
Express/SOS 2022

From Legal Contracts to Legal Calculi:

the code-driven normativity

 Silvia Crafa
Università di Padova

Cosimo Laneve Giovanni Sartor
Università di Bologna

joint work with

Bisimulation
inside

Trust

for centuries, people and companies
relied on the principle of trust between

parties (or an authoritative guarantor)

this modality has been so fundamental
that there is a business of

intermediary roles (and the Institutions
that guarantee justice)

with the blockchain, data and
transactions are stored

with no need of intermediaries

integrity and consistency of data is
guaranteed by algorithms and

economical incentives

Code is law
• trust is hardwired into intermediary transparent algorithms

• software code provides unambiguous definition and
automatic execution of transactions between (mutually
untrusted) parties

• when in disputes, the code of the contract, which is
always publicly available, shall prevail.

Code Driven Law
use software to represent and enact

regulation, agreements, law

• identify potential inconsistencies in regulation,

• reduce the complexity and the ambiguity of legal texts

• code-driven enforcement of rules, ex-ante

Code is law
• TheDAO attack broke the code-is-law dogma: when

large volumes of money are at stake, a bug is a bug, not a
feature of the signed contract

• blockchain does not hardwire trust into algorithms, but
rather reassigns trust to a series of actors (miners,
programmers, companies) who implement, manage and
enable the functioning of the platform

• the inherent ambiguity of the legal system is necessary to ensure
a proper application of the law on a case-by-case basis

• regulation by code is always more specific and less flexible than

the legal provisions it claims to implement. It moves the problem
into another dimension

• gives software developers and engineers the power to embed their own
interpretation of the law into the technical artefacts that they create

Transposing legal rules into technical rules is problematic:

We focus on a specific subset of legal documents, the legal contracts:

• “those agreements that are intended to give rise to a binding legal
relationship or to have some other legal effect”

Legal contracts

• Principle of freedom of form, shared by the contractual law of modern
legal systems,

• "the parties of a legal contract are free to express their agreement
using the language and medium they prefer", including a programming
language

• they establish obligations, rights (such as rights to property),
powers, prohibitions and liabilities between the parties,

• often subject to specific conditions and by taking advantage
of escrows and securities.

Why expressing legal contracts
using a programming language?

Yes, But...
• reading the code makes it understandable? what is the behaviour and the

computational effects of the code execution?

➡ the p.l. should be high-level, concise, domain specific, with a precise semantics

Digital Legal contracts (beyond blockchain!)

code provides unambiguous and transparent definition
and automatic execution of transactions and

enforcement of contractual conditions
Code Driven Law

• legal contracts have an intrinsic open nature (off-line/non digital elements):

• may depend on external data,

• e.g. a bet on a football match, insurance against a flight delay

• may depend on conditions that can be hardly digitized,

• e.g. diligent storage and care in a rental, using a good only as intended,

good faith, force majeure

Digital Legal contracts (beyond blockchain!)

• the contract’s institutional effects are guaranteed by the possibility of

• activating judicial enforcements: each party may start a lawsuit if
she believes that the other party has failed to comply with the contract,

• dynamically interrupt or modify the terms of the contract in case of
e.g. force majeure, mutual dissent, unilateral modification

• the law may deny validity to certain clauses (e.g. excessive interests rate)
and/or may establish additional effects that were not stated by the
parties (e.g. consumer’s power to withdraw from an online sale, warranties, etc.)

fully automatic execution and no intermediation is defective

Yes, But...

code provides unambiguous and transparent definition
and automatic execution of transactions and

enforcement of contractual conditions
Code Driven Law

so Which programming language?

Legal Calculi

A core language, that aims at modelling particular aspects of its target domain,

• pivoted on few selected, concise and intelligible primitives, together with
a precise formalisation of its syntax and semantics.

• its theory provides static analysis and verification tools

Legal Calculi the building blocks of legal contracts
directly map

to primitives and design patterns

• its design and definition is implementation agnostic, but it may be
compiled to full-fledged programming languages and platforms

• Catala: a language for modelling statutes and regulations clauses,

• Orlando: a language for modelling conveyances in property law,

• Silica: a language for smart contracts

a legal contract as an interaction protocol,

that dynamically regulates

permissions, prohibitions, obligations, asset exchanges

between concurrent parties

Stipula
concurrency

theory

Bike rental contract

The bike sharing service rests on a legal contract

1. Term.  
This Agreement shall commence on the day the Borrower takes possession of Bike
and remain in full force and effect until Bike is returned to Lender. Borrower
shall return the Bike _______ after the rental date and will pay Euro _________
where half of the amount is of surcharge for late return or loss or damage of
the Bike.

2. Payment.  
Borrower rents the Bike on __________ and pays Euro _______ in advance. If the
rented Bike is damaged or broken, Borrower reserves the right to take any
action necessary to get reimbursed.

3.Return of the Bike.  
Renter shall return the Bike on the date specified in Article 1 in the  
agreed return location. If Bike is not returned on said date or the Bike is
damaged or loss, Lender reserves the right to take any action necessary to get
reimbursed

4. Termination.  
This Agreement shall terminate on the date specified in Section 1.

5. Disputes  
Every dispute arising from the relationships governed by the above general
rental conditions will be managed by the court the Lender company is based,
which will decide compensations for Lender and Borrower.

Bike rental contract
3 days 15

stipula Bike_Rental {

 assets wallet
 fields cost , rentingTime , code

 agreement (Lender,Borrower,Authority){
 Lender , Borrower: rentingTime , cost
 } => @Inactive

 @Inactive Lender : offer(x) { x --> code } => @Payment

 @Payment Borrower : pay[h] (h == cost) {
 h --o wallet
 code --> Borrower
 now + rentingTime >> @Using {"End_Reached" --> Borrower} => @Return
 } => @Using

 @Using Borrower : end { now --> Lender } => @Return

 @Return Lender : rentalOk {
 0.5*wallet --o wallet,Lender
 wallet --o Borrower
 } => @End

 @Using Lender ,Borrower : dispute(x) { x --> _ } => @Dispute
 @Return Lender ,Borrower : dispute(x) { x --> _ } => @Dispute

 @Dispute Authority : verdict(x,y) (y>=0 && y<=1) { }
 x --> Lender , Borrower
 y*wallet --o wallet , Lender
 wallet --o Borrower
 } => @End
}

Bike rental contract
similar to a class with

fields, a constructor, methods

stipula Bike_Rental {

 assets wallet
 fields cost , rentingTime , code

 agreement (Lender,Borrower,Authority){
 Lender , Borrower: rentingTime , cost
 } => @Inactive

 @Inactive Lender : offer(x) { x --> code } => @Payment

 @Payment Borrower : pay[h] (h == cost) {
 h --o wallet
 code --> Borrower
 now + rentingTime >> @Using {"End_Reached" --> Borrower} => @Return
 } => @Using

 @Using Borrower : end { now --> Lender } => @Return

 @Return Lender : rentalOk {
 0.5*wallet --o wallet,Lender
 wallet --o Borrower
 } => @End

 @Using Lender ,Borrower : dispute(x) { x --> _ } => @Dispute
 @Return Lender ,Borrower : dispute(x) { x --> _ } => @Dispute

 @Dispute Authority : verdict(x,y) (y>=0 && y<=1) { }
 x --> Lender , Borrower
 y*wallet --o wallet , Lender
 wallet --o Borrower
 } => @End
}

meeting of the minds
3 parties express their consent by

• joining in a multiparty synchronization that

• sets the terms of the contract: the initial values of
rentingTime and cost

and the contract produces its legal effects by entering
the initial state @Inactive

stipula Bike_Rental {

 assets wallet
 fields cost , rentingTime , code

 agreement (Lender,Borrower,Authority){
 Lender , Borrower: rentingTime , cost
 } => @Inactive

 @Inactive Lender : offer(x) { x --> code } => @Payment

 @Payment Borrower : pay[h] (h == cost) {
 h --o wallet
 code --> Borrower
 now + rentingTime >> @Using {"End_Reached" --> Borrower} => @Return
 } => @Using

 @Using Borrower : end { now --> Lender } => @Return

 @Return Lender : rentalOk {
 0.5*wallet --o wallet,Lender
 wallet --o Borrower
 } => @End

 @Using Lender ,Borrower : dispute(x) { x --> _ } => @Dispute
 @Return Lender ,Borrower : dispute(x) { x --> _ } => @Dispute

 @Dispute Authority : verdict(x,y) (y>=0 && y<=1) { }
 x --> Lender , Borrower
 y*wallet --o wallet , Lender
 wallet --o Borrower
 } => @End
}

1. the Lender sends the bike's
usage code to the contract

4. if the bike is not damaged

• the contract sends the payment
(i.e., half of the content of wallet)
to the Lender

• gives back to the Borrower the
escrow

5. the contract terminates

only this sequence is permitted !

2. the Borrower pays and receives
the bike's code (cost is the
double of the fee, as a safeguard from
damages and late returns)

3. the Borrower returns the bike

stipula Bike_Rental {

 assets wallet
 fields cost , rentingTime , code

 agreement (Lender,Borrower,Authority){
 Lender , Borrower: rentingTime , cost
 } => @Inactive

 @Inactive Lender : offer(x) { x --> code } => @Payment

 @Payment Borrower : pay[h] (h == cost) {
 h --o wallet
 code --> Borrower
 now + rentingTime >> @Using {"End_Reached" --> Borrower} => @Return
 } => @Using

 @Using Borrower : end { now --> Lender } => @Return

 @Return Lender : rentalOk {
 0.5*wallet --o wallet,Lender
 wallet --o Borrower
 } => @End

 @Using Lender ,Borrower : dispute(x) { x --> _ } => @Dispute
 @Return Lender ,Borrower : dispute(x) { x --> _ } => @Dispute

 @Dispute Authority : verdict(x,y) (y>=0 && y<=1) { }
 x --> Lender , Borrower
 y*wallet --o wallet , Lender
 wallet --o Borrower
 } => @End
}

state-based programming style
• widely used to specify interaction protocols

• encodes permissions and prohibitions

stipula Bike_Rental {

 assets wallet
 fields cost , rentingTime , code

 agreement (Lender,Borrower,Authority){
 Lender , Borrower: rentingTime , cost
 } => @Inactive

 @Inactive Lender : offer(x) { x --> code } => @Payment

 @Payment Borrower : pay[h] (h == cost) {
 h --o wallet
 code --> Borrower
 now + rentingTime >> @Using {"End_Reached" --> Borrower} => @Return
 } => @Using

 @Using Borrower : end { now --> Lender } => @Return

 @Return Lender : rentalOk {
 0.5*wallet --o wallet,Lender
 wallet --o Borrower
 } => @End

 @Using Lender ,Borrower : dispute(x) { x --> _ } => @Dispute
 @Return Lender ,Borrower : dispute(x) { x --> _ } => @Dispute

 @Dispute Authority : verdict(x,y) (y>=0 && y<=1) { }
 x --> Lender , Borrower
 y*wallet --o wallet , Lender
 wallet --o Borrower
 } => @End
}

events encode obligations
• by scheduling a future statement that automatically

executes a corresponding action or penalty

This command issues an event

• that is executed at the end of the renting time, if the

bike is still in use (state @Using)

• a warning message is sent to the Borrower

stipula Bike_Rental {

 assets wallet
 fields code , cost, rentingTime

 agreement (Lender,Borrower,Authority){
 Lender , Borrower: rentingTime , cost
 } => @Inactive

 @Inactive Lender : offer(x) { x --> code } => @Payment

 @Payment Borrower : pay[h] (h == cost) {
 h --o wallet
 code --> Borrower
 now + rentingTime >> @Using {"End_Reached" --> Borrower} => @Return
 } => @Using

 @Using Borrower : end { now --> Lender } => @Return

 @Return Lender : rentalOk {
 0.5*wallet --o wallet,Lender
 wallet --o Borrower
 } => @End

 @Using Lender ,Borrower : dispute(x) { x --> _ } => @Dispute
 @Return Lender ,Borrower : dispute(x) { x --> _ } => @Dispute

 @Dispute Authority : verdict(x,y) (y>=0 && y<=1) { }
 x --> Lender , Borrower
 y*wallet --o wallet , Lender
 wallet --o Borrower
 } => @End
}

• assets are linear resources
like (crypto-) currency, or
tokens (a smart lock, a NFT)

• useful for payments,
escrows and securities

• asset cannot be forged, nor
double spent, nor be locked
into the contract

Asset-aware programming

values:

1234 --> code
code --> Borrower

linear assets:

10€ --o wallet
wallet --o Lender

stipula Bike_Rental {

 assets wallet
 fields cost , rentingTime , code

 agreement (Lender,Borrower,Authority){
 Lender , Borrower: rentingTime , cost
 } => @Inactive

 @Inactive Lender : offer(x) { x --> code } => @Payment

 @Payment Borrower : pay[h] (h == cost) {
 h --o wallet
 code --> Borrower
 now + rentingTime >> @Using {"End_Reached" --> Borrower} => @Return
 } => @Using

 @Using Borrower : end { now --> Lender } => @Return

 @Return Lender : rentalOk {
 0.5*wallet --o wallet,Lender
 wallet --o Borrower
 } => @End

 @Using Lender ,Borrower : dispute(x) { x --> _ } => @Dispute
 @Return Lender ,Borrower : dispute(x) { x --> _ } => @Dispute

 @Dispute Authority : verdict(x,y) (y>=0 && y<=1) { }
 x --> Lender x --> Borrower
 y*wallet --o wallet , Lender // a fraction of wallet goes to Lender
 wallet --o Borrower // the rest goes t
 } => @End
}

judicial enforcement pattern
• the agreement specifies the

Authority that manages the
litigations

• Anyone can invoke the authority at any time by
moving to the state @Dispute

• the Authority communicate the decision by
sending a string x and splitting the escrow
money between the litigants according to the
fraction y

stipula Bike_Rental {

 assets wallet
 fields cost , rentingTime , code

 agreement (Lender,Borrower,Authority){
 Lender , Borrower: rentingTime , cost
 } => @Inactive

 @Inactive Lender : offer(x) { x --> code } => @Payment

 @Payment Borrower : pay[h] (h == cost) {
 h --o wallet
 code --> Borrower
 now + rentingTime >> @Using {"End_Reached" --> Borrower} => @Return
 } => @Using

 @Using Borrower : end { now --> Lender } => @Return

 @Return Lender : rentalOk {
 0.5*wallet --o wallet,Lender
 wallet --o Borrower
 } => @End

 @Using Lender ,Borrower : dispute(x) { x --> _ } => @Dispute
 @Return Lender ,Borrower : dispute(x) { x --> _ } => @Dispute

 @Dispute Authority : verdict(x,y) (y>=0 && y<=1) { }
 x --> Lender , Borrower
 y*wallet --o wallet , Lender // a fraction of wallet goes to Lender
 wallet --o Borrower // the rest goes t
 } => @End
}

judicial enforcement pattern
• the agreement specifies the

Authority that manages the
litigations

• Anyone can invoke the authority at any time by
moving to the state @Dispute

• the Authority communicate the decision by
sending a string x and splitting the escrow
money between the litigants according to the
fraction y

a controlled amount of
intermediation:

fully automatic execution
is defective

stipula Bet {
 assets wallet1, wallet2
 fields alea, val1, val2, data_source, fee, amount, t_before, t_after

 agreement(Better1,Better2,DataProvider){
 DataProvider , Better1 , Better2 : fee, data_source, alea, t_after
 Better1 , Better2 : amount , t_before
 } ⇒ @Init

 @Init Better1 : place_bet(x)[h] (h == amount){
 h --o wallet1
 x --> val1
 t_before >> @First { wallet1 --o Better1 } ⇒ @Fail
 } ⇒ @First

 @First Better2 : place_bet(x)[h] (h == amount){
 h --o wallet2
 x --> val2
 t_before >> @Run { wallet1 --o Better1 wallet2 --o Better2 } ⇒ @Fail
 } ⇒ @Run

 @Run DataProvider : data(x,y,z)[] (x == data_source && y==alea){
 if (z==val1 && z != val2){ // Better1 wins
 fee --o wallet2 ,DataProvider
 wallet2 --o Better1
 wallet1 --o Better1 }
 else
 ...
 }⇒ @End

stipula Bet {
 assets wallet1, wallet2
 fields alea, val1, val2, data_source, fee, amount, t_before, t_after

 agreement(Better1,Better2,DataProvider){
 DataProvider , Better1 , Better2 : fee, data_source, alea, t_after
 Better1 , Better2 : amount , t_before
 } ⇒ @Init

 @Init Better1 : place_bet(x)[h] (h == amount){
 h --o wallet1
 x --> val1
 t_before >> @First { wallet1 --o Better1 } ⇒ @Fail
 } ⇒ @First

 @First Better2 : place_bet(x)[h] (h == amount){
 h --o wallet2
 x --> val2
 t_before >> @Run { wallet1 --o Better1 wallet2 --o Better2 } ⇒ @Fail
 } ⇒ @Run

 @Run DataProvider : data(x,y,z)[] (x == data_source && y==alea){
 if (z==val1 && z != val2){ // Better1 wins
 fee --o wallet2 ,DataProvider
 wallet2 --o Better1
 wallet1 --o Better1 }
 else
 ...
 }⇒ @End

Intermediary pattern
• who takes the role of DataProvider takes

the legal responsibility of providing the
correct data form the expected data_source

• an Authority can be added to deal with
litigations

tested over a set of archetypal legal contracts

(free rent, license to access a digital service,

 bet contract on an aleatory event, remote purchase) Stipula
• common legal patterns correspond to Stipula design pattern

meeting of the minds

permissions, prohibitions

obligations

transfer of currency or other assets

openness to external conditions or data

judicial enforcement and exceptional
behaviours

agreement primitive

state-based programming

event primitive

Intermediary pattern

Authority pattern

asset-aware (linear) programming

✓Clear semantics
• Stipula syntax and operational semantics are formally defined.

• the execution prevents unsafe assets operations, e.g. attempts to drain too

much value from an asset or to forge new assets.

✓Observational equivalence
• using a bisimulation technique we developed an equational theory that identifies

contracts with different hidden elements but the same observable behavior

✓Type inference
• the syntax is untyped for simplicity but we developed an algorithm for deriving

types of assets, fields and functions, so to statically prevent basic programming
errors.

✓ Liquidity analyser
• we developed a verification technique to statically check liquid contracts, that

do not freeze any asset forever, i.e. that are not redeemable by any party

Unleashing formal methods

the runtime status

of the contract

(its current state and

the pending events)

Labelled Transition System

the system’s

global clock

the execution requires the interaction
with the external context, highlighting
the open nature of contract's behaviour

observe the agreement:
• who is taking the legal responsibility

for which contract’s role,

• what are the terms of the contract,

i.e., the agreed initial values of the
contract’s fields.

observe the possibility (at time t) for
the party A to call the function f

observe that (at time t) the party A
can receive a value, resp. an asset

• prohibitions are observed through impossibilities to do an action

• time progress is not observed, but

• we can shift forward the observation time, observing the effects of obligations

When two syntactically different contracts are legally equivalent?

Normative Equivalence

When they express the same legal binding:

the parties using them cannot distinguish one from the other.

the two contracts involve the same parties

observing the same interactions during the contracts’ lifetime.

bisimulation-based observation equivalence

a transfer property that shifts the time of
observation to the next time unit

Normative Equivalence

• abstracts away the ordering of messages within the same time unit, and the
contract's internal names

• does not overlook essential precedence constraints, which are important in legal
contracts, e.g. a function delivering a service can only be invoked after a payment.

• allows to garbage-collect events that cannot be triggered anymore because the
time for their scheduling is already elapsed.

captures the observation
of prohibitions

abstracts away the ordering
of the observations within
the same time clock

Conclusions
the assimilation of software-based contracts to legally binding contracts
raises both legal and technological issues.

Legal Calculi
may sheds some light on the digitalisation of legal texts

• legally robust management of identities, agreement, time in obligations, assets

Effective Implementation
• the primitives can be implemented over a centralized or a distributed system

Interdisciplinary Assessment

• usability of legal programming languages,

• unveil partial or erroneous interpretations of the law embedded in technical artefacts,

• understand the actual extent of the legal protection provided by the software

normativity.

Conclusions
the assimilation of software-based contracts to legally binding contracts
raises both legal and technological issues.

Lesson we learned:
• the intrinsic open nature of legal contracts, that is incompatible with

the automatic execution of software-based rules claimed by the
Code-Driven Law

• The intervention of the law is particularly significant to protect the
weaker party (e.g. the worker in an employment contract or the consumer
in an online purchase)

• any software solution must provide an escape mechanism (e.g. the
Authority pattern in Stipula) that allows a flexible, and legally valid, link
between what is true off-line and on-line.

Interdisciplinary Assessment

The behaviour of a Stipula legal contract:

• the first action is always an agreement, which moves the contract to an idle state;

• in an idle state, if there is a ready event with a matching state, then its handler is completely

executed, moving again to a (possibly different) idle state;

• in an idle state, if there is no event to be triggered, either advance the system’s clock or call

any permitted function (i.e. with matching state and preconditions). A function invocation
amounts to execute its body until the end, which is again an idle state.

Three sources of nondeterminism:

• the order of the execution of ready events’ handlers,

• the order of the calls of permitted functions, and

• the delay of permitted function calls to a later time

(thus, possibly, after other event handlers)

