x〉 x〈a〉 c(n)

HHH
HH

n τz→a n(z) n(z)

a(x)

EEEE
τx→(n)

vvvvv
vvvvv

a(n) b(n)

WWWWWWWWWWWWWWWWWWW

The read action n(z) may depend on one of the two initial extruders a〈n〉 and b〈n〉,
or on the new extruder c〈n〉 that is generated by the first communication. Accordingly,
three different copies of the event n(z) appear over each of the three extruders. On
the other hand, the output action on the bound name n is generated by the substitution
entailed by the communication along the channel a, hence any copy of that action keeps
a (structural) dependence on the corresponding τ event. Moreover, since it is an action
with bound subject, there must be a copy of it for each of the remaining extruders of
n, that is b〈n〉 and c〈n〉. To enhance readability, the event structure resulting from the
execution of the communication along the channel a is the leftmost e.s. in Figure 3.

n〈a〉 n(z) n〈a〉 n(z)

c(n)

���
τ b(n)

@@@
n(z) n(z)

b(n)

FF xx

a(n)

Fig. 3.

So far so good, in particular it seems possible to let the causal relation of prime
event structures encode both structural and objective causality of π-processes. How-
ever, this is not the case. Consider the process P = (νn)(a〈n〉.b〈n〉.n(z)) of Example 18.



If we just duplicate the event n(z) to distinguish the fact that it might depend on an
extrusion along a or along b, we obtain the rightmost structure in Figure 3, that we
denote Ep. In particular, even if the two copies intends to represent two different ob-
jective causalities, nothing distinguishes them since they both structurally depend on
both outputs. This is a problem when we compose the process P in parallel with, e.g.,
Q = a(x).c〈x〉 | b(y).d〈y〉. After two synchronizations we would like to obtain two
copies of the read actions on n that depend on the two different remaining extruders
c〈n〉 and d〈n〉. However, in order to obtain such an event structure as the parallel com-
position of the semantics of P and Q we must be able to record somehow the different
objective causality that distinguishes the two copies of n(z) in the semantics of P.

The technical solution would be to enrich the event labels so that the label of an
event e also records the identity of the extruder events that e (objectively) causally de-
pends on. A precise account of this approach is technically involved and intractable, so
that the intuition on the semantics gets lost. Moreover, we think that this final exam-
ple sheds light on the fact that structural and objective causality of π-processes cannot
be expressed by the sole causal relation of event structures. To conclude, at the price
of losing the information about which extruder an event depends on, the approach we
developed in the previous section brings a number of benefits: it is technically much
simpler, it is operationally adequate, and it gives a clearer account of the two forms of
causality distinctive of π-processes.

7 Related Work

There are several causal models for the π-calculus, that use different techniques.
There exist noninterleaving semantics in terms of labelled transition systems, where
the causal relations between transitions are represented by “proofs” which allow to
distinguish different occurrences of the same transition [16, 1, 8]. In [4], a more abstract
approach is followed, which involves indexed transition systems. In [11], a semantics
of the π-calculus in terms of pomsets is given, following ideas from dataflow theory.
The two papers [3, 9] present Petri nets semantics of the π-calculus. However, none of
these aproaches accounts for parallel extrusion. We finally recall [13] that introduces a
graph rewriting-based semantics of the π-calculus that allows parallel extrusions.

Previous work on an event structure semantics of the π-calculus are [17, 5] that
study fragments of the calculus, while [2] gives an unlabelled event structure semantics
of the full calculus which only corresponds to the reduction semantics, hence which is
not compositional.

We plan for future work the application of the present semantics to the study of a
labelled reversible semantics of the π-calculus that would extend the work of Danos
and Krivine [6]. Phillips and Ulidowski [15] noted the strict correspondence between
reversible transition systems and event structures. A first step in this direction is [12],
which proposes a reversible semantics of the π-calculus that only considers reductions.
It would also be interesting to study which kind of configuration structures [10] can
naturally include our definition of permitted configuration.



Acknowledgment
We thank Ilaria Castellani, whose curiosity and skepticism pushed us to dig deeper.

We also thank Giotto, for his wonderful frescos, and seaside greek iced coffes, for their
mind-refreshing power. The third author is partially supported by EPSRC EP/F003757/01
and G015635/01.

References
1. Boreale, M., Sangiorgi, D.: A fully abstract semantics for causality in the π-calculus. Acta

Inf. 35(5), 353–400 (1998)
2. Bruni, R., Melgratti, H., Montanari, U.: Event structure semantics for nominal calculi. In:

Proc.of CONCUR. LNCS, vol. 4137, pp. 295–309. Springer (2006)
3. Busi, N., Gorrieri, R.: A petri net semantics for pi-calculus. In: Proceedings of 6th CONCUR.

LNCS, vol. 962, pp. 145–159. Springer (1995)
4. Cattani, G.L., Sewell, P.: Models for name-passing processes: Interleaving and causal. In:

Proceedings of 15th LICS. pp. 322–332. IEEE (2000)
5. Crafa, S., Varacca, D., Yoshida, N.: Compositional event structure semantics for the internal

pi-calculus. In: Proc. of CONCUR. LNCS, vol. 4703, pp. 317–332. Springer (2007)
6. Danos, V., Krivine, J.: Reversible communicating systems. In: Proceedings of CONCUR

2004. LNCS, vol. 3170, pp. 292–307. Springer (2004)
7. Degano, P., De Nicola, R., Montanari, U.: On the consistency of truly concurrent operational

and denotational semantics. In: LICS. pp. 133–141. IEEE (1988)
8. Degano, P., Priami, C.: Non-interleaving semantics for mobile processes. Theor. Comp. Sci.

216(1-2), 237–270 (1999)
9. Engelfriet, J.: A multiset semantics for the pi-calculus with replication. Theor. Comp. Sci.

153(1&2), 65–94 (1996)
10. van Glabbeek, R.J., Plotkin, G.D.: Configuration structures, event structures and petri nets.

Theor. Comput. Sci. 410(41), 4111–4159 (2009)
11. Jagadeesan, L.J., Jagadeesan, R.: Causality and true concurrency: A data-flow analysis of the

pi-calculus. In: AMAST. LNCS, vol. 936, pp. 277–291 (1995)
12. Lanese, I., Mezzina, C.A., Stefani, J.: Reversing higher-order pi. In: Proceedings of CON-

CUR 2010. LNCS, vol. 6269, pp. 478–493. Springer (2010)
13. Montanari, U., Pistore, M.: Concurrent semantics for the pi-calculus. Electr. Notes Theor.

Comput. Sci. 1, 411–429 (1995), proceedings of MFPS ’95
14. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains, part I.

Theor. Comp. Sci. 13(1), 85–108 (1981)
15. Phillips, I., Ulidowski, I.: Reversibility and models for concurrency. Electr. Notes Theor.

Comput. Sci. 192(1), 93–108 (2007), proceedings of SOS 2007
16. Sangiorgi, D.: Locality and true-concurrency in calculi for mobile processes. In: Proceedings

of TACS. LNCS, vol. 789, pp. 405–424. Springer (1994)
17. Varacca, D., Yoshida, N.: Typed event structures and the linear pi-calculus. Theor. Comput.

Sci. 411(19), 1949–1973 (2010)
18. Winskel, G.: Event structure semantics for CCS and related languages. In: Proceedings of

9th ICALP. LNCS, vol. 140, pp. 561–576. Springer (1982)
19. Winskel, G.: Event structures. In: Advances in Petri Nets 1986, Part II; Proceedings of an

Advanced Course. LNCS, vol. 255, pp. 325–392. Springer (1987)
20. Winskel, G., Nielsen, M.: Models for concurrency. In: Handbook of logic in Computer Sci-

ence, vol. 4. Clarendon Press (1995)


