
A logic for true concurrency

Paolo Baldan and Silvia Crafa

Universita’ di Padova

Models of Concurrency

a | b = a.b + b.a

a

a

b

b

Different causal properties

Different distribution properties

?

The Interleaving world

a | b ~ a.b+b.a

Bisimulation equivalence

2-nested simulation

ready simulation

ready trace equiv.
simulation equiv.

completed trace eq.

Trace equivalence

Pomset bisimulation weak hp bisim

The True-Concurrent world

a | b ≠ a.b+b.a

Hereditary history-preserving bisim

History-preserving bisim

Step bisimulation

(Bisimulation equivalence)

Interleaving world: Logical characterization

Hennessy-Milner Logic

Bisimulation equiv.

simulation equiv.
HML without

negation

HML

Trace equiv.HML without
negation and conjunction

True-concurrent world vs Logic ?

?? Hereditary hp- bisim

Bisimulation equiv.Hennessy-Milner Logic

Logics for true-concurrency

[DeNicola-Ferrari 90]

Unique framework for several temporal and modal logics.

Captures pomset bisim and weak hp-bisim.

[Hennessy-Stirling 85, Nielsen-Clausen 95]

Charaterise hhp-bis with past-tense/back step modalities

In absence of autoconcurrency

[Bradfield-Froschle 02, Gutierrez 09]

Modal logics expressing action independence/causality

Only hp-bisimulation is captured

Different logics for

different equivalences!!

A single logic for true-concurrency

L Hereditary hp- bisim

Bisimulation equiv.Hennessy-Milner Logic

hp bisimL hp

Pomset bisimL p

Step bisimL s

True Concurrent Model: Event Structures

• Computation in terms of events = action occurrence

• A notion of causal dependence between events

• A notion of incompatibility between events

• A labeling to record the action corresponding to the event

E = (E, ≤ , #, λ)

• ≤ is a partial order and is finite

• # is irreflexive, symmetric and hereditary: if e # e’ ≤ e’’ then e#e’’

aa

cc

ed

True Concurrent Model: Event Structures

• e4 is caused by {e1, e2, e3}

• (e1, e2) and (e1, e6) are concurrent

• (e3, e6) and (e5, e6) are in conflict

• (e2, e4) and (e1, e6) are consistent

e2

e3

e4 e5

e6

autoconcurrency

e1

True Concurrent Model: Event Structures

e1 e2

e3

e4 e5

e6

Computation

in terms of

Configurations

causally-closed set of
consistent events

step pomset a run

The True Concurrent Spectrum

Pomset bisimulation weak hp bisim

Hereditary history-preserving bisim

History-preserving bisimulation

Step bisimulation

(Bisimulation equivalence)

Coherent hhp-bisim

Bisimulation Equivalence

Bisimulation Equivalence

• It captures the branching of a system

• but it cannot observe the concurrency of a system

a a

b c

a.b +a.c
a

b c

a.(b+c)≠

a ba b

b a

a.b +b.a
a | b

=

Step Bisimulation

Step Bisimulation

a ba b

b a

a.b +b.a
a | b≠s

a b a ab

b

a b

b

=s or

There is an occurrence of b
causally dependent from a

• It captures the concurrency of a system

• but it cannot observe the concurrency / causality mix:

Pomset Bisimulation

Pomset Bisimulation

a b
≠

a b

b

p

a ab

b

=p

a b

b

The same pomsets but
only in the lhs

“after a we can choose

between a dependent and an
independent b”

• It captures the causality of a system

• but it cannot observe the causality / branching mix:

Pomset Bisimulation

• like bisimulation:

• it is an interleaving of pomsets (rather than actions)

• it doesn’t observe the causal relations between a pomset and

the next one

• keep the history of already matched transitions

• Let the two matching runs (entire history of moves) in the game

to be pomset-isomorphic

• let the history grow pomset-isomorphically

History-preserving Bisimulation

History-preserving Bisimulation

“causal equivalence”

a ab

b

hp

a b

b

≠

 It does not capture the interplay between

causality – concurrency - branching

• It captures the causality / branching interplay

p=

History-preserving Bisimulation

a b

c d

a ba b

c d

a b # #

=hp

 c and d depend on conflicting vs. concurrent a and b !!

And similarly the other way round

 Hp-bisim hides such a difference:

 the execution of an event rules out any conflicting event

 there is the same causality

History-preserving Bisimulation

a2’ b2’

c d

a1’ b1’a2 b2

c d

a1 b1 # #

=hp

a1, b1 can be matched in principle either by a1’, b1’ or a2’, b2’

 the choice depends on the order in which they are linearized

(a1, b1 are concurrent)

 a1, b1 are independent, but the execution of one affects the

“behavioral environment”/ the future of the other

How can we formalize this difference?

Backward moves!!

a2’ b2’

c d

a1’ b1’a2 b2

c d

a1 b1 # #

hhp≠

a1
→

b1
→

a1
←

a2’
→

b2’
→

d
→

a2’
←

d
→

Hereditary History-preserving Bisimulation

Hereditary History-preserving Bisimulation

a|(b+c) + a|b + b|(a+c) a|(b+c) + b|(a+c)

• no causality

• In lhs only: a couple of independent (a,b) so that none can appear in
parallel with c

• Hp-bisim hides such a difference

• a and b are independent but their linearization affects the behavioral
environment

• The backtracking distinguishes them

a b c a b a c b# #

a b c a c b#

Hereditary History-preserving Bisimulation

The backtracking can distinguish them

a
→

b
→

a
←

a2
→

b2
→

c
→

a2
←

c
→

a|(b+c) + a|b + b|(a+c) a|(b+c) + b|(a+c)

a b c a b a c b# #

a1 b1 c1 c2 b2# a2

Hereditary History-preserving Bisimulation

alternative,
possibly conflicting

futures

What kind of forward observation does backtracking
correspond to?

A logic for true concurrency

Var : denumerable set of variables ranged over by x, y, z, …

Interpreted over event structures:
a formula is evaluated in a configuration C, with an environment η : Var → E

the current state of
the computation

describes a set of
possible futures

for C

records the events
bound to variables

A logic for true concurrency

declares the existence of an event e in the future of C s.t.

the event η(z) can be executed form C, leading to C’ s.t.

it binds z to e so that it can
be later referred to in φ

Event-based logic

A logic for true concurrency

a c

b d

there is a future
evolution that enables b

there are two
(incompatible) futures

executing a disallows
the future containing d

a

b d

a b d

Examples and notation

stands for

 Immediate execution

that chooses an event and

immediately executes it

stands for

 Step

which declares

the existence of two concurrent events

Examples and notation

stands for

 Immediate execution

that chooses an event and

immediately executes it

stands for

 Step

which declares

the existence of two concurrent events

Well-formedness

The full logic is too powerful: it also observe conflicts!

a a

b b

a

b

Well-formedness syntactically ensures that
• free variables in any subformula will always refer to events consistent with

the current config.
• the variables used as causes/non causes in quantifications will be bound to

consistent events

Logical Equivalence

 An e.s. satisfies a closed formula φ: when

 Two e.s. are logically equivalent in the logic L:

when

Theorem:

The logical equivalence induced by the full logic is hhp-bisimilarity

A single logic for true-concurrency

L Hereditary hp- bisim

Bisimulation equiv.Hennessy-Milner Logic

hp bisimL hp

Pomset bisimL p

Step bisimL s

no back
moves

Logical Spectrum: HM Logic

Hennessy-Milner logic corresponds to the fragment LHM :

• No references to causally dependent/concurrent events

• Whenever we state the existence of an event, we must execute it

Theorem:

The logical equivalence induced by LHM is bisimilarity

Logical Spectrum: Step Logic

The fragment Ls :

• Predicates on the possibility of performing a parallel step

• No references to causally dependent/concurrent events between steps

• Generalizes LHM

Theorem:

The logical equivalence induced by Ls is step bisimulation

Logical Spectrum: Pomset Logic

The fragment Lp :

• Predicates on the possibility of executing a pomset transition

• Closed formula ↔ execution of a pomset

• Causal links only within a pomset but not between different pomsets

Theorem:

The logical equivalence induced by Lp is pomset bisimulation

where ¬ , ˄ are used only on closed formulae

Logical Spectrum: History Preserving Logic

The fragment Lhp :

• Besides pomset execution, it also predicates about its dependencies

with previously executed events

• quantify + execute → no quantification over conflicting events

Theorem:

The logical equivalence induced by Lhp is hp-bisimulation

Logical Spectrum: Separation Examples

a ba b

b a

a b a b

b

a ab

b

a b

b

The same pomsets but
only in the lhs

“after a we can choose

between a dependent and an
independent b”

Logical Spectrum: Separation Examples

Logical Spectrum: Separation Examples

a b

c d

a ba b

c d

a b # #

The same causality but

c and d depend on conflicting vs. concurrent a and b

conflicting futuresobserve without executing:

!!

Logical Spectrum: Separation Examples

The same causality but in lhs only

a couple of independent (a,b) so that

none can appear in parallel with c

observe without executing:

a|(b+c) + a|b + b|(a+c) a|(b+c) + b|(a+c)

Future work

Different equivalences in a simple, unitary logical framework

• Study the operational spectrum:
• observe without executing, but only predicate on consistent futures lies

in between hp and hhp-bis.

• hp is decidable and hhp is undecidable even for finite state systems.
Characterise decidable equiv.

• Study the logical spectrum:
• encode other logics in L

• add recursion to express properties like

any a-action can be always followed by a causally related b-action

an a-action can be always executed in parallel with a b-action

• Verification: model checking, auotmata, games,…

