A logic for true concurrency

Paolo Baldan and Silvia Crafa

Universita’ di Padova

Models of Concurrency

?
a.b + b.a

a|b

N
Different causal properties

Different distribution properties

The Interleaving world

Bisimulation equivalence

2-nested simulation

|
d ‘ b ~ a.b+b,a ready simulation

Trace equivalence

The True-Concurrent world

Hereditary history-preserving bisim

a|b=a.b+b.a !

History-preserving bisim

/N

Pomset bisimulation weak hp bisim

N\

Step bisimulation

l

(Bisimulation equivalence)

Interleaving world: Logical characterization

Hennessy-Milner Logic pu=T [{a)p | @ pAp

HML Bisimulation equiv.
HML without : : :
, simulation equiv.
negation
HML without Trace equiv.

negation and conjunction

True-concurrent world vs Logic ?

e'e Hereditary hp- bisim
e O
————————— - e
//’/ \\\ //’ \\\
, S 7 N
’ N p \
\ \
! \ / \
| I | I
\ /1 \ !
\ / \ /
\ / \ /7
N\ 7/ AN Ve
~ e ~ 7’
\\ ’/ \\ ’/

-~ - -~ -
-
-~ - - o . -

Hennessy-Milner Logic Bisimulation equiv.

Logics for true-concurrency

|DeNicola-Ferrari 9o]
Unique framework for several temporal and modal logics.
Captures pomset bisim anc

Different logics for

[Hennessy-Stirling 85, Nielsen-Clat . .
different equivalences!!
Charaterise hhp-bis with p

In absence of autoconcurrency

| Bradfield-Froschle 02, Gutierrez og]

Modal logics expressing action independence/causality

Only hp-bisimulation is captured

A single logic for true-concurrency

L
J
th
\
Lp
|
LS

|

Hennessy-Milner Logic

Hereditary hp- bisim

)
hp bisim
!

Pomset bisim

!

Step bisim

l

Bisimulation equiv.

True Concurrent Model: Event Structures

® Computation in terms of events = action occurrence
® A notion of causal dependence between events
® A notion of incompatibility between events

® A labeling to record the action corresponding to the event

£=(E <,#1)
* < isapartial order and [e] = {e' | ¢ < e} is finite

® #isirreflexive, symmetric and hereditary: if e # €’ <e” then e#e”

True Concurrent Model: Event Structures

autoconcurrency

e,is caused by {e, e,, e}
(e, e,) and (e, e,) are concurrent
(e,, e) and (e,, e4) are in conflict

(e,, e,) and (e, e) are consistent

True Concurrent Model: Event Structures

47T s Computation
\ / in terms of
e, -~ e : :
3 \ © Configurations
causally-closed set of
© < consistent events

0 i> {62} i) {62966}

{e1,e2} {es,es}
NI K\ /
) —— C — C

step pomset d run

The True Concurrent Spectrum

Hereditary history-preserving bisim

l

History-preserving bisimulation

/

Pomset bisimulation

N

Step bisimulation

l

(Bisimulation equivalence)

Bisimulation Equivalence

¢a9 0‘@

A bisimulation is a symmetric relation between configurations s.t.
whenever (C,C’) € R

if C —— D then ' —— D' with (D,D’) € R and \e) = A(¢/)

E~F iff (0,0)eR

Bisimulation Equivalence

® [t captures the branching of a system

b--- ¢

+ \ . / a.(b+c)

a.b +a.c

»—— o

N — N

® but it cannot observe the concurrency of a system

b a
a.b +b.a ‘ ‘
a---b a b alb

Step Bisimulation

S 5P

whenever (C,C') € R
X b'e
if C — Dthen ¢/ —— D' with (D,D') € R

and X, X’ are isomorphic steps (i.e., sets of concurrent events)

Step Bisimulation

® [t captures the concurrency of a system

b a

a.b +b.a ‘ ‘ *s
a~-~~b d b

al|b

® but it cannot observe the concurrency / causality mix:

b b

\
\

—S or \
\
\o

a b a b---:-a a b

There is an occurrence of b
causally dependent from a

Pomset Bisimulation

whenever (C,C’) € R
X b'e
if C ——» D then ¢’ —— D' with (D,D') € R

and X, X’ are isomorphic pomsets (i.e., p.o. consistent events)

Pomset Bisimulation

® [t captures the causality of a system

b b
\\ _
\ —P The same pomsets but
. :
Loty a_ b---:a only in the lhs
S~--7 “after a we can choose

between a dependent and an
independent b”

Pomset Bisimulation

® Jike bisimulation:

® itisan interleaving of pomsets (rather than actions)

® itdoesn’t observe the causal relations between a pomset and

the next one

® keep the history of already matched transitions

* Let the two matching runs (entire history of moves) in the game

to be pomset-isomorphic a

* let the history grow pomset-isomorphically o

History-preserving Bisimulation

whenever (C, f,C") € R
if C —— D then ¢/ —— D' with (D, fle > ¢],D') € R

where fle — €] is a label-preserving iso extending f

History-preserving Bisimulation

® It captures the causality / branching interplay

« ° »
causal equivalence

» It does not capture the interplay between
causality — concurrency - branching

History-preserving Bisimulation

d

c. c, .d
\\ =hp \/v:.
é) ® # a b a b #%3 Cbg

And similarly the other way round

» cand d depend on conflicting vs. concurrent aand b !!

» Hp-bisim hides such a difference:
» the execution of an event rules out any conflicting event

» there is the same causality

History-preserving Bisimulation

c. ,d

\

c\ p —hp '
é\@# a, b, &) &) #

a,, b, can be matched in principle either by a, b or a,, b,

1) 1 2) 2

/

» the choice depends on the order in which they are linearized

(a,, b, are concurrent)

1 1

» a,, b, are independent, but the execution of one affects the

IR |

“behavioral environment”/ the future of the other

How can we formalize this difference?

Hereditary History-preserving Bisimulation

whenever (C, f,C’) € R
o if C —— Dthen ¢’ —— D' with (D, fle = ¢€],D') € R

o if D — Cthen D' — C' with (D, f|p,D') € R

\ Backward moves!!
c. @

C. ,d
N R ihhp A
O ®s s vk
a1 b1 a1 d
—> —> «— -
a2’ b2’ a2’ d

—> —> < >

Hereditary History-preserving Bisimulation

al(b+c) +a|b+ b|(a+c) a|(b+c) + b|(a+c)

a b. .c # @Cb) # a._«c b
@ ®_c #@.c ®

- no causality

- Inlhs only: a couple of independent (a,b) so that none can appear in
parallel with c

- Hp-bisim hides such a difference

- aand b are independent but their linearization affects the behavioral
environment

- The backtracking distinguishes them

Hereditary History-preserving Bisimulation

The backtracking can distinguish them

al(b+c) +al|b+ bl(a+c) a|(b+c) + b|(a+c)

a b. .c # @@ # a._«c b
d, bl_/ G # _,@

Hereditary History-preserving Bisimulation

What kind of forward observation does backtracking
correspond to?

alternative,
possibly conflicting
futures

-
-
—_———zo-"

-
-

.
-~
~
-~
~~~~~
~ \~
~~~~~~~
——————————
-

-
-
———————————

A logic for true concurrency

Var : denumerable set of variables ranged over by x, y, z, ...
p = (x,y<az)e [(el eAp | ~e [T

Interpreted over event structures:
a formula is evaluated in a configuration C, with an environment n : Var — E

C =, @
N
A B
describes a set of

possible futures
for C

the current state of
the computation

records the events
bound to variables

A logic for true concurrency

p = (x,y<az)p | (&)p] pAe | np | T

Event-based logic

it binds z to e so that it can
Cl=, (X,7 <az) be later referred to in ¢
n (X, ¥y <az)yp

declares the existence of an event e in the future of C s.t.
n(x) <e, n(y)lle, AMe) =aand C p.e) ¢

Cly(2) e
the event 1(z) can be executed form C, leading to C’s.t.

C’ =y @

A logic for true concurrency

there is a future
0k b)T <

evolution that enables b

b d
here are two
Dl=p (bz)TA(dy)T — 1(:incompat;ible) futures
a~ "~ ¢
executing a disallows
0 7o (az)(z) ((bx) A (dy)) - the fuf:ur% containing d
b--- d
\ / a b---d
a
0 =g (az)(z) (bx) A (dy)) 0 o (az)(z) ((bx) A (dy))

0ty (a2)(z) (Z < bz) 0o (a2)(z)(z <buz)

Examples and notation

» Immediate execution

(x, ¥y <az)¢

stands for (x,y < az)(z) thatchoosesan eventand

immediately executes it

» Step
(x,y<az) ®(x,y'<bz)) ¢

stands for ((x,¥ <az)(x,y’,z < bz2")) ¢ which declares

the existence of two concurrent events

Examples and notation

» Immediate execution

((az) @ (by)) ((x <c)®(y<d)) T

stal
1m]

({a) @ (b) ®@(c)) ¢

» Step ({azh @ {ay)) ({z <b) @ (7 <b))¢

stands for ((x,¥ <az)(x',y’,z <b2z")) ¢ which declares

the existence of two concurrent events

Well-formedness

The full logic is too powerful: it also observe conflicts!

&1 & (az)(by)(z)~(y)

Well-formedness syntactically ensures that

* free variables in any subformula will always refer to events consistent with
the current config.

* the variables used as causes/non causes in quantifications will be bound to
consistent events

Logical Equivalence

» An e.s. satisfies a closed formula ¢: € = ¢ when £,0 =¢ ¢

» Two e.s. are logically equivalent in the logic £:

E1=£ & when & o iff & Eo

Theorem: Er=p & Ml & ~pnp &

The logical equivalence induced by the full logic is hhp-bisimilarity

A single logic for true-concurrency

no back L Hereditary hp- bisim
moves i i
|
|

hp bisim
!

Pomset bisim

!

L Step bisim

! l

Hennessy-Milner Logic Bisimulation equiv.

L p,
L

p

(o]
Logical Spectrum: HM Logic anq

Hennessy-Milner logic corresponds to the fragment £y, :

o == (azhp| A | 7o | T

®* No references to causally dependent/concurrent events

® Whenever we state the existence of an event, we must execute it

Theorem: E1=r.y Eo it & ~ &

The logical equivalence induced by £;,, is bisimilarity

or

Logical Spectrum: Step Logic Q‘Q

The fragment L, :

p = ((arz) @ @{anzn)) @ oA | =@ | T
® Predicates on the possibility of performing a parallel step

®* No references to causally dependent/concurrent events between steps

® Generalizes £y,

Theorem: E1=¢, & M &~ &

The logical equivalence induced by £ is step bisimulation

Logical Spectrum: Pomset Logic Q&QO

The fragment L, :

p = (x,y<azpp| eAp | ~¢p | T

where =, A are used only on closed formulae

® Predicates on the possibility of executing a pomset transition
® (Closed formula < execution of a pomset

® (Causal links only within a pomset but not between different pomsets

Theorem: E1=¢, & M &~y &

The logical equivalence induced by £, is pomset bisimulation

Logical Spectrum: History Preserving Logic

The fragment Ly

p = (x,y<az)e| eAp | m¢ | T

* Besides pomset execution, it also predicates about its dependencies

with previously executed events

® quantify + execute — no quantification over conflicting events

Theorem: &1 =gy, Eo ML &y ~pp &g

The logical equivalence induced by £, is hp-bisimulation

Logical Spectrum: Separation Examples

Ps

&1 l?é,gg |: (]al) & <|b|> e L,

81 l?é,gQ |: <|8£C|><].TJ < by|>

€L,

Logical Spectrum: Separation Examples

\\‘ P hp ‘ The same pomsets but
a b a_ b---:a only in the lhs

N _ -

“after a we can choose

between a dependent and an
independent b”

E1FE,E FE (az)((z<bypA(z<bz)) €Ly

Logical Spectrum: Separation Examples

\\ // th

a b # a b Fhhp a b # a p

The same causality but

c and d depend on conflicting vs. concurrent a and b

&8 FE ((az) @ (by)) ((w <c2) Ay <dz)) € Lanp

I ~.

observe without executing: conflicting futures

E & (laz) @ (by)) (e <cz) Ay <dZ)) €Ly !

Logical Spectrum: Separation Examples

al(b+c) +al|b+ b|(a+c) “hp a|(b+c) + b|(a+c)

7thp

The same causality but in lhs only

a couple of independent (a,b) so that

none can appear in parallel with c

S E & ((ar)@(by) (T <cz) A~ <)) € Lanp

I

observe without executing:

Future work

Different equivalences in a simple, unitary logical framework

® Study the operational spectrum:

* observe without executing, but only predicate on consistent futures lies
in between hp and hhp-bis.

* hp isdecidable and hhp is undecidable even for finite state systems.
Characterise decidable equiv.

® Study the logical spectrum:
* encode other logics in L
* add recursion to express properties like
any a-action can be always followed by a causally related b-action
an a-action can be always executed in parallel with a b-action

® Verification: model checking, auotmata, games,...

