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Abstract. We show how bisimulation equivalence and simulation preorder on
probabilistic LTSs (PLTSs), namely the main behavioural relations on probabilis-
tic nondeterministic processes, can be characterized by abstract interpretation.
Both bisimulation and simulation can be obtained as completions of partitions
and preorders, viewed as abstract domains, w.r.t. a pair of concrete functions that
encode a PLTS. As a consequence, this approach provides a general framework
for designing algorithms for computing bisimulation and simulation on PLTSs.
Notably, (i) we show that the standard bisimulation algorithm by Baier et al. can
be viewed as an instance of such a framework and (ii) we design a new efficient
simulation algorithm that improves the state of the art.

1 Introduction

Randomization phenomena in concurrent systems have been widely studied in proba-
bilistic extensions of process algebras like Markov chains and probabilistic labeled tran-
sition systems (PLTSs). Most standard tools for studying nonprobabilistic processes,
like behavioural equivalences, temporal logics and model checking, have been inves-
tigated for these probabilistic models. In particular, bisimulation equivalence and sim-
ulation preorder relations, namely the main behavioural relations between concurrent
systems, have been extended and studied in a probabilistic setting [SV7012].

Abstract interpretation [2L3]] is a well-known general theory for specifying the ap-
proximation of formal semantics. Abstract domains play an essential role in any abstract
interpretation design, since they encode in an ordered structure how concrete semantic
properties are approximated. A number of behavioural relations, including bisimula-
tion, stuttering bisimulation and simulation, have been characterized in abstract inter-
pretation as complete refinements, called forward complete shells, of abstract domains
w.r.t. logical/temporal operators of suitable modal logics [11]. One notable benefit of
this approach is that it provides a general framework for designing basic algorithms
that compute behavioral relations as forward complete shells of abstract domains. As a
remarkable example, this abstract interpretation-based approach led to an efficient algo-
rithm for computing the simulation preorder [10] that features the best time complexity
among the simulation algorithms.

This paper extends the aforementioned results to a probabilistic setting. In partic-
ular, we consider probabilistic processes specified as PLTSs, a general model that ex-
hibits both non-deterministic choice (as in LTSs) and probabilistic choice (as in Markov
chains). In [[11]], bisimulation in LTSs has been characterized in terms of forward com-
plete shells of partitions w.r.t. the predecessor operator of LTSs. We show that this same



idea scales to the case of PLTSs by considering the probabilistic predecessor operator
that defines the transitions of a PLTS together with a probabilistic function that encodes
the distributions in the PLTS (this latter operator is somehow reminiscent of a proba-
bilistic connective in Parma and Segala’s [9] modal logics for probabilistic bisimulation
and simulation). Bisimulation equivalence in PLTSs is then characterized as a domain
refinement through a complete shell w.r.t. the above two operators. On the other hand,
the simulation preorder in PLTSs turns out to be the same complete shell of abstract
domains w.r.t. the same two operators, but using different underlying abstract domains:
for bisimulation, the complete shell is computed in a space of abstractions that are state
and distribution partitions, while for simulation the same complete shell is instead com-
puted over abstractions that are preorders on states and distributions.

Complete shells of abstract domains may in general be obtained through a sim-
ple fixpoint computation. We show how such a basic procedure can be instantiated to
obtain two algorithms that iteratively compute bisimulation and simulation on PLTSs.
Interestingly, the standard procedure for computing bisimulations in PLTSs, namely
Baier-Engelen-Majster’s algorithm [1]], can be actually viewed as an implementation
of our complete shell procedure that characterizes bisimulation. On the other hand,
we show that the corresponding complete shell for computing the simulation preorder
yields a new efficient probabilistic simulation algorithm that advances the state-of-the-
art: in fact, its time and space complexity bounds improve on the best known simulation
algorithm for PLTSs by Zhang et al. [13]].

2 Bisimulation and Simulation in PLTSs

Given a set X, Distr(X) denotes the set of (stochastic) distributions on X, i.e., func-
tions d:X — [0, 1] such that ) 0 d(x) = 1. The support of a distribution d is defined
by supp(d) = {z € X | d(z) > 0}; also, if S C X, then d(S) £ Y~ s d(s).

A probabilistic LTS (PLTS) is a tuple 8§ = (X, Act, —») where X is a set of states,
Act is a set of actions and - C X x Act x Distr(X) is a transition relation, where
(s,a,d) € — is also denoted by s-%d. We denote by Distr = {d € Distr(X) | 3s €
Y. Ja € Act. s d} the set of target distributions in 8. Given D C Distr, we write
s D when there exists d € D such that s->d. For any a € Act, the predecessor
and successor operators pre, : @(Distr) — p(X) and post, : p(X) — p(Distr)
are defined by pre,(D) £ {s € X | s~ D} and post,(S) £ {d € Distr | 3s €
S.s-%d}. Forany d € Distr and s € X, we define in(d) = {a € Act | pre,(d) # o}
and out(s) = {a € Act | post,(s) # @}.

Bisimulation. Let Part(X) denote the set of partitions of a finite set X. If P €
Part(X) and € X then P(z) denotes the unique block of P that contains z. A
partition P induces a mapping P : p(X) — p(X) defined as P(Y) £ U,cy P(y). Any
partition P € Part(X) induces an equivalence relation (i.e., a partition) over distribu-
tions =p € Part(Distr(X)) as follows: for any d,e € Distr(X), d =p e if for any
B € P, d(B) = e(B). In words, two distributions are =p-equivalent whenever they
give the same probability to the blocks of P.



Given a PLTS 8§ = (X, Act,—), a partition P € Part(X) is a bisimulation on 8
when for all s,t € X and d € Distr, if P(s) = P(t) and s--d then there exists
e € Distr such that t-e and d =p e. Bisimilarity Pis € Part(X) is defined as:
Pois(s) & U{P(s) | P is a bisimulation on 8}. Py turns out to be the greatest bisim-

ulation on § which is also called the bisimulation partition on 8.

Simulation. Let PreOrd(X) denote the set of preorders on X. If R € PreOrd(X) and
S C X then R(S) £ {x € X |3s € S.(s,x) € R}. Similarly to the case of partitions,
any preorder R € PreOrd(X) induces a preorder <g on Distr(X) as follows: for any
d,e € Distr(X),d <g eifforany S C X, d(S) < e(R(S5)). Such a definition of <p
can be equivalently stated in terms of so-called weight functions between distributions
and of maximum flows between networks. In particular, it turns out that d <p e iff the
maximum flow of a suitable bipartite network built over the states in supp(d) Usupp(e)
and over the relation R is 1 (see [1413]).

A preorder R € PreOrd(X) is a simulation on a PLTS § when for all s,t € X
and d € Distr, if ¢ € R(s) and s-d then there exists e € Distr such that t-%e
and d <p e. The simulation preorder Ry, € PreOrd(X) on 8 is defined as follows:
Ram(s) = U{R(s) | Ris a simulation on 8}. It turns out that Ry, is the greatest sim-
ulation preorder on 8. Simulation partition Ppsim, on 8 is the kernel of the simulation
preorder, i.e., Ppgim($) = Ppsim (t) iff s € Rgim (t) and ¢t € Rgim ().

3 Shells

Forward Completeness. In standard abstract interpretation [2l3]], approximations of
a concrete semantic domain are encoded by abstract domains (or abstractions), that
are specified by Galois insertions (GIs for short) or, equivalently, by adjunctions. A
GI of an abstract domain (A, <4) into a concrete domain (C, <¢) is determined by
a surjective abstraction map o : C' — A and a 1-1 concretization map v : A — C
such that a(c) <4 a & ¢ <¢ 7(a), and is denoted by («, C, A, 7). Recall that GIs
of a common concrete domain C' are preordered w.r.t. their relative precision: §; =
(a1,C,A1,71) < Go = (o, C, Ay, v2) — i.e. A1/As is a refinement/simplification
of As/A; — iff v1 0o a3 T Y2 © as. Moreover, §; and Gy are equivalent when
91 < Gz and G2 < Gq. We denote by Abs(C') the family of abstract domains of C up to
the above equivalence. It is well known that (Abs(C), <) is a complete lattice. Given
a family of abstract domains X C Abs(C), their lub LIX is the most precise domain in
Abs(C) which is a simplification of any domain in X.

Let f : C — D be some concrete semantic function, and let A € Abs(C') and B €
Abs(D) be abstractions of the concrete domains C' and D. Given an abstract function
f* 1 A — B, we have that (A, B, f*) is a sound abstract interpretation of f when
fovac CTaspyB,pO fﬁ. Forward completeness [3l4] corresponds to the following
strengthening of soundness: f oya c =7vB,po f % meaning that the abstract function
f* is able to replicate the behaviour of f on the abstract domains A and B with no loss
of precision. It turns out that if (A, B, f*) is forward complete then the abstract function
f* indeed coincides with a D,B © f ova,c, that is the best correct approximation of the
concrete function f on the pair of abstractions (A, B). Hence, the notion of forward



ShellAlgo(¥, G, A, B) {
Initialize();
while —(F-Stable A §-Stable) do
if -F-Stable then G-Stable := Stabilize(F, A, B); F-Stable := true;
L if =G-Stable then F-Stable := Stabilize(G, B, A); §-Stable := true;

}

Initialize() {
F-Stable := CheckStability(F, A, B); G-Stable := CheckStability (G, B, A);
}

bool Stabilize(H, X, Y) {
Youa :=Y;
Y:=W{Y' €Abs |Y'QY, (X,Y’) is H-complete};
return (Y = Y;)]d);

}
Fig. 1. Basic Shell Algorithm.

completeness of an abstract interpretation does not depend on the choice of the abstract
function f* but only depends on the abstract domains A and B. Accordingly, a pair of
abstract domains (A4, B) € Abs(C) x Abs(D) is called forward complete for f (or
simply f-complete) iff f o ya.c = vB,p © (ap,B © f ©7va,c). Equivalently, (A, B)
is f-complete iff the image of f in D, thatis f(v4,c(A)), is contained in v, p(B). If
F C C — D is aset of concrete functions then (A, B) is F-complete when (A, B) is
f-complete for all f € F.

Shells of Abstract Domains. Given a set of semantic functions ¥ C C' — D and
a pair of abstractions (A4, B) € Abs(C) x Abs(D), the notion of forward complete
shell [4]] formalizes the problem of finding the most abstract pair (A’, B’) such that
A’ 4 A, B’ 4 B and (A’, B’) is F-complete, which is a particular case of abstraction
refinement. It turns out (see [4]]) that any pair (A, B) can be minimally refined to its for-
ward F-complete shell Shelly((A, B)) = LU{(A’, B') € Abs(C)xAbs(D) | (A’, B') <
(A, B), (A’, B') is F-complete }. Thus, Shelly ({4, B)) encodes the least refinement of
a pair of abstractions (A, B) which is needed in order to obtain forward completeness
for J.

Let us now consider a further set of concrete semantic functions § € D — C
that operate in the opposite direction w.r.t. &, i.e., from D to C. Given A € Abs(C)
and B € Abs(D), it makes sense to consider both forward F-completeness of (A, B)
and forward G-completeness of the reversed pair (B, A). Thus, (A, B) is defined to be
(F, G)-complete when (A, B) is F-complete and (B, A) is §-complete. Here again, any
pair (A, B) can be minimally refined to its (¥, G)-complete shell Shell 5 g, ((4, B)) =
L{(A", B") € Abs(C) x Abs(D) | (A’,B") Q (A, B), (A’, B') is (¥, §)-complete}.

The combined shell Shell 5 gy((A, B)) can be obtained through the ShellAlgo()
procedure described in Figure |1} This procedure ShellAlgo() crucially relies on the
Stabilize() function: given a set of functions H and a pair of abstractions (X,Y),



we have that Stabilize(H, X, Y) refines the abstraction Y to Ysgape = U {Y’ | Y’ <
Y, (X,Y’) is H-complete}, so that (X, Yitable) becomes H-stable (i.e., H-complete).
For instance, Stabilize(F, A, B) minimally refines B to B’ so that (A, B’) is F-com-
plete. Hence, while the abstraction B is refined, the abstraction A is left unchanged.
Note that if B is actually refined into B’ < B, then the G-Stable flag is set to false so
that ShellAlgo() proceeds by G-stabilizing (B’, A), i.e., by calling Stabilize(G, B, A).
Thus, ShellAlgo(F, G, A, B) works by iteratively refining the abstractions A and B sep-
arately, namely it refines B w.r.t. F while A is kept fixed and then it refines A w.r.t. G
while B is kept fixed.

Theorem 3.1. ShellAlgo(F, G, A, B) = Shell;s g ({4, B)).

4 Bisimulation as a Shell

Bisimulation is commonly computed by coarsest partition refinement algorithms [148]
that iteratively refine a current partition until it becomes the bisimulation partition.
Coarsest partition refinements can be cast as shells of partitions: given a property of
partitions P C Part(X), the P-shell of Q € Part(X) corresponds to the coarsest par-
tition refinement of () that satisfies IP, when this exists. In this section we show how
bisimulation in PLTSs can be equivalently stated in terms of forward complete shells of
partitions w.r.t. suitable concrete semantic functions. We also show how the above basic
shell algorithm ShellAlgo() can be instantiated to compute bisimulations on PLTSs.

Shells of Partitions. Let us first recall that, given a finite set X, (Part(X), <, Y, A)
is a (finite) lattice where P, < P, (i.e., P, is coarser than P, or P; refines P») iff
Va.Pi(z) C Py(z), and its top element is T p,y(x) = {X }. By following the approach
in [[T1]], any partition P € Part(X) can be viewed as an abstraction of p(X)c where
any set S C X is approximated through its minimal cover in the partition P. This is
formalized by the abstract domain closed(P) £ {S C X | P(S) = S} so that S €
closed(P) iff S = U;e; B; for some blocks {B; };c; C P. Note that &, X € closed(P)
and that (closed(P), C, U, N) is a lattice. It turns out that (closed(P), C) is an abstrac-
tion in Abs(p(X)c), where any set S C X is approximated through the blocks in P
covering S, namely by U{B € P | BN S # @&} € closed(P).

The above embedding of partitions as abstract domains allows us to define a no-
tion of forward completeness for partitions. Let f : ©(X) — p(Y) be a concrete
semantic function. Then, a pair of partitions (P, Q) € Part(X) x Part(Y) is (for-
ward) f-complete when for any union U € closed(P) of blocks of P, f(U) is a
union of blocks of @, namely f(U) € closed(Q). Also, if we additionally consider
g : p(Y) = p(X) then (P,Q) is (f,g)-complete when (P, Q) is f-complete and
(Q, P) is g-complete. As in Section forward complete shells of partitions exist. Given
FCpX)—=p(Y)and G C p(Y) — o(X), Shelli5 gy ((P, Q)) is the coarsest pair of
partitions that (component-wise) refines the pair (P, Q) and is (¥, §)-complete, namely
Shell .6, (P, Q) 2 Y {(P', Q') € Part(X) x Part(Y) | (P, Q") = (P.Q), (P, Q)
is (¥, §)-complete}.



Bisimulation on PLTSs. In [11]] it is shown that bisimulation on LTSs can be equiv-
alently defined in terms of forward complete shells of partitions w.r.t. the predecessor
operator. This same idea scales to the case of PLTSs taking into account that: (i) in a
PLTS the target of the transition relation is a set of distributions rather than a set of
states, and (ii) bisimulation on the states of a PLTS induces an equivalence over dis-
tributions that depends on the probability that the distributions associate to the blocks
of bisimilar states. Let § = (X, Act,—) be a PLTS and consider the following two
functions, where @ € Act and p € [0, 1]:

pre, :p(Distr) — p(X), pre,(D) = {s€ ¥ |s%D}
prob,, : p(X) — p(Distr), prob,(S) £ {d € Distr | d(5) > p}

pre, is the a-predecessor function in the PLTS § while prob,(S) returns the distri-
butions whose probability on the set S is higher than p. Let pre = {pre, }ocac: and
prob £ {probp}pe[m]. It is worth noticing that this pair of sets of functions provides
an encoding of the PLTS 8: pre encodes the transition relation —, while any distribu-
tion d in § can be encoded through prob. For instance, the support of a distribution
d € Distr is given by the minimal set of states S such that d € prob,(.S), while, for
any s € X, d(s) = sup{p € [0,1] | d € prob,({s})}.

Lemma 4.1. Consider (P, P) € Part(X)xPart(Distr). (P, P) is (prob, pre)-complete
if and only if the following two conditions hold: (i) if s> d and t € P(s) thent-P(d);
(i) ife € P(d) then d =p e.

Consequently, a partition P € Part(X) is a bisimulation on 8 if and only if (P, =p)
is (prob, pre)-complete. In turn, the coarsest bisimulation Py;s on S can be obtained as
a forward complete shell of partitions.

Theorem 4.2. <Pbi57 EPb;s> = Sheu(prob,pre) (TPart(Z])7 TPart(Distr))'

Bisimulation Algorithm. By Theorem 4.2 P,;s can be computed as a partition shell
by instantiating the basic shell algorithm in Figure I{to & = {prob,}c(o,1) and § =
{pre, }acAct, and by viewing partitions in Part(X') x Part(Distr) as abstract domains.
This leads to design a bisimulation algorithm called PBis that maintains a pair of state
and distribution partitions (P, P) € Part(X) x Part(Distr) and whose initialization
and stabilization functions are given in Figure

The function call preStabilize((P, P)) refines the state partition P into P’ so that
(P, P’) is pre-complete. Note (cf. Lemma that in order to get pre-completeness it
is sufficient to minimally refine P so that for any block of distributions C' € P, and for
any incoming label a € in(C), pre,(C) is a union of blocks of P. If pre,(C) is not
a union of blocks of P then pre,(C') C X is called a splitter of P, and we denote by
Split(P, pre, (C')) the partition obtained from P by replacing each block B € P with
the nonempty sets B N pre, (C) and B ~\ pre,(C). Notice that when some pre, (C) is
already a union of blocks of P we have that Split(P, pre,(C)) = P, i.e., we also allow
no splitting. Hence, preStabilize() refines P by iteratively splitting P w.r.t. pre, (C), for
all C € P and a € in(C). On the other hand, the function call probStabilize((P, P))
refines the current distribution partition P into P’ so that (P, P’) is prob-complete. It



Initialize() {
forall s € X' do P(s) := X; forall d € Distr do P(d) := Distr;
preStabilize((P, P)); preStable := probStabilize({ P, P)); probStable := true;
}

bool preStabilize({P, P)) {
Puq == P;
forall C € P do forall a € in(C) do P := Split(P, pre,(C));
return (P # Poiq)

}

bool probStabilize({ P, P)) {
Pora :=P;
forall B € P do forall d € Distr do P := Split(P, {e € Distr | e(B) = d(B)});
return (P # Poiq)

}
Fig. 2. Bisimulation Algorithm PBis.

turns out that (P, P) is prob-complete when for any block B € P and any distribution
d € Distr, {e € Distr | e(B) = d(B)} is a union of blocks of P. Thus, probStabilize()
iteratively splits the distribution partition P w.r.t. {e € Distr | e(B) = d(B)}, for all
B € Pand d € Distr.

Theorem 4.3. For a finite PLTS 8, PBis(8) terminates and is correct, i.e., if (P, P) is
the output of PBis(8) then P = Pyis and P = =p, .

Implementation. Baier-Engelen-Majster’s two-phased partitioning algorithm [1] is the
standard procedure for computing the bisimulation FP;s. This bisimulation algorithm
can be essentially viewed as an implementation of the above PBis algorithm, since the
two phases of Baier et al.’s algorithm (see [, Figure 9]) coincide with our preStabilize()
and probStabilize() functions. The only remarkable difference is that instead of using
a single partition over all the distributions in Distr, Baier et al.’s algorithm maintains a
so-called step partition, namely, a family of partitions { M, },c ac: such that, for any a €
Act, M, is a partition of the distributions in post, (X, i.e., the distributions that have
an incoming edge labeled with a. As a consequence, in the phase that corresponds to
probStabilize(), any partition M, is split w.r.t. all the splitters {e € post,(X) | e(B) =
d(B)}, where B € P and d € post,(X). Baier et al.’s algorithm is implemented
by exploiting Hopcroft’s “process the smaller half” principle when splitting the state
partition w.r.t. a splitter pre,(C') and this allows to obtain a procedure that computes
bisimulation in O(|—|| X|(log |-| + log | X|)) time and O(|—|| %) space.

5 Simulation as a Shell

Shells of Preorders. Recall that, given any finite set X, (PreOrd(X), C,Ut,N) is
a lattice, where Ry U! R, is the transitive closure of R; U Ry and the top element



is Tpreord(x) £ X x X. Analogously to partitions, any preorder R € PreOrd(X)
can be viewed as an abstraction of (X )c, where any set S C X is approximated
by its R-closure R(S). Formally, a preorder R € PreOrd(X) can be viewed as the
abstract domain closed(R) = {S C X | R(S) = S}. Observe that S € closed(R) iff
S = UserR(x;) for some set {x;};cr C X and that {closed(R), C,U,N) is a lattice
(note that @, X € closed(R)). It turns out that closed(R) € Abs(p(X)c): this means
that any set S C X is approximated by its R-closure, namely by R(S) € closed(R).

Given the functions (F,G) C (p(X) — p(Y)) x (p(Y) — p(X)), a pair of
preorders (R, S) € PreOrd(X) x PreOrd(Y) is (forward) (&, §)-complete when for
any f € Fand g € G, if (U, V) € closed(R) x closed(S) then {f(U),g(V)) €
closed(S) x closed(R). Forward complete shells of preorders are therefore defined as
follows: Shell5 gy((R, S)) is the largest pair of preorders (R', S") C (R, S) which is
(F, G)-complete.

Simulation on PLTSs. Similarly to the case of bisimulation, simulation can be equiv-
alently expressed in terms of forward completeness w.r.t. prob = {probp}pe[m] and
pre = {pre, facAct-

Lemma 5.1. Let (R, R) € PreOrd(X) x PreOrd(Distr). Then, (R, R) is (prob, pre)-
complete if and only if the following two conditions hold: (i) if t € R(s) and s> d then
there exists e such that t->e and e € R(d); (ii) if e € R(d) then d <p e.

Thus, a preorder R € PreOrd(XY) is a simulation on 8 if and only if (R, <g) is
(prob, pre)-complete. In turn, the greatest simulation preorder Ry, can be obtained as
a preorder shell.

Theorem 5.2. <Rsim7 ERSim> = Sheu(prob,prc) (TPrcOrd(E)7 TPrcOrd(Distr))~

6 A New Efficient Probabilistic Simulation Algorithm

A new efficient algorithm for computing simulations in PLTSs, called PSim, is designed
in this section by instantiating the basic shell algorithm to & = {prob,, } ,e[0,1 and § =
{pre, }acact, and by viewing preorders in PreOrd(X) x PreOrd(Distr) as abstract
domains.

The high-level design of PSim is that of ShellAlgo in Figure |l the only difference
being that the input is a PLTS 8. PSim maintains a pair of state and distribution pre-
orders (R, R) € PreOrd(X) x PreOrd(Distr), whose initialization and stabilization
functions are given in Figure [3]and ]

The function preStabilize() makes the pair (R, R) pre-complete by refining the state
preorder R until there exists a transition s d such that and R(s) < pre,(R(d)). Such
a refinement can be efficiently done by following the incremental approach of Hen-
zinger et al. [6] for nonprobabilistic LTSs. On the other hand, the function probStabi-
lize() makes the pair (R, R) prob-complete by refining the distribution preorder R by
iteratively refining it until there exist e, d such that e € R(d) and d £r e. Here, in
order to get an efficient incremental computation, we resort to the approach of Zhang et



1 Initialize() {
// Initialize R and R

2 forall s € X do R(s) := {t € X' | out(s) C out(t)};

3 forall d € Distr do R(d) := {e € Distr | Init- SMF(d, e, R) = true};
// Initialize in

4 forall d € Distr do in(d) := {a € Act | pre,(d) # @};

// Initialize Count

forall e € Distr do

forall ¢ € in(e) do

L forall = € pre,(Distr) do

®w 9 & W

L Count(z, a, e) := |{d € Distr |z-*d, d € R(e), a € in(e)};
// Initialize Remove
9  forall d € Distr do
10 forall a € in(d) do
1 L Remove,(d) := {s € X' | a € out(s), s»R(d)};

// Initialize Stability Flags
12 probStable := true;
13 if Je € Distr, a € in(e) such that Remove, (e) # @ then preStable := false;
14  else preStable := true;
// Initialize Listener
15 forall z,y € X do Listener(z,y) := {(d, e) | = € supp(d), e € supp(e)};
// Initialize Deleted Arcs
16 Deleted := @;

Fig. 3. Initialization function.

al’s simulation algorithm [13]], and we stabilize the distribution preorder R by comput-
ing sequences of maximum flow problems. More precisely, given a pair of distributions
(d, e), successive calls to probStabilize() might repeatedly check whether d < e where
R is the current (new) state preorder. Let us recall [1] that the test d <g e can be im-
plemented by checking whether the maximum flow over a network built out of (d, )
and R, here denoted by N(d, e, R), is 1. Zhang et al. [13]] observe that the networks for
a given pair (d, e) across successive iterations are very similar, since they differ only
by deletion of some edges due to the refinement of R. Therefore, in order to incremen-
tally deal with this sequence of tests, Zhang et al.’s algorithm saves after each iteration
the current network N(d, e, R) together with its maximum flow information, and this
allows us to use at the next iteration a so-called preflow algorithm which is initialized
with the previous maximum flow function. Due to lack of space, we do not discuss the
details of the preflow algorithm in [[13], that is used here as a black box that efficiently
solves the sequence of maximum flow problems that arise for a same network.

PSim is designed around the following data structures. First, the two preorders
R C ¥ x XY and R C Distr x Distr, which are stored as boolean matrices and are
initialized so that they are coarser than Rg;,, and <g_ . In particular, the initial pre-

sim



1 bool preStabilize((R, R)) {
Deleted := @;
while 3 Remove,(e) # & do
Remove := Remove,(e); Remove,(e) := &;
forall t %> e do
forall w € Remove do
L L if w € R(t) then Deleted := Deleted U{ (¢, w)}; R(t) := R(t)\{w};

N SN R W N

8  if (Deleted # @) then probStable := false;
9  return probStable;
10 }

1 bool probStabilize((R, R)) {

2 forall (t,w) € Deleted do

3 forall (d, e) € Listener (¢, w) such that e € R(d) do

4 if SMF(d, e, (t, w)) = false then

5 R(d) := R(d) ~ {e};

6 forall b € in(e) Nin(d) do

7 forall s = e do

8 Count(s, b, d)- -;

9 if Count(s, b, d) = 0 then

10 L Removey (d) := Removey(d) U {s}; preStable := false;

11 return preStable;

Fig. 4. Stabilization functions.

order R is coarser than Rgy, since if s->d and ¢t % then ¢ ¢ Rgim(s). Moreover, line
3 initializes R so that R = <p: this is done by calling the function Init SMF(d, e, R)
which in turn calls the preflow algorithm to check whether d <p e, and in case this
is true, stores the network N(d, e, R) to reuse it in later calls to probStabilize(). The
additional data structures used by PSim come from the efficient refinement approaches
used in [6] and [13]]. Indeed, as in [6]], for any distribution e and for any incoming action
a € in(e), we store and maintain a set Remove,(e) 2 {s € X' | s-%, s%R(e)} that is
used to refine the relation R such that if £ e then R(t) is pruned to R(t) ~Remove,(e)
(lines 5-7 of preStabilize()). The Count table is used to efficiently refill the remove sets
(line 10 of probStabilize()), since it allows to test whether s R(e) in O(1). On the
other hand, in order to get an efficient refinement also for the distribution preorder
R, as in Zhang et al. [13]], for any pair of states (x,y) we compute and store a set
Listener(x,y) £ {(d,e) € Distr x Distr | # € supp(d), y € supp(e)} that contains
all the pairs of distributions (d, ) such that the network N(d, e, R) could contain the
edge (z,y), i.e., the networks that are affected when the pair (z, y) is removed from R.
Indeed, these sets are used in probStabilize() to recognize the pairs (d, €) that have been
affected by the refinement of R due to the previous call of preStabilize() (lines 2-3 of

10



probStabilize()).

As aresult, at the end of the initialization, the probStable flag is true (due to the ini-
tialization of R as <pg), whereas the preStable flag is false if there is at least a nonempty
remove set. The main loop of PSim then proceeds by repeatedly calling the stabilization
functions until (R, R) becomes (prob, pre)-complete. More precisely, a call to preSta-
bilize(): (i) empties all the Remove sets, (ii) collects all the pairs removed from R into
the set Deleted, and (iii) sets the probStable flag to false when R has changed. On the
other hand, a call to probStabilize() relies on the sets Deleted and Listener to identify
all the networks N(d, e, R) that have been affected by the refinement of R due to preSta-
bilize(). For any pair (¢, w) that has been removed from R, the call SMF(d, e, (¢, w)) at
line 4 removes the edge (¢, w) from the network for (d, e) and checks whether it still
has a maximum flow equals to 1. Hence, if this is not the case, e is removed from R(d).
Notice that such a pruning may induce an update of some Remove,(d) set, which in
turn triggers a further call of preStabilize() by setting the preStable flag to false.

The correctness of PSim is a direct consequence of Theorems [3.1and [5.2] and the
fact that the procedures in Figure ] correctly stabilize the preorders R and R. The com-
plexity bounds of PSim are given in terms of the following sizes. Let § = (X, Act, —)
be the input PLTS. Then, |Distr| = |J,c 4.¢ POSt,(X)| is the number of distribu-
tions appearing as target of some transition. Also, the number of edges in 8 is |—| <
|Z||Distr|| Act|. Moreover, we consider the following sizes: p £ Y, ... | supp(d)|

andm= Y, S o > depost, (s) (| supP(d)| + 1). Thus, p represents the full size
of post(X), being the number of states that appear in the support of some distribution in
post(X), while m represents the number of transitions from states to states in S, where
a “state transition” (s, t) is taken into account when s->d and t € supp(d). Clearly,
|Distr| < p < |Distr||X] and | X| < |-| < m < |Distr||Y|. The key point to remark
is that p < m, since the “states” of S are always less than the “state transitions” in 8.

Theorem 6.1 (Correctness and Complexity). Let S be a finite PLTS. PSim(8) termi-
nates with output (Rgim, <g....) and runs in O(|X|(p* + |=|))-time and O(p* + (| 2| +
|Distr|)|—|)-space.

It is easy to observe that (|X| + |Distr|)|—»| < m?, so that PSim results to be
more efficient than the most efficient probabilistic simulation algorithm in literature,
that is Zhang et al.’s algorithm [13]], that runs in O(|X|m?)-time and O(m?)-space.
Our scaling down from the factor m to p, that is from the size of the “state transitions”
to the size of the “state” space, basically depends on the fact that in Zhang et al.’s
algorithm the same test d £ e is repeated for every pair of states (s;, ;) such that
s; € prey(d),t; € pre,(e), whereas in PSim once the test d £ e has been performed,
every state ¢; is removed from R(s;). Such a difference becomes evident when the
input PLTS § degenerates to a LTS. In this case a call to the function SMF() can be
executed in O(1), so that the time complexity of [13] boils down to O(|-|?), whereas
in this case PSim runs in O(]| X||—|)-time, essentially reducing to Henzinger et al. [[6]’s
nonprobabilistic simulation algorithm. As a further difference, it is worth observing that
Zhang et al.’s algorithm relies on a positive logic that at each iteration ¢ computes the
pairs (s;,t;) such that ¢; € R;(s;), whereas PSim follows a dual, negative, strategy that
removes from R; the pairs (s;, ¢;) such that t; & R;(s;).
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7 Future Work

We have shown how abstract interpretation can be applied in the context of behavioral
relations between probabilistic processes. We focused here on bisimulation/simulation
relations on PLTSs and we showed how efficient algorithms that compute these behav-
ioral relations can be derived. As future work, we plan to investigate how this abstract
interpretation approach can be adapted to characterize the weak variants of bisimula-
tion/simulation and the so-called probabilistic bisimulations/simulations on PLTSs [12].
We also intend to apply a coarsest partition refinement approach to design a “symbolic”
version of our PSim simulation algorithm. Analogously to the symbolic algorithm by
Ranzato and Tapparo [[10] for nonprobabilistic simulation, the basic idea is to symbol-
ically represent the relations R on states and R on distributions through partitions (of
states and distributions) and corresponding relations between their blocks. It is worth
noting that this partition refinement approach has been already applied by Zhang [[14] to
design a space-efficient simulation algorithm for PLTSs. Finally, we envisage to study
how the abstract interpretation approach can be related to the logical characterizations
of behavioral relations of probabilistic processes studied e.g. in [9].
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