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Abstract. We propose a logic for true concurrency whose formulae
predicate about events in computations and their causal dependencies.
The induced logical equivalence is hereditary history preserving bisimi-
larity, and fragments of the logic can be identified which correspond to
other true concurrent behavioural equivalences in the literature: step,
pomset and history preserving bisimilarity. Standard Hennessy-Milner
logic, thus (interleaving) bisimilarity, is also recovered as a fragment. We
believe that this contributes to a rational presentation of the true con-
current spectrum and to a deeper understanding of the relations between
the involved behavioural equivalences.

1 Introduction

In the semantics of concurrent and distributed systems, a major dichotomy op-
poses the interleaving approaches, where concurrency of actions is reduced to
the non-deterministic choice among their possible sequentializations, to true-
concurrent approaches, where concurrency is taken as a primitive notion. In both
cases, on top of the operational models a number of behavioural equivalences
have been defined by abstracting from aspects which are considered unobserv-
able [1,2].

For the interleaving world, a systematic and impressive picture is taken in the
linear-time branching-time spectrum [1]. Quite interestingly, the equivalences in
the spectrum can be uniformly characterised in logical terms. Bisimilarity, the
finest equivalence, corresponds to Hennessy-Milner (HM) logic: two processes
are bisimilar if and only if they satisfy the same HM logic formulae [3]. Coarser
equivalences correspond to suitable fragments of HM logic.

In the true-concurrent world, relying on models like event structures or tran-
sition systems with independence [4], several behavioural equivalences have been
defined, ranging from hereditary history preserving (hhp-) bisimilarity, to pom-
set and step bisimilarity. Correspondingly, a number of logics have been studied,
but, to the best of our knowledge, a unifying logical framework encompassing the
main true-concurrent equivalences is still missing. The huge amount of work on
the topic makes it impossible to give a complete account of related approaches.
Just to give a few references (see Section 5 for a wider discussion), [5] proposes
a general framework encompassing a number of temporal and modal logics that
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characterize pomset and weak history preserving bisimilarities as well as inter-
leaving bisimilarity. However, finer equivalences are not considered and a single
unitary logic is missing. History preserving (hp-) bisimilarity has been charac-
terised in automata-theoretic terms using HD-automata [6] or Petri nets [7].
More recently, hp-bisimilarity has been obtained as a logical equivalence, us-
ing a separation fixpoint modal logic where it is possible to check the causal
dependence/independence of the last executed action [8,9]. Concerning hhp-
bisimilarity, several logics with modalities corresponding to the “retraction” or
“backward” execution of computations have been proposed [10-12]. In absence
of autoconcurrency they are shown to capture hhp-bisimilarity, while the general
case complicates the picture and requires some adjustments.

In this paper we propose a behavioural logic for concurrency and we show
that it allows to characterise a relevant part of the truly concurrent spectrum.
More specifically, the full logic is shown to capture hhp-bisimilarity, the finest
equivalence in the spectrum [2]. Then suitable fragments of the logic are shown
to scale down to the characterisation of other coarser equivalences, i.e., history
preserving, pomset and step bisimilarity. Standard HM logic, and thus (inter-
leaving) bisimilarity, is also recovered as a fragment.

Our logic allows to predicate about events in computations together with
their causal and independence relations. It is interpreted over prime event struc-
tures, but it could naturally be interpreted over any formalism with a notion
of event, causality and consistency. A formula is evaluated in a configuration
representing the current state of the computation, and it predicates on a set of
possible future evolutions starting from that state. The logic is event-based in
the sense that it contains a binder that allows to refer later to the events the
formula predicates on. In this respect, it is reminiscent of the modal analogue of
independence-friendly modal logic as considered in [13].

The logic contains two main operators. The formula (z,7 < az)p declares
that an a-labelled future event exists, which causally depends on the event bound
to x, and is independent from the event bound to y. Such an event is bound to
variable z so that it can be later referred to in ¢. In general, x and y can
be replaced by lists of variables. A second operator allows to “execute” events
previously bound to variables. The formula (z) ¢ says that the event bound to
z is enabled in the current state, and after its execution ¢ holds.

Different behavioural equivalences are induced by fragments of the logics
where we suitably restrict the set of possible futures the formulae are able to
refer to. Namely, hhp-bisimilarity, that is captured by the full logic, corresponds
to the ability of observing the existence of a number of legal but (possibly) in-
compatible futures, without executing such futures. Interestingly, the definition
of hhp-bisimilarity is normally given in terms of backward transitions, whereas
our logical characterization has a “forward flavor”. By restricting to a fragment
where future events can be observed only by executing them (any occurrence
of the binding operator is immediately followed by a corresponding execution),
we get hp-bisimilarity. Pomset bisimilarity is induced by a fragment of the logic
obtained by further restricting that for hp-bisimilarity, with the requirement



that propositional connectives are used only on closed (sub)formulae. Roughly
speaking, this fragment predicates about the possibility of executing pomset
transitions and the closedness requirement prevents pomset transitions from
being causally linked to the events in the past. Finally, quite intuitively, step
bisimilarity corresponds to the possibility of observing only currently enabled
concurrent actions.

We believe that this work contributes to the definition of a logical counterpart
of the true concurrent spectrum and shades further light on the relations between
the involved behavioural equivalences.

2 Background

In this section we provide the basics of prime event structures which will be used
as models for our logic. Then we define some common behavioural concurrent
equivalences which will play a basic role in the paper.

2.1 Event structures

Prime event structures [14] are a widely known model of concurrency. They
describe the behaviour of a system in terms of events and dependency relations
between such events. Throughout the paper A denotes a fixed set of labels ranged
over by a,b,c ...

Definition 1 (prime event structure). A (A-labelled) prime event structure
(PES) is a tuple & = (E,<,#,)\), where E is a set of events, A\ : E — A is
a labelling function and <, # are binary relations on E, called causality and
conflict respectively, such that:

1. < is a partial order and [e] = {e¢’ € E | € < e} is finite for all e € E;
2. # s irreflerive, symmetric and hereditary with respect to <, i.e., for all
e, e e’ € E, if e#te’ < e then e#e”.

In the following, we will assume that the components of an event structure
£ are named as in the definition above. Subscripts carry over the components.

Definition 2 (consistency, concurrency). Let £ be a PES. We say thate, e’ €
E are consistent, written e ~¢€’, if ~(e#e’). Moreover, we say that e and €' are
concurrent, written e || e, if =(e < ¢€'), =(e/ <e) and —(e#e’).

Causality and concurrency will be sometimes used on set of events. Given
X C Eand e € E, by X < e we mean that for all ¢/ € X, ¢ < e. Similarly
X || e, resp. X ~e, means that for all ¢’ € X, ¢’||e, resp. €/ ~e. We write [X]
for U.cx el

The idea of (concurrent) computation is captured, in event structures, by the
notion of configuration.



Definition 3 (configuration). Let £ be a PES. A (finite) configuration in & is
a (finite) subset of events C' C E pairwise consistent and closed w.r.t. causality

(i.e., [C] = C). The set of finite configurations of £ is denoted by C(E).

Hereafter, unless explicitly stated otherwise, all configurations will be as-
sumed to be finite. A pairwise consistent subset X C FE of events will be always
seen as the pomset (partially ordered multiset) (X, <x,Ax), where <x and Ax
are the restrictions of < and A to X. Given X,Y C F we will write X ~ Y if X
and Y are isomorphic as pomsets.

Definition 4 (pomset transition and step). Let £ be a PES and let C €
CE). Gwen) # X CE, ifCNX =0 and C' = CUX € C(E) we write

C —— (' and call it a pomset transition from C to C'. When the events in

X
X are pairwise concurrent, we say that C —— C' is a step. When X = {e}

e {e}
we write C —— C' instead of C —— (.

A PEs £ is called image finite if for any C € C(€) and a € A, the set of

events {e ¢ E | C 5 A A(e) = a} is finite. All the PESs considered in
this paper will be assumed to be image finite. As it commonly happens when
relating modal logics and bisimilarities, this assumption is crucial for getting the
logical characterisation of the various bisimulation equivalences in Section 4.

2.2 Concurrent behavioural equivalences

Behavioural equivalences which capture to some extent the concurrency features
of a system, can be defined on the transition system where states are configura-
tions and transitions are pomset transitions.

Definition 5 (pomset, step bisimulation). Let £, & be PESs. A pomset
bisimulation is a relation R C C(&1) x C(E2) such that if (C1,C2) € R and

Ch L Cf then Cy & Ch, with X1 ~ X9 and (C},C%) € R, and wvice
versa. We say that £, €& are pomset bisimilar, written &1 ~, &2, if there exists
a pomset bisimulation R such that (§,0) € R.

Step bisimulation is defined analogously, replacing general pomset transitions
with steps. We write £ ~4 E3 when & and & are step bisimilar.

While pomset and step bisimilarity only consider the causal structure of the
current step, (hereditary) history preserving bisimilarities are sensible to the way
in which the executed events depend on events in the past. In order to define
history preserving bisimilarities the following definition is helpful.

Definition 6 (posetal product). Given two PESs &1, &3, the posetal product
of their configurations, denoted C(E1)XC (&), is defined as

{(Cl,f, Cg) : (€ 6(51), Cy € C(EQ), f : 01 — Cy iSOInOI‘phiSIl’l}



A subset R C C(E1)XC(E2) is called a posetal relation. We say that R is down-
ward closed when for any (C1, f,Cs), (C1, ', C%) € C(E1)XC(E2), if (C1, f,C3) C
(C1, [, C%) pointwise and (C1, f',C4) € R, then (Ch, f,Cs) € R.

Definition 7 ((hereditary) history preserving bisimulation). A history
preserving (hp-)bisimulation is a posetal relation R C C(E1)XC(Es) such that if

(C1,£,Cs) ER and C —— C! then Cy ——s O, with (C, fler — es],Ch) €
R, and vice versa. We say that £, E2 are history preserving (hp-)bisimilar and
write &y ~py E2 if there exists an hp-bisimulation R such that (0,0,0) € R.

A hereditary history preserving (hhp-)bisimulation is a downward closed
hp-bisimulation. The fact that £, £ are hereditary history preserving (hhp-
)bisimilar is denoted &1 ~ppp 2.

3 A logic for true concurrency

In this section we introduce the syntax and the semantics of our logic, where
formulae predicate about events in computations and their dependencies as prim-
itive concepts. The logic is interpreted over PESs, but it could be equivalently
interpreted over any formalism with a notion of event, causality and consistency.

As a first step we define a quite general syntax and the semantics of the two
distinctive operators. Our logic for concurrency will then be obtained by filtering
out formulae which do not satisfy a suitable well-formedness condition.

In order to keep the notation simple, lists of variables like x4, ..., z, will be
denoted by x and, abusing the notation, lists will be sometimes used as sets.

Definition 8 (syntax). Let Var be a denumerable set of variables ranged over
by x,y,z,.... The syntax of the formulae over the set of labels A is defined as
follows:

o u= (T, y<az)p | ()] eAe |~ [ T
The operator (x,y < az) acts as a binder for variable z, as clarified by the

following notion of free variables in a formula.

Definition 9 (free variables). The set of free variables of a formula ¢ is
denoted fu(p) and it is inductively defined by:

follz, g <az)p) = (folp) \{z}) Uz Uy fo((2)p) = folp) U{z}
folpr A p2) = fo(pr) U fo(p2) (M) =0 fo(=p) = fo(p)
The satisfaction of a formula is defined with respect to a configuration, rep-

resenting the state of the computation. Moreover a partial function n : Var — E
is fixed, called an environment, in order to bind free variables in ¢ to events.

Definition 10 (semantics). Let £ = (E,<,#,\) be a PES. For C € C(€) a
configuration, ¢ a formula and n: Var — E an environment such that fo(p) C
dom(n), satisfaction £,C =, ¢ is defined as follows:
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E,CE,(x,g<az)yp if there is e € E\ C, such that
-Me)=aand C~e, n(x) <e, ny)|le
-&,C =y p, where ' =nlz — €

(2)
E,Cly (2) e ifC 0 O and £,C" =y @
The semantics of propositional connectives is defined as usual. We say that a
PES £ satisfies a closed formula o, written £ = ¢, when £,0 ¢ .

Intuitively, the formula

(1.0 X, U1 Tm < az)p

holds in C if in the future of such a configuration there is an a-labelled event e,
and binding e to the variable z, the formula ¢ holds. Such an event is required
to be caused (at least) by the events already bound to z; ...z,, and to be in-
dependent (at least) from those bound to yi ...y,,. We stress that the event
e might not be currently enabled; it is only required to be consistent with the
current configuration, meaning that it could be enabled in the future of the cur-
rent configuration. The formula (z) ¢ says that the event bound to z is currently
enabled, hence it can be executed producing a new configuration which satisfies
formula ¢. To simplify the notation we write (az) ¢ for ( < az)¢ and we often
omit trailing T at the end of the formulae.

As an example, consider the PES & in Fig. 1, corresponding to the CCS
process a.b + c.d, where curly lines represent immediate conflict and the causal
order proceeds upwards along the straight lines. The empty configuration sat-
isfies the closed formula (bz), ie., & [ (bx), even if the b-labelled event is
not immediately enabled. Also & [ (bx) A (dy), since there are two possi-
ble (incompatible) computations that starts from the empty configuration and
contain, respectively, a b-labelled and a d-labelled event. On the other hand, if
v =(az){z) ((bx)A(dy)) then & [~ ¢ since after the execution of the a-labelled
event, & reaches a configuration that does not admit a future containing an
event labelled by d. As a further example, the formula ¢ above is satisfied by
the PESs & and &3 in Fig. 1 corresponding respectively to the process a.(b + d)
and a | (b+ d), whereas the formula (a z)(z) (Z < bz) is satisfied only by &s.

It is worth noticing that the semantics of the binding operator does not pre-
vent from choosing for z an event e that has been already bound to a different



variable, i.e., the environment function 7 needs not to be injective. This is essen-
tial to avoid the direct observation of conflicts. Consider for instance the PESs
associated to the hhp-equivalent processes a + a and a: in order to be also log-
ically equivalent, they both must satisfy the formula (az)(az’). Hence for the
second PES, both z and 2’ should be bound to the unique a-labelled event. On
the other hand, observe that both PEss falsify the formula (az)(az’)(z) (z'),
since either z and 2’ will be bound to the same event, which cannot be executed
twice, or they will be bound to conflicting events.

Still, the logic as it is defined up to now is too powerful since it allows to ob-
serve conflicts through a combination of the binder and the execution modality.
For instance, consider the PESs €4 and &5 in Fig. 1, corresponding to the processes
a.b+ a.b and a.b and take formula ¢ = (a x)(b y){z) =(y) . Then & # ¢, while
&4 | ¢, since only in &4 the variables 2 and y can be bound to conflicting events
(e.g., « could be bound to the a-labelled event on the left and y to the b-labelled
event on the right). In a similar way, the logic allows one to distinguish the PESs
corresponding to any process from that corresponding to the non-deterministic
choice between that process and itself, which instead are equated by virtually
any behavioural equivalence.

In order to disallow the observation of conflicts and avoid this phenomenon,
we restrict our logic to well-formed formulae, that “syntactically” ensure that (i)
the free variables in any subformula will always refer to events consistent with
the current configuration and (ii) the variables which are used as causes/non-
causes, i.e., ¢ and y in (x,y < az)p, will be bound to be pairwise consistent
events.

This is formalised by the definition below. Consistency constraints are rep-
resented by a relation on variables Co C Var x Var, where (z,y) € Co means
that  and y must be bound to consistent events. We write (x,y) for the set

{(z,y):xex N yey,x#uy}

Definition 11 (£: the logic of well-formed formulae). A formula ¢ is
called well-formed if Co &= ¢, for some Co C Var x Var, where the entailment
relation &= is defined by the rules below:

(xUy,zUy) CCo CoU(z,zUy)F ({z}, fu(e)) € Co Cot o

Cok (x,g<az)p Cot (z) ¢
Cok o Cot o1 Cot o
Cot —p Cot 1 Ao CokT

We denote by L the logic consisting of the well-formed formulae.

According to the first rule, the formula (z,y < az)p is well-formed if the con-
straints in C'o ensure that U y is pairwise consistent and ¢ can be proved
well-formed using also the fact that the chosen z will be consistent with & and
y. The second rule, instead, says that (z) ¢ is well-formed when the constraints
in C'o ensure that z is consistent with the free-variables used in ¢ and ¢ itself is
well-formed in Co.



As an example, the formula (ax)(b y){x) (y) is not well-formed (since it “exe-
cutes” z and y which, in principle, can be bound to events in conflict) as opposed
to (az)(x < b y){z) (y), where the two executed events are certainly consistent
(they are causally dependent). Notice that the formula (az)(z < b y){y) (z) is
also well formed, even if it is always false since it tries to execute an event before
executing one of its causes. Finally, according to the rules (az){x) (b y){(y) is also
deemed a well-formed formula even though there is no constraint on y. This can
be understood recalling that the semantics of the binding operator requires y to
be bound to an event that is consistent with the current state, hence consistent
with the event bound to x.

When dealing with the semantics of formulae in £ we will always consider
environments 7 that reflect the corresponding consistency constraints.

Definition 12 (legal environment). Let £ be a PES. Given a configuration
C € C(€) and a formula ¢ in L, a legal environment for C' and ¢ is an envi-
ronment 1 : Var — E such that fo(yp) C dom(n), n(fv(y)) is consistent with C
and there exists Co such that Cot ¢ and V(z,y) € Co, n(x) ~n(y).

The semantics of the logic £ is then formally defined as in Definition 10,
where 7 is assumed to be a legal environment for C' and . It is easy to see that
this assumption properly fits with Definition 10, i.e., whenever we recur on a
subformula, we are surely checking satisfiability in an environment legal for the
configuration and the formula.

Definition 13 (logical equivalence). Let L' be a fragment of L. We say that
two PES &1, &> are logically equivalent in L', written £1 =, €3 when they satisfy
the same closed formulae.

3.1 Examples and notation

In this subsection we provide some more examples illustrating the expressiveness
of the logic. We start by introducing some handy notation, which will improve
the readability of the formulae.

Immediate execution. We will write

|z, g <az)y

for the formula (x,7 < az)(z) ¢ that chooses a consistent event not belonging
to the current configuration, and immediately executes it.

Steps. We introduce a notation also to predicate the existence, resp., the im-
mediate execution, of concurrent events, specifying also their dependencies. We
will write

(z,gy<az)@ @,y <bz))e and ((z, gy <az)o(z',y <bz))e
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to declare the existence, resp., the immediate execution, of two concurrent events,
labelled a and b, which are bound to z and z’, and then ¢ holds. These nota-
tions correspond, respectively, to the formulae (x,y < az)(x’,y’,z < bz')p and
((z, 7 < az)®(z',y < bz'))(z)(2') ¢. In particular, the ability to perform a
step consisting of two concurrent events labelled by a and b is simply expressed
by the formula (az)) ® (by). Clearly, this notation can be generalised to the
quantification and the immediate execution of any number of concurrent events.

Ezample 1 (Interleaving vs. True-concurrency). As a first example, consider the
PESs & and &7 in Fig. 2. They are equated by interleaving equivalences and kept
distinct by any true-concurrent equivalence. The formula ¢1 = (az){(ZT < by) =
({az) @ (by)) is true only on &7, while 2 = (az){z < by) is true only on &.

Ezample 2 (Dependent vs Independent FEvents). The need of considering both
causal dependency and independency in the binding operator of our logic is ex-
emplified below. Consider the PESs & and & in Fig. 2. They are distinguished by
any true-concurrent equivalence, but since they have the same causal structure,
in order to pinpoint how they differ, the logic must be able to express the presence
of two concurrent events: indeed & = (az) ® (by)), while & [~ (az) ® (by).
On the other hand, expressing causal dependencies between events is essential to
distinguish, for instance, the PESs £7 and &y. These are equated by step bisimula-
tion and distinguished by any equivalence which observes causality, e.g., pomset
bisimulation.

Ezample 3 (Conflicting Futures). Consider the following two PESs, which can be
proved to be hp-bisimilar but not hhp-bisimilar:

d c c d
S | W | X |

a bor~~~a _b a b~~~ a _b
‘g&x‘:\wﬁéw \Q‘%de}\\g;jwu

Intuitively, they differ since the causes of the c-labelled and d-labelled events are
in conflict in the first PES and independent in the second one. This is captured by
the formula ¢ = ((az) ® (by))((x < cz1) A (y < d22)), which is satisfied only by
the right-most PES. Notice that the formula ¢ exploits the ability of the logic £
of quantifying over events in conflict with previously bound events: formula ¢ is
satisfied in the rightmost PES by binding x and y to the rightmost a-labelled and



b-labelled events; then both z; and z are bound to events which are in conflict
with either = or y. For this, the possibility of quantifying over an event without
executing it is essential: the formula ¢’ = ((az) ® (by))((x < cz1) A (y < dz2))
would be false in both PESs since the execution of the first two events leads to a
configuration that is no further extensible.

As a final example, consider the two CCS processes P = a|(b+¢)+a|b+b|(a+c)
and @ = a|(b+c¢) 4 bl(a+c¢). They contain no causal dependencies, but they
exhibit a different interplay between concurrency and branching. Accordingly,
the corresponding PESs can be proved to be hp-bisimilar but not hhp-bisimilar.
Intuitively, this difference comes from the fact that only the process P includes
two concurrent events a and b such that, independently from their execution
order, no c-labelled event will be enabled. Such a difference can be expressed in
L by the formula ((az) ® (by))(=(ZT < cz) A=(7 < cz’)), which is satisfied only
by the PES corresponding to P.

4 A logical characterisation of concurrent equivalences

In this section we study the logical equivalences induced by fragments of £. We
have already argued that no formula in £ distinguishes the PESs a and a#a, hence
the logical equivalence induced by L is surely coarser than isomorphism. We next
show that the logical equivalence induced by L is hhp-bisimulation. Moreover,
we identify suitable fragments of £ corresponding to coarser equivalences.

Theorem 1 (hhp-bisimilarity). Let £ and & be PESs. Then & ~ppp Ea iff
51 =r 52.

4.1 From Hennessy-Milner logic to HP-logic

Hhp-bisimilarity is the finest equivalence in the spectrum of true concurrent
equivalences in [2]. Coarser equivalences such as step, pomset and hp-bisimilarity,
can be captured by suitable fragments of £ summarised in Fig. 3, which can be
viewed as the logical counterpart of the true concurrent spectrum.

Interestingly, in each of these fragments after predicating the existence of
an event we must execute it. As a consequence, differently from what happens
in the full logic, in the fragments it is impossible to refer to events in con-
flict with already observed events. Intuitively, behavioural equivalences up to
hp-bisimilarity observe events only by executing them. Hence they cannot fully
capture the interplay between concurrency and branching, which is indeed dis-
tinctive of hhp-equivalence.

Hennessy-Milner Logic. A first simple observation is that Hennessy-Milner
logic can be recovered as the fragment of £ where only the derived modality
(az)e (with no references to causally dependent/concurrent events) is allowed.
In words, whenever we state the existence of an enabled event we are forced to
execute it. Moreover, since no dependencies can be expressed, the bound variable

10



HM Logic  Lam ¢ == (azhe | eAp | = | T

Step Logic  Ls e = ((arz1)®@ @ anzn)) @ | A0 | mp | T
Pomset Logic L, p u= (e, g<azhp | o | pAe | T
where —, A are used only on closed formulae.

HP Logic  Lpp, ¢ == (z,y<azhe | ¢ | oA | T

Fig. 3. Fragments corresponding to behavioral equivalences

x is irrelevant. The induced logical equivalence is thus bisimilarity [3] (recall that
we consider only image finite PES’s).

Step logic. A fragment £, corresponding to step bisimilarity naturally arises as
a generalisation of HM logic, where we can refer to sets of concurrently enabled
events. More precisely, as shown in Fig. 3, £, is the fragment of £ where only
the derived modality (a;z1) ® -+ ® (an x,)) is used, allowing to predicate on
the possibility of performing a parallel step, but without any reference to causal
dependencies. Note that all formulae in £, are closed, and thus environments
are irrelevant in their semantics (as well as the names of the bound variables).

As an example, consider the two PESs & and &7 in Fig. 2. They are bisimilar
but not step bisimilar since only £; can execute the step consisting of a and b;
accordingly, the formula {al) ® (b)) in Ly is true only on &;.

Theorem 2 (step bisimilarity). Let £ and & be PESs. Then & ~4 & iff
81 ELS 52.

Pomset logic. The logic £, for pomset bisimilarity consists of a fragment of
L which essentially predicates about the possibility of executing pomset transi-
tions. Even in £, the events must be immediately executed when quantified, but
it is now possible to refer to dependencies between events. However, propositional
connectives (negation and conjunction) can be used only on closed formulae.

Intuitively, in this logic closed formulae characterize the execution of a pom-
set. Then, the requirement that the propositional operators are used only on
closed (sub)formulae prevents pomset transitions from being causally linked to
the events in the past. These ideas are formalised by the results below, starting
with a lemma showing that the execution of a pomset can be characterized as a
corresponding formula in £,,.

Definition 14 (pomsets as formulae in £,). Let p, = ({z1,...,2n}, <p,
. Ap,) be a labelled poset, whose elements {x1,...,x,} are variables ordered by
<p,- Given a formula ¢ € L,, we denote by (p;)¢ the formula inductively
defined as follows. If p, is empty then (p.hp = . If p, = pl, U{x}, where z is

11



mazimal with respect to <,_, then ify = {2’ € p, | 2’ <, x}, z=7p, \y, and
Ap, (z) = a, then {p.)p = (p,) {y,Zz < az)e.

Lemma 1 (pomsets in £,). Let £ be a PES and let C € C(E) be a configura-
tion. Given a labelled poset p, = ({z1,...,2n}, <p,,\p.), then

£CE(phe iff

X
C —— C' where X ={e1,...,en} is a pomset s.t. X ~ p,
and £,C" = @, with ' =nlz1 — e1,..., 2, — €]

As an example, consider the two PESs & and & in Fig. 2. They are step
bisimilar but not pomset bisimilar since only the second one can execute the
pomset ({a,b},a < b). Accordingly, the formula ¢ = (az){z < by) in £, is
satisfied only by &.

Theorem 3 (pomset bisimilarity). Let & and & be PESs. Then & ~, &
Zﬁ 51 Eﬁp 52.

History preserving logic. The fragment £y, corresponding to hp-bisimilarity
is essentially the same as for pomset logic, where we relax the condition about
closedness of the formulae the propositional connectives are applied to. Intu-
itively, in this way a formula ¢ € Lp,, besides expressing the possibility of
executing a pomset p,, also predicates about its dependencies with previously
executed events (bound to the free variables of ).

The two PESs below can be proved to be pomset equivalent but not hp-
equivalent:

At \
b a~a~p

b b
|
a

Intuitively, they allow the same pomset transitions, but they have a different
“causal branching”. Indeed, only in the left-most PESs after the execution of
an a-labelled event we can choose between an independent and a dependent b-
labelled event. Formally, the formula (az)((Z < by) A ({x < bz)) in L}, is true
only on the left-most PES.

Theorem 4 (hp-bisimilarity). Let & and & be PESs. Then & ~py, & iff
51 E‘Chp (‘:2.

5 Conclusions: related and future work

We have introduced a logic for true concurrency, which allows to predicate on
events in computation and their mutual dependencies (causality and concur-
rency). The logic subsumes standard HM logic and provides a characterisa-
tion of the most widely known true concurrent behavioural equivalences: hhp-
bisimilarity is the logical equivalence induced by the full logic, and suitable
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fragments are identified which induce hp-bisimilarity, pomset and step bisimi-
larity.

As we mentioned in the introduction, there is a vast literature relating logical
and operational views of true concurrency, however, to the best of our knowledge,
a uniform logical counterpart of the true concurrent spectrum is still missing.
An exhaustive account of the related literature is impossible; we just recall here
the approaches that most closely relate to our work.

In [5,15,16] the causal structure of concurrent systems is pushed into the
logic. The paper [5] considers modalities which describe pomset transitions, thus
providing an immediate characterization of pomset bisimilarity. Moreover, [5, 15,
16] show that by tracing the history of states and adding the possibility of revert-
ing pomset transitions, one obtains an equivalence coarser than hp-bisimilarity
and incomparable with pomset bisimilarity, called weak hp-bisimilarity. Our logic
intends to be more general by also capturing the interplay between concurrency
and branching, which is not observable at the level of hp-bisimilarity.

A recent work [8,9] introduces a fixpoint modal logic for true concurrent
models, called Separation Fixpoint Logics (SFL). This includes modalities which
specify the execution of an action causally dependent/independent on the last
executed one. Moreover, a “separation operator” deals with concurrently enabled
actions. The fragment of the logic without the separation operator is shown to
capture hp-bisimilarity, while the full logic induces an equivalence which lies in
between hp- and hhp-bisimilarity, still being decidable for finite state systems.
The approach of [8,9] is inspired by the so-called Independence-Friendly Modal
Logic (IFML) [13], which includes a modality that allows to specify that the
current executed action is independent from a number of previously executed
ones. In this sense IFML is similar in spirit to our logic. Although, most of
the equivalences induced by fragments of IFML are not standard in the true
concurrent spectrum, a deeper comparison with this approach represents an
interesting open issue.

Several classical papers have considered temporal logics with modalities cor-
responding to the “retraction” or “backward” execution of computations. In
particular [10-12] study a so-called path logic with a future perfect (also called
past tense) modality: @a¢p is true when ¢ holds in a state which can reach
the current one with an a-transition. When interpreted over transition systems
with independence, in absence of autoconcurrency, the logic characterises hhp-
bisimilarity. In [10] it is shown that, taking autoconcurrency into account, the
result can be extended at the price of complicating the logic (roughly, the logic
needs an operator to undo a specific action performed in the past).

Compared to these works, the main novelty of our approach resides in the
fact that the logic £ provides a characterisation of the different equivalences in
a simple, unitary logical framework. In order to enforce this view, we intend to
pursue a formal comparison with the logics for concurrency introduced in the
literature. It is easy to see that the execution modalities of [8,9] can be encoded
in £ since they only refer to the last executed event, while the formulae in £
can refer to any event executed in the past. On the other hand, the “separation
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operator” of [8,9], as well as the backward modalities mentioned above (past
tense, future perfect, reverting pomset transitions) are not immediately encod-
able in L. A deeper investigation would be of great help in shading further light
on the truly concurrent spectrum. Moreover £ suggests an alternative, forward-
only, operational definition of hhp-bisimulation, which could be inspiring also
for other reverse bisimulations [17].

As a byproduct of such an investigation, we foresee the identification of in-
teresting extensions of the concurrent spectrum, both at the logical and at the
operational side. For instance, a preliminary investigation ([18]) suggests that
the fragment of £ where only events consistent with the current environment
can be quantified induces an equivalence which admits a natural operational
definition and lies in between hp- and hhp-bisimilarity, still being different from
the equivalences in [8,9]. Moreover, the logic in its present form only allows to
describe properties of finite, bounded computations. A more powerful specifica-
tion logic, well-suited for describing properties of unbounded, possibly infinite
computations can be obtained by enriching £ with some form of recursion. In
particular, from some first experiments ([18]), the idea of “embedding” our logic
into a first order modal mu-calculus in the style of [19, 20] seems promising. For
this purpose, also the fixpoint extension of the Independence-Friendly Modal
Logic in [21] could be inspiring. The resulting logic would allow to express non-
trivial causal properties, like “any a action can be always followed by a causally
related b action in at most three steps”, or “an a action can be always executed
in parallel with a b action”.

Connected to this, model-checking and decidability issues are challenging di-
rections of future investigation (see [22] for a survey focussed on partial order
temporal logics). It is known that hhp-bisimilarity is undecidable, even for finite
state systems [23], while hp-bisimilarity is decidable. Characterising decidable
fragments of the logic could be helpful in drawing a clearer separation line be-
tween decidability and undecidability of concurrent equivalences. A promising
direction is to impose a bound on the “causal depth” of the future which the logic
can quantify on. In this way one gets a chain of equivalences, coarser than hhp-
bisimilarity, which should be closely related with n-hhp bisimilarities introduced
and shown to be decidable in [24]. As for verification, we aim at investigating the
automata-theoretic counterpart of the logic. In previous papers, hp-bisimilarity
has been characterised in automata-theoretic terms using HD-automata [6] or
Petri nets [7]. It seems that HD-automata [6] could provide a suitable automata
counterpart of the fragment L£,. Also the game-theoretical approach proposed
in [8, 9] for the fixpoint separation logic can be a source of inspiration.
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