
A logic for true concurrency

Paolo Baldan and Silvia Crafa

Universita’ di Padova

Models of Concurrency

a | b = a.b + b.a

a

a

b

b

Different causal properties

Different distribution properties

?

The Interleaving world

a | b ~ a.b+b.a

Bisimulation equivalence

2-nested simulation

ready simulation

ready trace equiv.
simulation equiv.

completed trace eq.

Trace equivalence

Pomset bisimulation weak hp bisim

The True-Concurrent world

a | b ≠ a.b+b.a

Hereditary history-preserving bisim

History-preserving bisim

Step bisimulation

(Bisimulation equivalence)

Interleaving world: Logical characterization

Hennessy-Milner Logic

Bisimulation equiv.

simulation equiv.
HML without

negation

HML

Trace equiv.HML without
negation and conjunction

True-concurrent world vs Logic ?

?? Hereditary hp- bisim

Bisimulation equiv.Hennessy-Milner Logic

Logics for true-concurrency

[DeNicola-Ferrari 90]

Unique framework for several temporal and modal logics.

Captures pomset bisim and weak hp-bisim.

[Hennessy-Stirling 85, Nielsen-Clausen 95]

Charaterise hhp-bis with past-tense/back step modalities

In absence of autoconcurrency

[Bradfield-Froschle 02, Gutierrez 09]

Modal logics expressing action independence/causality

Only hp-bisimulation is captured

Different logics for

different equivalences!!

A single logic for true-concurrency

L Hereditary hp- bisim

Bisimulation equiv.Hennessy-Milner Logic

hp bisimL hp

Pomset bisimL p

Step bisimL s

True Concurrent Model: Event Structures

• Computation in terms of events = action occurrence

• A notion of causal dependence between events

• A notion of incompatibility between events

• A labeling to record the action corresponding to the event

E = (E, ≤ , #, λ)

• ≤ is a partial order and is finite

• # is irreflexive, symmetric and hereditary: if e # e’ ≤ e’’ then e#e’’

aa

cc

ed

True Concurrent Model: Event Structures

• e4 is caused by {e1, e2, e3}

• (e1, e2) and (e1, e6) are concurrent

• (e3, e6) and (e5, e6) are in conflict

• (e2, e4) and (e1, e6) are consistent

e2

e3

e4 e5

e6

autoconcurrency

e1

True Concurrent Model: Event Structures

e1 e2

e3

e4 e5

e6

Computation

in terms of

Configurations

causally-closed set of
consistent events

step pomset a run

The True Concurrent Spectrum

Pomset bisimulation weak hp bisim

Hereditary history-preserving bisim

History-preserving bisimulation

Step bisimulation

(Bisimulation equivalence)

Coherent hhp-bisim

Bisimulation Equivalence

Bisimulation Equivalence

• It captures the branching of a system

• but it cannot observe the concurrency of a system

a a

b c

a.b +a.c
a

b c

a.(b+c)≠

a ba b

b a

a.b +b.a
a | b

=

Step Bisimulation

Step Bisimulation

a ba b

b a

a.b +b.a
a | b≠s

a b a ab

b

a b

b

=s or

There is an occurrence of b
causally dependent from a

• It captures the concurrency of a system

• but it cannot observe the concurrency / causality mix:

Pomset Bisimulation

Pomset Bisimulation

a b
≠

a b

b

p

a ab

b

=p

a b

b

The same pomsets but
only in the lhs

“after a we can choose

between a dependent and an
independent b”

• It captures the causality of a system

• but it cannot observe the causality / branching mix:

Pomset Bisimulation

• like bisimulation:

• it is an interleaving of pomsets (rather than actions)

• it doesn’t observe the causal relations between a pomset and

the next one

• keep the history of already matched transitions

• Let the two matching runs (entire history of moves) in the game

to be pomset-isomorphic

• let the history grow pomset-isomorphically

History-preserving Bisimulation

History-preserving Bisimulation

“causal equivalence”

a ab

b

hp

a b

b

≠

 It does not capture the interplay between

causality – concurrency - branching

• It captures the causality / branching interplay

p=

History-preserving Bisimulation

a b

c d

a ba b

c d

a b # #

=hp

 c and d depend on conflicting vs. concurrent a and b !!

And similarly the other way round

 Hp-bisim hides such a difference:

 the execution of an event rules out any conflicting event

 there is the same causality

History-preserving Bisimulation

a2’ b2’

c d

a1’ b1’a2 b2

c d

a1 b1 # #

=hp

a1, b1 can be matched in principle either by a1’, b1’ or a2’, b2’

 the choice depends on the order in which they are linearized

(a1, b1 are concurrent)

 a1, b1 are independent, but the execution of one affects the

“behavioral environment”/ the future of the other

How can we formalize this difference?

Backward moves!!

a2’ b2’

c d

a1’ b1’a2 b2

c d

a1 b1 # #

hhp≠

a1
→

b1
→

a1
←

a2’
→

b2’
→

d
→

a2’
←

d
→

Hereditary History-preserving Bisimulation

Hereditary History-preserving Bisimulation

a|(b+c) + a|b + b|(a+c) a|(b+c) + b|(a+c)

• no causality

• In lhs only: a couple of independent (a,b) so that none can appear in
parallel with c

• Hp-bisim hides such a difference

• a and b are independent but their linearization affects the behavioral
environment

• The backtracking distinguishes them

a b c a b a c b# #

a b c a c b#

Hereditary History-preserving Bisimulation

The backtracking can distinguish them

a
→

b
→

a
←

a2
→

b2
→

c
→

a2
←

c
→

a|(b+c) + a|b + b|(a+c) a|(b+c) + b|(a+c)

a b c a b a c b# #

a1 b1 c1 c2 b2# a2

Hereditary History-preserving Bisimulation

alternative,
possibly conflicting

futures

What kind of forward observation does backtracking
correspond to?

A logic for true concurrency

Var : denumerable set of variables ranged over by x, y, z, …

Interpreted over event structures:
a formula is evaluated in a configuration C, with an environment η : Var → E

the current state of
the computation

describes a set of
possible futures

for C

records the events
bound to variables

A logic for true concurrency

declares the existence of an event e in the future of C s.t.

the event η(z) can be executed form C, leading to C’ s.t.

it binds z to e so that it can
be later referred to in φ

Event-based logic

A logic for true concurrency

a c

b d

there is a future
evolution that enables b

there are two
(incompatible) futures

executing a disallows
the future containing d

a

b d

a b d

Examples and notation

stands for

 Immediate execution

that chooses an event and

immediately executes it

stands for

 Step

which declares

the existence of two concurrent events

Examples and notation

stands for

 Immediate execution

that chooses an event and

immediately executes it

stands for

 Step

which declares

the existence of two concurrent events

Well-formedness

The full logic is too powerful: it also observe conflicts!

a a

b b

a

b

Well-formedness syntactically ensures that
• free variables in any subformula will always refer to events consistent with

the current config.
• the variables used as causes/non causes in quantifications will be bound to

consistent events

Logical Equivalence

 An e.s. satisfies a closed formula φ: when

 Two e.s. are logically equivalent in the logic L:

when

Theorem:

The logical equivalence induced by the full logic is hhp-bisimilarity

A single logic for true-concurrency

L Hereditary hp- bisim

Bisimulation equiv.Hennessy-Milner Logic

hp bisimL hp

Pomset bisimL p

Step bisimL s

no back
moves

Logical Spectrum: HM Logic

Hennessy-Milner logic corresponds to the fragment LHM :

• No references to causally dependent/concurrent events

• Whenever we state the existence of an event, we must execute it

Theorem:

The logical equivalence induced by LHM is bisimilarity

Logical Spectrum: Step Logic

The fragment Ls :

• Predicates on the possibility of performing a parallel step

• No references to causally dependent/concurrent events between steps

• Generalizes LHM

Theorem:

The logical equivalence induced by Ls is step bisimulation

Logical Spectrum: Pomset Logic

The fragment Lp :

• Predicates on the possibility of executing a pomset transition

• Closed formula ↔ execution of a pomset

• Causal links only within a pomset but not between different pomsets

Theorem:

The logical equivalence induced by Lp is pomset bisimulation

where ¬ , ˄ are used only on closed formulae

Logical Spectrum: History Preserving Logic

The fragment Lhp :

• Besides pomset execution, it also predicates about its dependencies

with previously executed events

• quantify + execute → no quantification over conflicting events

Theorem:

The logical equivalence induced by Lhp is hp-bisimulation

Logical Spectrum: Separation Examples

a ba b

b a

a b a b

b

a ab

b

a b

b

The same pomsets but
only in the lhs

“after a we can choose

between a dependent and an
independent b”

Logical Spectrum: Separation Examples

Logical Spectrum: Separation Examples

a b

c d

a ba b

c d

a b # #

The same causality but

c and d depend on conflicting vs. concurrent a and b

conflicting futuresobserve without executing:

!!

Logical Spectrum: Separation Examples

The same causality but in lhs only

a couple of independent (a,b) so that

none can appear in parallel with c

observe without executing:

a|(b+c) + a|b + b|(a+c) a|(b+c) + b|(a+c)

Future work

Different equivalences in a simple, unitary logical framework

• Study the operational spectrum:
• observe without executing, but only predicate on consistent futures lies

in between hp and hhp-bis.

• hp is decidable and hhp is undecidable even for finite state systems.
Characterise decidable equiv.

• Study the logical spectrum:
• encode other logics in L

• add recursion to express properties like

any a-action can be always followed by a causally related b-action

an a-action can be always executed in parallel with a b-action

• Verification: model checking, auotmata, games,…

