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Abstract. Probabilistic nondeterministic processes are commonly modeled as
probabilistic LTSs (PLTSs, a.k.a. probabilistic automata). A number of logical
characterizations of the main behavioral relations on PLTSs have been studied.
In particular, Parma and Segala [2007] define a probabilistic Hennessy-Milner
logic interpreted over distributions, whose logical equivalence/preorder when re-
stricted to Dirac distributions coincide with standard bisimulation/simulation be-
tween the states of a PLTS. This result is here extended by studying the full log-
ical equivalence/preorder between distributions in terms of a notion of bisimula-
tion/simulation defined on a LTS of probability distributions (DLTS). We show
that the standard spectrum of behavioral relations on nonprobabilistic LTSs as
well as its logical characterization in terms of Hennessy-Milner logic scales to
the probabilistic setting when considering DLTSs.

1 Introduction

Formal methods for concurrent and distributed system specification and verification
have been extended to encompass randomized phenomena exhibited by the behavior
of probabilistic systems. In a standard nonprobabilistic setting, systems are commonly
modeled as labeled transition systems (LTSs) and model checking techniques are based
on two major tools: temporal logics and behavioral relations. Logics are used to specify
the properties that systems have to satisfy, while behavioral equivalence and preorder
relations are used as appropriate abstractions that reduce the state space. Precise rela-
tionships have been established between these two approaches: van Glabbeek [8] shows
how a wide spectrum of observational equivalences for concurrent processes is logically
characterized in terms of Hennessy-Milner-like modal logics (HML).

A number of probabilistic behavioral relations and probabilistic temporal logics
have been proposed (see e.g. [4,9,10,11,12,13,15]). Probabilistic LTSs (PLTSs, a.k.a.
probabilistic automata) are a prominent model for formalizing probabilistic systems
since they allow to model both probabilistic and nondeterministic behaviors. In PLTSs,
a state s evolves through a labeled transition to a state distribution d that defines the
probabilities of reaching the possible successor states of s. Accordingly, the standard
probabilistic extension [15] of the simulation relation requires that if a state s progresses
to a distribution d, then a simulating state s′ needs to mimic such a transition by moving
to a distribution d′ that is related to d through a so-called weight function. This defini-
tion is a conservative extension of the simulation relation on LTSs since a LTS can be
viewed as a particular PLTS where the target of transitions are Dirac distributions, i.e.,
distributions δs such that δs(s) = 1 and δs(t) = 0 for any t 6= s.



A number of modal logics have been proposed in order to provide a logical char-
acterization of probabilistic simulation and bisimulation. Larsen and Skou [12]’s logic
as well as Hansson and Jonsson [10]’s PCTL logic are interpreted over states of prob-
abilistic systems, such as reactive models and discrete time Markov chains, that do not
express nondeterminism. On the other hand, Parma and Segala [13] show that richer
probabilistic models that encode pure nondeterminism (besides probabilistic choice),
such as PLTSs, call for a richer logic. They propose a probabilistic extension of HML
whose formulae are interpreted over distributions rather than states, and they show that
two states s and t are similar (the same holds for bisimilarity) if and only if their cor-
responding Dirac distributions δs and δt satisfy the same set of formulae. However,
nothing is stated about logically equivalent distributions that are not Dirac distributions.

In this paper we study the full logical equivalence between (possibly non-Dirac)
distributions that is induced by Parma and Segala [13]’s logic. We show that this logic
actually characterizes a novel and natural notion of simulation (bisimulation) between
distributions of a PLTS, so that the standard state simulation (bisimulation) on PLTSs
can be indeed retrieved by a suitable restriction to Dirac distributions. Furthermore, the
transition relation of a PLTS is lifted to a transition relation between distributions that
gives rise to a corresponding LTS on distributions (called DLTS). This allows us to lift
behavioral relations on PLTSs to corresponding behavioral relations on DLTSs. Such a
move from PLTSs to DLTSs yields a number of byproducts:

– Parma and Segala [13]’s logic turns out to be equivalent to a logic L whose diamond
operator is interpreted on the DLTS in accordance with its standard interpretation
on LTSs. Hence, this logic best suits as probabilistic extension of HML.

– This logic L characterizes a (bi)simulation relation between distributions which
is equivalent to that characterized by Parma and Segala’s logic, but that naturally
admits a game-theoretic characterization.

– A spectrum of behavioral relations can be defined on DLTSs along the lines of the
standard approach on LTSs [9]. These preorders and equivalences between distri-
butions can be then projected back to states, thus providing a spectrum of (proba-
bilistic) preorders and equivalences between states of PLTSs.

– Shifting the problem from PLTSs to DLTSs opens the way to the reuse of efficient
model checking techniques available for LTSs.

This approach is studied on a number of well known probabilistic relations appear-
ing in literature, namely simulation, probabilistic simulation, failure simulation, and
their corresponding bisimulations. A discussion about related approaches is the subject
of the final section, that also hints at future work.

2 Probabilistic Simulation and Bisimulation

Given a set X and a relation R ⊆ X ×X , we write xRy for (x, y) ∈ R; if x ∈ X and
Y ⊆ X then R(x), {y ∈ X | xRy} and R(Y ), ∪x∈Y R(x).

Distr(X) denotes the set of (stochastic) distributions on a set X , i.e., the set of
functions d : X → [0, 1] such that

∑
x∈X d(x) = 1. The support of a distribution d

is defined by supp(d), {x ∈ X | d(x) > 0}; moreover, if Y ⊆ X , then d(Y ) ,
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∑
y∈Y d(y). The Dirac distribution on x ∈ X , denoted by δx, is the distribution that

assigns probability 1 to x (and 0 otherwise).
A probabilistic LTS (PLTS) is a tuple M = 〈Σ,Act ,�〉where Σ is a (denumerable)

set of states, Act is a (denumerable) set of actions, and � ⊆ Σ × Act ×Distr(Σ) is a
transition relation, where (s, a, d)∈ � is tipically denoted by s a→d. For any a ∈ Act ,
the predecessor operator prea : ℘(Distr(Σ)) → ℘(Σ) is defined by prea(D), {s ∈
Σ | ∃d ∈ D. s a→d}.

The definitions of probabilistic behavioral relations often rely on so-called weight
functions [14], that are used to lift a relation between states to a relation between dis-
tributions. We do not recall here the definition of weight functions, as we will use the
following equivalent characterizations (see [6,11,17]).

Definition 2.1 (Lifting). Let R ⊆ X×X be any relation. Then, the lifting of R to dis-
tributions is the relation vR ⊆ Distr(X)×Distr(X) that can be equivalently defined
in one of the following ways:

– d vR e iff there exists a weight function for (d, e) w.r.t. R;
– d vR e iff d(U) ≤ e(R(U)) for any set U ⊆ supp(d);
– when R is an equivalence on X , then d vR e iff d(B) = e(B) for any equivalence

class B of R. ut

It is easy to see that if R ⊆ R′ then vR ⊆ vR′ ; moreover, if R is symmetric then
vR is also a symmetric relation, that we denote with ≡R.

Definition 2.2 (Simulation). Given a PLTS M, a relation R ⊆ Σ × Σ is a simulation
on M if for all s, t ∈ Σ such that sRt,

– if s a→d then there exists e ∈ Distr(Σ) such that t a→e and d vR e. ut

Let Rsim , ∪{R ⊆ Σ × Σ | R is a simulation on M}. Then, Rsim turns out to be a
preorder relation which is the greatest simulation on M and is called simulation preorder
on M. Simulation equivalence Psim on M is defined as the kernel of the simulation
preorder, i.e., Psim ,Rsim ∩R−1

sim.

Definition 2.3 (Bisimulation). A symmetric relation S ⊆ Σ ×Σ is a bisimulation on
M if for all s, t ∈ Σ such that sSt,

– if s a→d then there exists e ∈ Distr(Σ) such that t a→e and d ≡S e. ut

Let Pbis , ∪{S ⊆ Σ × Σ | S is a bisimulation on M}. Then, Pbis turns out to be an
equivalence relation which is the greatest bisimulation on M and is called bisimilarity
on M.

3 An Operational View of Probabilistic HML

In order to logically characterize behavioral relations on probabilistic models that en-
code pure nondeterminism, such as PLTSs, Parma and Segala [13] put forward an ex-
tension of Hennessy-Milner logic whose formulae are interpreted over distributions on
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the states of a PLTS. They show that two states are bisimilar if and only if their cor-
responding Dirac distributions satisfy the same set of formulae. However, nothing is
stated about logically equivalent distributions that are not Dirac distributions. In the
following, we give a novel notion of simulation (and correspondingly bisimulation) be-
tween distributions which (i) characterizes the full logical equivalence of Parma and
Segala’s logic and (ii) boils down to standard simulation (and bisimulation) between
the states of a PLTS when restricted to Dirac distributions.

Parma and Segala’s logic [13] is syntactically defined as follows:

φ ::= > |
∧
i∈I

φi | ¬φ | ♦aφ | [φ]p

where I is a possibly infinite (denumerable) set of indices, a ∈ Act and p is a rational
number in [0, 1]. Given a PLTS 〈Σ,Act ,�〉, the semantics of the formulae is inductively
defined as follows: for any distribution d ∈ Distr(Σ),

d |= >
d |=

∧
I φi iff for any i ∈ I, d |= φi

d |= ¬φ iff d 6|= φ
d |= ♦aφ iff ∀x ∈ supp(d).∃e ∈ Distr(Σ). x a→e and e |= φ

d |= [φ]p iff d({s ∈ Σ | δs |= φ}) ≥ p

The first three clauses are standard. The modal connective ♦a is a probabilistic coun-
terpart of HML’s diamond operator. ♦aφ is satisfied by a distribution d ∈ Distr(Σ)
whenever any state x ∈ supp(d) reaches through an a-labeled transition a distribu-
tion e that satisfies the formula φ. As the formulae ♦aφ only deal with transitions of
the PLTS, a further modal operator [·]p needs to take into account the probabilities that
distributions assign to sets of related states. More precisely, a distribution d satisfies a
formula [φ]p when d assigns a probability at least p to the set of states whose Dirac
distributions satisfy the formula φ. This logic is here referred to as L∀ in order to stress
the universal nature of its diamond operator ♦a.

Definition 3.1 (Logical equivalence and preorder). Two distributions d, e ∈ Distr(Σ)
are logically equivalent for L∀, written d ≡L∀ e, when, for any φ ∈ L∀, d |= φ iff
e |= φ. We write d ≤L∀ e for the corresponding logical preorder, i.e., when for any
φ ∈ L∀, d |= φ implies e |= φ. ut

Let L+
∀ be the negation-free and finitely disjunctive fragment of L∀, that is:

φ ::= > |
∧
i∈I

φi | φ ∨ φ | ♦aφ | [φ]p

The following result by Parma and Segala [13] (see also [11]) shows that the logical
equivalence induced by L∀ and the logical preorder induced by L+

∀, when restricted
to Dirac distributions, correspond, respectively, to bisimulation and simulation. No-
tice that the simulation preorder is logically characterized by negation-free formulae,
reflecting the fact that simulation, differently from bisimulation, is not a symmetric
relation. However, the logic for simulation requires finite disjunction to characterize
probabilistic choice.
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Theorem 3.2 ([13]). Consider Rsim and Pbis on a given PLTS. Then, for all s, t ∈ Σ,

– sRsim t if and only if δs ≤L+
∀

δt;
– sPbis t if and only if δs ≡L∀ δt.

Our main goal is to define a notion of simulation and bisimulation between dis-
tributions that represents the operational match of the full logical preorder ≤L+

∀
and

equivalence ≡L∀ between distributions. Firstly, notice that any relation on distribu-
tions R ⊆ Distr(Σ) × Distr(Σ) embeds a corresponding relation on states that can
be obtained by restricting R to Dirac distributions. This is formalized by a mapping
∆ : ℘(Distr(Σ)×Distr(Σ)) → ℘(Σ ×Σ) defined as follows:

∆(R), {(s, t) ∈ Σ ×Σ | (δs, δt) ∈ R}.

Note that if R is a symmetric/preorder/equivalence relation then ∆(R) is correspond-
ingly a symmetric/preorder/equivalence relation on Σ.

Our definition of (bi)simulation between distributions (called d-(bi)simulation) is
directly inspired by the logic L∀. In particular, the two distinctive modal operators of L∀
are mirrored in two defining conditions of (bi)simulation between distributions. More
precisely, the semantics of the diamond operator suggests a kind of transfer property that
(bi)similar distributions should respect (cf. condition (1)). On the other hand, a second
condition, peculiar of the probabilistic setting, deals with the probabilities assigned by
(bi)similar distributions to sets of related states (cf. condition (2)).

Definition 3.3 (∀d-simulation). A relation R ⊆ Distr(Σ)×Distr(Σ) is a ∀d-simula-
tion on a PLTS if for all d, e ∈ Distr(Σ), if d R e then:

(1) for all D ⊆ Distr(Σ), if supp(d) ⊆ prea(D) then supp(e) ⊆ prea(R(D));
(2) d v∆(R) e. ut

Definition 3.4 (∀d-bisimulation). A symmetric relation S ⊆ Distr(Σ)× Distr(Σ) is
a ∀d-bisimulation on a PLTS if for all d, e ∈ Distr(Σ), if d S e then:

(1) for all D ⊆ Distr(Σ), if supp(d) ⊆ prea(D) then supp(e) ⊆ prea(S(D));
(2) d ≡∆(S) e. ut

Given a PLTS M, let R∀
sim , ∪{R | R is a ∀d-simulation on M}. Then, it turns out

that R∀
sim is the greatest ∀d-simulation on M and is a preorder, called the ∀d-simulation

preorder on M. Analogously, let P∀bis , ∪{S | S is a ∀d-bisimulation on M}, so that
P∀bis turns out to be the greatest ∀d-bisimulation on M and an equivalence relation,
called the ∀d-bisimilarity on M

It turns out that ∀d-simulation preorder fully captures the logical preorder induced
by L+

∀ while ∀d-bisimilarity fully captures the logical equivalence induced by L∀.

Theorem 3.5. For any d, e ∈ Distr(Σ),

– d R∀
sim e if and only d ≤L+

∀
e;

– d P∀bis e if and only d ≡L∀ e.
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A closer look at the semantics of the diamond operator of L∀ points out a key
difference with the semantics of the standard diamond operator in HML. In the case
of LTSs, the diamond operator of HML induces the predecessor operator of the LTS.
Similarly, the semantic definition of the diamond operator of L∀ induces the following
operator ppre∀a, that we call probabilistic predecessor operator:

ppre∀a : ℘(Distr(Σ)) → ℘(Distr(Σ))

ppre∀a(D), {d ∈ Distr(Σ) | supp(d) ⊆ prea(D)}

where prea : ℘(Distr(Σ)) → ℘(Σ) is the PLTS predecessor operator. However, dif-
ferently from the predecessor operators of LTSs and PLTSs, this probabilistic prede-
cessor ppre∀a does not preserve set unions, i.e., it is not true in general that, for any
D1, D2 ⊆ Distr(Σ), ppre∀a(D1 ∪D2) = ppre∀a(D1)∪ppre∀a(D2). In fact, supp(d) ⊆
prea(D1 ∪ D2) does not imply supp(d) ⊆ prea(D1) nor supp(d) ⊆ prea(D2). It is
here worth noting that, in general, an operator f : ℘(X) → ℘(X) defined on a powerset
℘(X) preserves set unions if and only if there exists a relation R ⊆ X ×X whose cor-
responding predecessor operator preR = λY.{x ∈ X | ∃y ∈ Y.xRy} coincides with f .
As a consequence, one cannot define a transition relation between distributions whose
corresponding predecessor operator coincides with ppre∀a. The lack of a transition rela-
tion between distributions is particularly troublesome when defining coinductive behav-
ioral relations between distributions. Consider the transfer property of ∀d-simulations,
namely condition (1) of Definition 3.3: this can be equivalently stated as

if d ∈ ppre∀a(D) then e ∈ ppre∀a(R(D)) (1)

Since ppre∀a does not preserve set unions, the statement d ∈ ppre∀a(D) is not equiv-
alent to ∃f ∈ D. d ∈ ppre∀a(f), so that the above condition (1) does not scale to the
standard transfer property of (bi)simulations on LTSs that naturally admits a game char-
acterization. It is therefore interesting to ask whether a suitable definition of an additive
(i.e., union-preserving) probabilistic predecessor operator between distributions can be
found. In the following, this question will be positively answered.

3.1 LTS on Distributions

Let us consider the following alternative definition of probabilistic predecessor opera-
tor:

pprea : ℘(Distr(Σ)) → ℘(Distr(Σ))

pprea(D), {d ∈ Distr(Σ) | supp(d) ∩ prea(D) 6= ∅}

This definition is much less restrictive than that of the above ppre∀a operator: in order for
a distribution d to be a probabilistic predecessor of a distribution e it is now sufficient
that the support of d contains some state that reaches e. In this sense, pprea has an
existential flavour as opposed to the universal flavour of ppre∀a. In the following, this
observation will be also formalized by means of abstract interpretation [1,2].

Since the pprea operator actually preserves set unions, a corresponding transition
relation between distributions can be defined as follows: d a→e iff d ∈ pprea({e}),
namely,

d a→e iff ∃s ∈ supp(d). s a→e (∗)
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s1

d1

x1 x2

δu δv

a

0.5 0.5

b b

t1

e1

x3 x4

δu

a

0.5 0.5

b

s2

d2

x1 x2

δu δu

a

0.5 0.5

b b

t2

e2

x3 x4

δu

a

0.5 0.5

b

Fig. 1. A pair of PLTSs.

This allows us to lift a PLTS to an LTS of distributions, that we call DLTS. Hence, the
following notions of simulation/bisimulation based on the standard transfer property
naturally arise.

Definition 3.6 (d-simulation). Given a PLTS M, a relation R ⊆ Distr(Σ)×Distr(Σ)
is a d-simulation on M if for all d, e ∈ Distr(Σ), if d R e then:

(1) if d a→f then there exists g ∈ Distr(Σ) such that e a→g and f R g;
(2) d v∆(R) e. ut

Definition 3.7 (d-bisimulation). Given a PLTS M, a symmetric relation S ⊆ Distr(Σ)×
Distr(Σ) is a d-bisimulation on M if for all d, e ∈ Distr(Σ), if d S e then:

(1) if d a→f then there exists g ∈ Distr(Σ) such that e a→g and f S g;
(2) d ≡∆(S) e. ut

Given a PLTS M, let Rsim , ∪{R |R is a d-simulation on M} and Pbis , ∪{S | S is
a d-bisimulation on M}. Then, Rsim turns out to be the greatest d-simulation on M and
a preorder, called the d-simulation preorder on M. Likewise, it turns out that Pbis is the
greatest d-bisimulation on M and an equivalence, called d-bisimilarity on M

Interestingly, d-simulations (and analogously for d-bisimulations) enjoy a neat cor-
respondence with state simulations in a PLTS. More precisely, the state simulation pre-
order Rsim can be recovered from the d-simulation preorder Rsim by restricting Rsim

to Dirac distributions. On the other hand, the d-simulation preorder coincides with the
lifting to distributions of the state simulation preorder.

Theorem 3.8.

– ∆(Rsim) = Rsim and Rsim = vRsim .
– ∆(Pbis) = Pbis and Pbis = ≡Pbis .

It is worth noting that this result opens the way to define new model checking tools
that compute (bi)simulations on PLTSs by adapting to DLTSs the standard (bi)simulation
techniques/algorithms designed in the nonprobabilistic framework.
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Example 3.9. Consider the leftmost PLTS depicted in Figure 1. The relation R1 =
{(δs1 , δt1), (d1, e1)} ∪ {(d, d) | d ∈ Distr(Σ)} is not a d-simulation since d1

b→δv but
e1

b→δu and δu /∈ R1(δv). Moreover, even if R1 respects the transfer property of ∀d-
simulations (since there is no set D ⊆ Distr(Σ) such that supp(d1) ⊆ prea(D)), R1 is
not even a ∀d-simulation because d1 6v∆(R1) e1, since, for instance, 0.5 = d({x2}) 6≤
e(∆(R1)({x2})) = e({x2}) = 0. Nevertheless, s1 and t1 are bisimilar states since
there exists a (∀)d-bisimulation containing the pair (δs1 , δt1). Let R be the equivalence
relation corresponding to the partition {{δs1 , δt1}, {d1, e1}, {δx1 , δx3}, {δx2 , δx4 , δu, δv}}.
It is not difficult to check that R is a (∀)d-bisimulation: every pair in R respects the trans-
fer property and is ≡∆(R)-equivalent, where ∆(R) = {{s1, t1}, {x1, x3}, {u, v, x2, x4}}.

As a further example, consider the rightmost PLTS in Figure 1. We have that s2

simulates t2 but t2 does not simulate s2. In fact, consider the relation

R2 = {(δt2 , δs2), (e2, d2), (δu, δu)} ∪ {(δx4 , δxi
)}i=1,...,4 ∪ {(δx3 , δxi

)}i=1,2,3.

Then, R2 is a (∀)d-simulation since every pair respects the transfer property and belongs
to v∆(R2). For instance, let us check that e2 v∆(R2) d2: by Definition 2.1, it is enough
to check that for all U ⊆ supp(e2), e2(U) ≤ d2(∆(R2)(U)). The nonempty subsets of
supp(e2) are: U1 = {x3}, U2 = {x4} and U3 = {x3, x4}, so that we have

0.5 = e2({x3}) ≤ d2(∆(R2)({x3})) = d2({x1, x2, x3}) = 1

0.5 = e2({x4}) ≤ d2(∆(R2)({x4})) = d2({x1, x2, x3, x4}) = 1

1 = e2({x3, x4}) ≤ d2(∆(R2)({x3, x4})) = d2({x1, x2, x3, x4}) = 1

The fact that t2 does not simulate s2 depends on the fact that e2 does not simulate d2

since this would imply that there exists a (∀)d-simulation R such that d2 v∆(R) e2.
However, the latter statement implies that 1 = d2({x1, x2}) ≤ e2(∆(R)({x1, x2})),
which is true only if supp(e2) = {x3, x4} ⊆ ∆(R)({x1, x2}); hence, in particular, we
would obtain δx4 ∈ R({δx1 , δx2}), which is a contradiction since x4 cannot simulate a
b-transition. ut

Besides the above notions of d-simulation/d-bisimulation, the operator pprea allows
us to provide a corresponding new interpretation for the diamond connective. Let L

denote the logic whose syntax coincides with L∀ and whose semantics is identical to
that of L∀ but for the diamond connective, which is interpreted as follows:

d |= ♦aφ iff ∃e. d a→e and e |= φ

This is therefore the standard interpretation of the diamond operator on a DLTS, namely
a LTS whose “states” are distributions and whose transitions are defined by (∗). In the
following, we will argue that L is best suited as probabilistic extension of Hennessy-
Milner logic. As a first result, it turns out that the preorder≤L+ and the equivalence≡L

logically characterize, respectively, d-simulations and d-bisimulations.

Theorem 3.10. For any d, e ∈ Distr(Σ),

– d Rsim e if and only d ≤L+ e;
– d Pbis e if and only d ≡L e.
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3.2 Comparing L∀ and L

It turns out that ∀d-(bi)simulations and d-(bi)simulations are equivalent notions. In spite
of the fact they rely on quite different transfer properties (cf. condition (1) of Defini-
tions 3.3 and 3.6), their second defining condition, peculiar to the probabilistic setting,
is powerful enough to bridge their gap. More precisely, this depends on the following
key property: if d vR e then for any state s in the support of d there exists a state t in
the support of e such that t ∈ R(s), and viceversa, for any state t in the support of e
there exists a state s in the support of d such that t ∈ R(s).

Lemma 3.11. Consider a PLTS M and a relation R ⊆ Distr(Σ)×Distr(Σ). Then, R

is a ∀d-(bi)simulation on M iff R is a d-(bi)simulation on M.

As a consequence, we have that R∀
sim = Rsim and P∀bis = Pbis, so that, by The-

orems 3.5 and 3.10, the two modal logics L∀ and L induce the same equivalence on
distributions while L+

∀ and L+ induce the same preorder on distributions. As far as their
relative expressive powers are concerned, we have that L∀ and L are equivalent, while
this is not the case for their negation-free fragments.

Theorem 3.12.

– L∀ and L have the same expressive power (and therefore ≡L∀ = ≡L).
– L+

∀ is strictly less expressive than L+, although ≤L+
∀

= ≤L+ .

Let us observe that the equivalence between L∀ and L depends on the fact that
the semantics of the diamond operator of L∀ can be encoded in L and viceversa. In
particular, the semantics of the L∀-formula ♦aφ, i.e. [[♦aφ]]L∀ = {d | supp(d) ⊆
prea({e | e |=L∀ φ})}, can be expressed in L by the formula [♦aφ]1, whose seman-
tics is indeed [[[♦aφ]1]]L = {d | d({x | δx |=L ♦aφ}) = 1 } = {d | supp(d) ⊆
{x | δx |=L ♦aφ}}. On the other hand, the encoding of L’s diamond as a L∀-formula
is more tricky. The semantics of ♦aφ viewed as a L-formula is given by all the distribu-
tions whose support contains at least a state that moves to a distribution that satisfies φ,
i.e., [[♦aφ]]L = {d | d({x | ∃e. x a→e, e |=L φ}) > 0}. This semantics can be therefore
expressed in L∀ by requiring that d |=L∀ [♦aφ]p for some p > 0. However, in general
the existence of a rational number p > 0 can be expressed as a logical formula only by
means of an infinite (countable) disjunction, hence it is expressible in the full L∀ logic,
but not in its negation-free and finitely disjunctive fragment L+

∀.
Let us describe an example showing that the logic L+

∀ is strictly less expressive
than L+. Consider a PLTS M = 〈{x1, x2}, {a}, {x1

a→d = (x1/0.5, x2/0.5)}〉 that
contains two states x1, x2 and a single transition from x1 to the distribution d =
(x1/0.5, x2/0.5). In the logic L, we have that [[♦a>]]L = Distr(Σ) r {δx2}, since
any distribution different from δx2 contains x1 in its support, and therefore has an
outgoing a-transition. Let us show that there is no formula in L∀ whose semantics
is Distr(Σ) r {δx2}. Consider the L∀-formulae >, ♦a> and [♦a>]p, with p > 0,
whose semantics are as follows: [[>]]L∀ = Distr(Σ), [[♦a>]]L∀ = {δx1}, [[[♦a>]p]]L∀ =
{d | d({x1}) ≥ p}. It is easily seen that the semantics of any other formula in L∀ is in
the set SemL∀ = {[[>]]L∀ , [[♦a>]]L∀} ∪ {[[[♦a>]p]]L∀ | p > 0}, which is indeed closed
under infinite intersections, finite unions, probabilistic predecessor and the semantics of
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the operator [·]p. It is thus enough to observe that Distr(Σ)r{δx2} /∈ SemL∀ : actually,
Distr(Σ) r {δx2} can only be expressed as the infinite union ∪p>0[[[♦a>]p]]L∀ . ut

Example 3.13. Consider again the rightmost PLTS in Figure 1. We have already ob-
served that s2 simulates t2 whilst t2 does not simulate s2. The fact that t2 does not
simulate s2 can be easily proved by exhibiting a formula that is satisfied by δs2 but not
by δt2 . We provide both a formula in L∀ and an equivalent formula in L:

(1) let φ, ♦a♦b> ∈ L∀; then δs2 |=L∀ φ and δt2 6|=L∀ φ

(2) let φ′ , ♦a[♦b>]1 ∈ L; then δs2 |=L φ′ and δt2 6|=L φ′

To see (1), observe that δs2 |=L∀ φ since supp(δs2) ⊆ prea(d2) and supp(d2) ⊆
preb(δu) with δu |=L∀ >. On the other hand, supp(δt2) ⊆ prea(e2) but supp(e2) 6⊆
preb(f) for some distribution f such that f |=L∀ >. To show (2), notice that δs2 |=L φ′

since δs2
a→d2, and d2({x | δx |=L ♦b>}) = 1 since for any x ∈ supp(d2) it holds

δx
b→δu with δu |=L >. On the other hand, δt2 6|=L φ′ since δt2

a→e2 and e2({x | δx |=L

♦b>}) = 0.5 6≥ 1 since for x4 ∈ supp(e2) it holds δx4 6|=L ♦b>. ut

4 States as Abstract Interpretation of Distributions

Differently from LTSs and their behavioral relations, whose definitions rely on a sin-
gle notion of system state, PLTSs as well as their corresponding spectra of behavioral
relations in some sense involve two notions of system state, namely a bare state and a
probabilistic state modeled as a state distribution. We have shown above how PLTSs
can be embedded into DLTSs, that is, LTSs of probabilistic states that involve a single
(but richer) notion of system state, i.e. state distributions. We show in this section how
to formalize a systematic embedding of states into distributions by viewing states as
abstract interpretation of distributions.

Intuitively, Dirac distributions allow us to view states as an abstraction of distribu-
tions, namely the map δ : Σ → Distr(Σ) such that δ(x), δx may be viewed as a
function that embeds states into distributions. The other way round, the support map
supp : Distr(Σ) → ℘(Σ) can be viewed as a function that abstracts a distribution d as
the set of states in its support.

Let us recall that in standard abstract interpretation [1,2], approximations of a con-
crete semantic domain are encoded by abstract domains that are specified by Galois
insertions (GIs for short) or, equivalently, by adjunctions. Approximation on a con-
crete/abstract domain is encoded by a partial order where traditionally x ≤ y means
that y is a concrete/abstract approximation of x. Concrete and abstract approximation
orders, denoted by ≤C and ≤A, must be related by a GI. Recall that a GI of an ab-
stract domain 〈A,≤A〉 into a concrete domain 〈C,≤C〉 is determined by a surjective
abstraction map α : C → A and a 1-1 concretization map γ : A → C such that
α(c) ≤A a ⇔ c ≤C γ(a) and is denoted by (α, C,A, γ). In a GI, intuitively α(c)
provides the best approximation in A of a concrete value c while γ(a) is the concrete
value that a abstractly represents.

In our case, in order to cast δ as a concretization map in abstract interpretation,
we need to lift its definition from sets of states to sets of distributions, namely we
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need to provide its so-called “collecting” version [1,2]. Observe that {δ(x)} = {d ∈
Distr(Σ) | supp(d) ⊆ {x}}. This leads us to define the following concretization
function γ∀ : ℘(Σ) → ℘(Distr(Σ)):

γ∀(S), {d ∈ Distr(Σ) | supp(d) ⊆ S}.

This is a universal concretization function, meaning that d ∈ γ∀(S) iff all the states in
supp(d) are contained into S. Hence, one can dually define an existential concretization
map γ∃ : ℘(Σ) → ℘(Distr(Σ)) as

γ∃(S), {d ∈ Distr(Σ) | supp(d) ∩ S 6= ∅},

where d ∈ γ∃(S) if there exists some state in the support of d which is contained
into S. Actually, these two mappings give rise to a pair of GIs (i.e., approximations
in abstract interpretation) where ℘(Distr(Σ)) and ℘(Σ) play, respectively, the role of
concrete and abstract domains. The approximation order is encoded by the subset rela-
tion (i.e., logical implication) in the case of γ∀ and by the superset relation (i.e., logical
co-implication) in the case of γ∃. The dual maps, systematically obtained by adjunction
from γ∀ and γ∃, are α∀, α∃ : ℘(Distr(Σ)) → ℘(Σ) defined as follows:

α∀(X) , {s ∈ Σ | ∃d ∈ X. s ∈ supp(d)}
α∃(X) , {s ∈ Σ | ∀d ∈ Distr(Σ). s ∈ supp(d) ⇒ d ∈ X}

Lemma 4.1. (α∀, ℘(Distr(Σ))⊆, ℘(Σ))⊆, γ∀) and (α∃, ℘(Distr(Σ))⊇, ℘(Σ))⊇, γ∃)
are GIs.

Observe that α∀/γ∀ and α∃/γ∃ are dual abstractions, i.e.,

α∃ = ¬ α∀¬ and γ∃ = ¬ γ∀¬

where ¬α∀¬(X) = Σ rα∀(Distr(Σ)rX) and ¬ γ∀¬(S) = Distr(Σ)rγ∀(Σ rS).
Moreover, it is not hard to see that α∀ is the additive extension of the supp function,
while α∃ is its co-additive extension, i.e.,

α∀(X) = ∪d∈X supp(d) and α∃(Distr rX) = ∩d∈XΣ r supp(d).

These two abstract domains thus provide dual universal/existential ways for logically
approximating sets of distributions into sets of states. The interesting point in these for-
mal abstractions lies in the fact that they allow us to systematically obtain the above
probabilistic predecessor operators ppre∀a and pprea in a DLTS from the predecessor
operator prea of the corresponding PLTS. Recall that in a PLTS the predecessor oper-
ator prea : ℘(Distr(Σ)) → ℘(Σ) maps a set of distributions into a set of states. Here,
℘(Σ) can therefore be viewed as a universal/existential abstraction of ℘(Distr(Σ)), so
that, correspondingly, prea can be viewed as an abstract predecessor function, since
its co-domain actually is an abstract domain. Consequently, the output of this abstract
function can be projected back to distributions using the corresponding concretization
map. Interestingly, it turns out that the corresponding concrete predecessor functions,
obtained by composing the operator prea with either γ∀ or γ∃, exactly coincide with
the two probabilistic predecessors ppre∀a and pprea.
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Lemma 4.2. ppre∀a = γ∀ ◦ prea and pprea = γ∃ ◦ prea.

Thus, in equivalent terms, the predecessor operator prea is the best correct univer-
sal/existential approximation of the operators ppre∀a/pprea, for the universal/existential
abstractions α∀/γ∀ and α∃/γ∃.

5 A Spectrum of Probabilistic Relations over DLTSs

The approach developed above suggests a general methodology for defining behavioral
relations between the states of a PLTS: first define a “lifted” behavioral relation be-
tween distributions of the corresponding DLTS and then restrict this definition to Dirac
distributions. As discussed above, this approach works satisfactorily for simulation and
bisimulation on PLTSs. In what follows, we show that this technique is indeed more
general since it can be applied to a number of known probabilistic behavioral relations.

5.1 Probabilistic Simulation

Segala and Lynch [15] put forward a variant of simulation where a state transition s a→d
can be matched by a so-called combined transition from a state t, namely a convex
combination of distributions reachable from t. We show that this same idea can be
lifted to transitions in DLTSs.

Let M = 〈Σ,Act ,�〉 be a PLTS, let {s a→di}i∈I be a (denumerable) family of
transitions of M and let {pi}i∈I be a corresponding family of probabilities in [0, 1]
such that

∑
i∈I pi = 1. Let d ∈ Distr(Σ) be the convex combination d =

∑
i∈I pidi.

Then, {s, a,
∑

i∈I pidi}, denoted by s a d, is called a combined transition in M. This
notion of combined transition can be lifted to distributions as follows.

Definition 5.1 (Combined d-transitions and Hyper transitions).

– Let d, e ∈ Distr(Σ). Then, d a e if there exists s ∈ supp(d) such that s a e. d a e
is called a combined d-transition.

– Let {d a→di}i∈I be a family of transitions in a DLTS, and let {pi}i∈I be a corre-
sponding family of probabilities such that

∑
i∈I pi = 1. Let d =

∑
i∈I pidi. Then,

the triple {d, a,
∑

i∈I pidi}, compactly denoted by d
a

⇒e, is called a hyper transi-
tion. ut

It is worth noting that the notion of hyper transition is “stronger” than that of com-
bined d-transition, in that d a e implies d

a

⇒e but not viceversa. Moreover, our defi-
nition of hyper transition can be compared with analogous notions of hyper transition
defined in [16] and [5]. In particular, it can be shown that a hyper transition in the sense
of both Stoelinga [16] and Deng et al. [5] is a hyper transition in our sense, but not vice
versa. Anyhow, the notion of combined d-transition is sufficient to lift probabilistic
(bi)simulations of [15] to distributions.

In what follows, we focus on simulation relations only, since the same results scale
to bisimulations. A probabilistic simulation is defined as a simulation in a PLTS apart
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from using combined transitions rather than standard transitions of a PLTS. Correspond-
ingly, probabilistic d-simulation is defined as in Definition 3.6, but using combined d-
transitions rather than transitions in a DLTS.

Let Rpsim (Rpsim) be the union of all the probabilistic (d-)simulations on M. Then,
all the results obtained in Section 3 also hold for probabilistic simulation, and they are
collected in the following theorem. In particular, as before, the probabilistic simulation
preorder between states can be recovered from the probabilistic d-simulation preorder
by restricting to Dirac distributions. Dually, the probabilistic d-simulation preorder co-
incides with the lifting of the probabilistic simulation preorder. As far as the logic is
concerned, Parma and Segala [13] show that the probabilistic relations between the
states of a PLTS are logically characterized by the logical equivalence/preorder — re-
stricted to Dirac distributions — of a modal logic that has the same syntax of L∀ but
whose diamond operator is defined in terms of combined transitions on the PLTS. Let
LP denote the logic L (which is equivalent to L∀) where the semantics of the diamond
operator is defined in terms of combined d-transitions. Then, as in Section 3, the result
in [13] can be extended by showing that the full logical preorder of L+

P coincides with
the probabilistic d-simulation preorder.

Theorem 5.2.

– ∆(Rpsim) = Rpsim and vRpsim= Rpsim.
– Rpsim = ≤L+

P
.

5.2 Failure Simulation

One nice consequence of defining DLTSs as LTSs of distributions lies in the fact that the
standard van Glabbeek’s spectrum [8] of behavioral relations on LTSs can be reformu-
lated in terms of transitions between distributions of a DLTS. This leads to a spectrum
of d-relations between distributions of a DLTS, that can be projected into a spectrum
of relations between states of a PLTS by restricting the d-relations to Dirac distribu-
tions. As an example we show how this approach works on failure simulation [8]. A
formalization and generalization of such a “lifting schema” in a suitable framework
like abstract interpretation or coalgebras is left as future work.

Definition 5.3 (Failure Simulation). A relation R ⊆ Σ ×Σ is a failure simulation on
a PLTS when for any s, t ∈ Σ, if sRt then:

– if s a→d then there exists e ∈ Distr(Σ) such that t a→e and d vR e;
– if s A9 then t A9 for any A ⊆ Act . ut

Definition 5.4 (Failure d-Simulation). A relation R ⊆ Distr(Σ) × Distr(Σ) is a
failure d-simulation on a PLTS when for all d, e ∈ Distr(Σ), if d R e then:

(1) if d a→f then there exists g ∈ Distr(Σ) such that e a→g and f R g;
(2) if d A9 then e A9 for any A ⊆ Act ;
(3) d v∆(R) e. ut

13



The lifting of a relation between states of a PLTS to a relation between distributions
of the corresponding DLTS is obtained by resorting to the standard transfer property
and by adding the condition (i.e., condition (3) in Definition 5.4) that deals with proba-
bilities assigned to sets of related states. Let Rfail and Rfail be, respectively, the failure
simulation and d-simulation preorders on a PLTS M. According to the LTS spectrum,
failure simulation can be logically characterized through a modality that characterizes
which transitions cannot be fired. We follow this same approch and we denote by L+

F

the logic obtained from L+ by adding a modality ref〈A〉, where A ⊆ Act , and whose
semantics is defined as follows: for any d ∈ Distr(Σ), d |=L+

F
ref〈A〉 iff d A9 .

Theorem 5.5.

– ∆(Rfail) = Rfail and vRfail= Rfail;
– Rfail = ≤L+

F
.

6 Related and Future work

Simulation and bisimulation relations on PLTSs have been introduced by Segala and
Lynch [15] as two equivalences that preserve significant classes of temporal properties
in the probabilistic logic PCTL [10]. Since then a number of works put forward prob-
abilistic extensions of Hennessy-Milner logic in order to logically characterize these
equivalences. Larsen and Skou [12] and Desharnais et al. [7] investigated a probabilis-
tic diamond operator that enhances the diamond operator of HML with the probability
bounds of transitions. However, these logics are adequate just for reactive and alternat-
ing systems, which are probabilistic models that are strictly less expressive than PLTSs.
Two further probabilistic variants of HML are available [13,5]. The first one is that of
Parma and Segala [13] (see also [11]), whose formulae are interpreted on sets of prob-
ability distributions over the states of a PLTS. One distinctive operator of this logic is
a modal operator [φ]p, whose semantics is the set of distributions that assigns at least
probability p to the set of states whose Dirac distributions satisfy φ. This paper has
shown that such a logic admits an equivalent formulation that retains the probabilistic
operator [φ]p and retrieves the diamond operator of HML by lifting it to distributions.
Deng et al. [5] follow a different approach. They propose a probabilistic variant of
HML that is interpreted on sets of processes of the pCSP process calculus. In their
logic the semantics of the diamond operator is defined in terms of hyper transitions be-
tween distributions: this notion of hyper transition is more complex than ours and has
been compared with our notion of hyper transitions in Section 5. Moreover, Deng et
al.’s logic features a probabilistic operator

⊕
i∈I piφi that is satisfied by processes that

correspond to distributions that can be decomposed into convex combinations of dis-
tributions that satisfy φi. Besides (bi)simulation and probabilistic (bi)simulation, this
logic is able to characterize two notions of failure and forward simulation that have
been proved to agree with the testing preorders on pCSP processes (see [5]).

Deng et al. [5]’s definition of failure simulation is quite different from ours, that
we directly derived from the standard LTS spectrum. One major difference is that we
define a relation between states of a PLTS which is then lifted to a relation between
distributions, whereas Deng et al. consider a relation between states and distributions.
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A precise comparison between the spectrum of behavioral relations on DLTSs and the
behavioral relations defined by Deng et al. [5] is left as subject for future work. We
also plan to investigate weak transitions in DLTSs that abstract from internal, invisi-
ble, actions. Weak variants of simulation, probabilistic simulation, forward and failure
simulation have been studied both in [5] and [13].

As a further avenue of future work we plan to study whether and how behavioral
relations on PLTSs can be computed by resorting to standard algorithms for LTSs that
compute the corresponding lifted relations on a DLTS. A first step in this direction has
been taken in [3], where efficient algorithms to compute simulation and bisimulation
on PLTSs have been derived by resorting to abstract interpretation techniques.
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