
Causality in Concurrent Systems

F. Russo

Vrije Universiteit Brussel

Belgium

S.Crafa

Università di Padova

Italy

HaPoC 31 October 2013, Paris

Causality in Concurrent Systems

F. Russo

Vrije Universiteit Brussel

Belgium

S.Crafa

Università di Padova

Italy

HaPoC 31 October 2013, Paris

software, hardware or even physical systems
where

sets of activities run in parallel
with

possible occasional interactions

Concurrent Systems

Concurrent Systems

Concurrent Systems

Concurrent Systems

Concurrent Systems

Concurrent Systems

Overview
• Concurrent Systems

– How to deal with such a complexity?

– CS offers tools: Formal/precise, expressive/general, simple/tractable

Overview
• Concurrent Systems

– How to deal with such a complexity?

– CS offers tools: Formal/precise, expressive/general, simple/tractable

• Java programming language, …
• DSL for concurrent hardware, system

biology, …
• process algebras

Overview
• Concurrent Systems

– How to deal with such a complexity?

– CS offers tools: Formal/precise, expressive/general, simple/tractable

• Interleaving models (1 action at a time)

• true-concurrent, causal models take
the notion of concurrency/causality as
fundamental

Overview
• Concurrent Systems

– How to deal with such a complexity?

– CS offers tools: Formal/precise, expressive/general, simple/tractable

• Interleaving models (1 action at a time)

• true-concurrent, causal models take
the notion of concurrency/causality as
fundamental

 what causality means ?
w.r.t. traditional debates in

philosophy of causality:
production and mechanisms,

independence, causation by omission

how causality is
formalized (in PESs)?

Overview
• Concurrent Systems

– How to deal with such a complexity?

– CS offers tools: Formal/precise, expressive/general, simple/tractable

• before system exec.: static analysis

• during system exec.: dynamic
analysis / execution profiling

• after an actual exec.: trace analysis
/ fault diagnosis (examining causal
history of error occurrence)

Overview
• Concurrent Systems

– How to deal with such a complexity?

– CS offers tools: Formal/precise, expressive/general, simple/tractable

counterfactual reasoning
as an example of causal reasoning:
c. validation and refutation using

the theory of N. Rescher

• before system exec.: static analysis

• during system exec.: dynamic
analysis / execution profiling

• after an actual exec.: trace analysis
/ fault diagnosis (examining causal
history of error occurrence)

Example: a railway system

• each pair of stations connected by a single track

• Train1 and Train2 move concurrently (at possibly different
speed) between A-B and A-C.

• The transit between B and C must be regulated: no collision!

• between B and C must be in mutual exclusion

A

B C

Train2 Train 1

Example: a railway system

• each pair of stations connected by a single track

• Train1 and Train2 move concurrently (at possibly different
speed) between A-B and A-C.

• The transit between B and C must be regulated: no collision!

• between B and C must be in mutual exclusion

The presence of Train1 at C depends on its previous presence at B

A

B C

Train2 Train 1

Example: a railway system

• each pair of stations connected by a single track

• Train1 and Train2 move concurrently (at possibly different
speed) between A-B and A-C.

• The transit between B and C must be regulated: no collision!

• between B and C must be in mutual exclusion

The presence of Train1 at C depends on its previous presence at B

Train1 on the track AB and Train2 on the track AC are concurrent

activities: they can take place in any order, or at the same time as well

A

B C

Train2 Train 1

Example: a railway system

• each pair of stations connected by a single track

• Train1 and Train2 move concurrently (at possibly different
speed) between A-B and A-C.

• The transit between B and C must be regulated: no collision!

• between B and C must be in mutual exclusion

The presence of Train1 at C depends on its previous presence at B

Train1 on the track AB and Train2 on the track AC are concurrent

activities: they can take place in any order, or at the same time as well

The usage of track BC by Train1 is in conflict with the usage of

the same track by Train2: any of the two, but not both

A

B C

Train2 Train 1

The railway system as a PES
A

B C

Train2
Train1

• Labeled Prime Event Structure <E,<,#,l>
– E is a set of events e (event=a step of computation)
– l(e) action associated to the occurrence of e

– < a partial order representing the causal relation between events:
• e1<e3 e1 is a cause of e3

– # irreflexive and symmetric relation called conflict:
• e3#e4 two alternative behaviors

– axiom: the conflict is hereditary: if e<e’ and e#e’’ then e’#e’’

e1

e5

e3

e2

e6

e4

l(e1) = Train1 in tract AB

l(e2) = Train2 in track AC

l(e3) = Train1 in track BC

l(e4) = Train2 in track BC

l(e5) = Train1 in track BC

l(e6) = Train2 in track BC

The railway system as a PES

• Labeled Prime Event Structure (flow e.s., asymetric conflict,…)

• Petri nets (multiple tokens, open nets, …)

• generalized Labeled Transition Systems

• (unstable) configuration structures

• causal trees

• …

e1

e5

e3

e2

e6

e4

l(e1) = Train1 in tract AB

l(e2) = Train2 in track AC

l(e3) = Train1 in track BC

l(e4) = Train2 in track BC

l(e5) = Train1 in track BC

l(e6) = Train2 in track BC

A

B C

Train2
Train1

The railway system as a PES

• Labeled Prime Event Structure (flow e.s., asymetric conflict,…)

• Petri nets (multiple tokens, open nets, …)

• generalized Labeled Transition Systems

• (unstable) configuration structures

• causal trees

• …

e1

e5

e3

e2

e6

e4

l(e1) = Train1 in tract AB

l(e2) = Train2 in track AC

l(e3) = Train1 in track BC

l(e4) = Train2 in track BC

l(e5) = Train1 in track BC

l(e6) = Train2 in track BC

true-concurrent models

where appears causal talking

??

A

B C

Train2
Train1

The meaning of causality in PESs

• causality is a primitive relation:

e1 causally depends on e2 iff it has been so defined

The meaning of causality in PESs

• causality is a primitive relation:

e1 causally depends on e2 iff it has been so defined

• These models are intended to be used

– not for causal discovery

– but for (formal and automatic) reasoning on top of causal relations,
 e.g. prove that ‘at any time A depends on B and it is concurrent with C’

The meaning of causality in PESs

• causality is a primitive relation:

e1 causally depends on e2 iff it has been so defined

• These models are intended to be used

– not for causal discovery

– but for (formal and automatic) reasoning on top of causal relations,
 e.g. prove that ‘at any time A depends on B and it is concurrent with C’

how to define the causal relation <
so that

the resulting PES agrees
with the system behaviors

?

The meaning of causality in PESs

• instruction n+1 causally depends on instruction n

– ok in sequential code

– but: instruction n = “execute this in parallel with the
following”

– but: runtime reorders instructions to optimize exec.

• many approaches, research issue
• no causal discovery
• debate about how to define a precedence relation

The meaning of causality in PESs

• instruction n+1 causally depends on instruction n

– ok in sequential code

– but: instruction n = “execute this in parallel with the
following”

– but: runtime reorders instructions to optimize exec.

• the (Java) Memory Model defines a partial ordering
on program instructions, the happens-before relation

– runtime reordering must respect the HB-relation

– new parallel hardware (multicore CPUs, GPUs)
requires new memory model

The meaning of causality in PESs

• instruction n+1 causally depends on instruction n

– ok in sequential code

– but: instruction n = “execute this in parallel with the
following”

– but: runtime reorders instructions to optimize exec.

• the (Java) Memory Model defines a partial ordering
on program instructions, the happens-before relation

– runtime reordering must respect the HB-relation

– new parallel hardware (multicore CPUs, GPUs)
requires new memory model

• many approaches, research issue
• no causal discovery
• debate about how to define a precedence relation

?

Causality vs Dependency

• causal relation < encodes any form of dependency (temporal,

spatial, causal,…)

– well suited for the study of independent (i.e. concurrent) actions

– this might be ok: it is simple and effective in many cases

– e.g. independent sets of instructions can be scheduled at the same time

over different CPU cores

– in biological systems causality ≠ necessary conditions (knock-out
causality) hence a formal treatment of causality like that in PESs, must
be specialized

The meaning of causality in philosophy

• puzzling about the nature of the connection from the cause
and the effect

– does the event A cause the event B in the sense of producing it?

– what is the causal mechanism that is responsible for a
phenomenon?

The meaning of causality in philosophy

• puzzling about the nature of the connection from the cause
and the effect

– does the event A cause the event B in the sense of producing it?

– what is the causal mechanism that is responsible for a
phenomenon?

• e.g. in biology: a virus produces flu, and we are interested in
understanding the mechanism of spread of an infection

• in physical processes: production is identified in the exchange of
conserved quantities [Salmon-Dowe]

• in social contexts: production is identified in terms of interaction
between individuals, role of norms and values [Hedstrom-Ylikoski]

The meaning of causality in philosophy

• puzzling about the nature of the connection from the cause
and the effect

most philosophers agree that, in various scientific contexts,

causality involves

a ‘dependence’ component AND a ‘productive’ component

The meaning of causality in philosophy

• puzzling about the nature of the connection from the cause
and the effect

most philosophers agree that, in various scientific contexts,

causality involves

a ‘dependence’ component AND a ‘productive’ component

In computer science in many cases:

causality / dependence / precedence / necessary condition

seem to be used as synonyms

Reasoning above systems

• concurrent systems allows many
different executions:
– A | B can be scheduled in any order

• real models are huge, possibly
unbound

– models are only partially built,
possibly on-the-need

– an exhaustive look is unfeasible.

a property is a proposition that
holds true in any execution of

the system

counterfactuals at work

• 4th July 1997 Mars Pathfinder landed on Mars. The Sojourner rover
started gathering and transmitting data back to Earth

• After few days the spacecraft began experiencing system resets

• NASA engineers spent hours running the replicated system in their
lab attempting to replicate the precise conditions under which they
believed that the reset occurred.

• When they finally reproduced a system reset on the replica, the
analysis of the computation trace revealed a well-known
concurrency bug, i.e. priority inversion.

counterfactuals at work

• 4th July 1997 Mars Pathfinder landed on Mars. The Sojourner rover
started gathering and transmitting data back to Earth

• After few days the spacecraft began experiencing system resets

• NASA engineers spent hours running the replicated system in their
lab attempting to replicate the precise conditions under which they
believed that the reset occurred.

• When they finally reproduced a system reset on the replica, the
analysis of the computation trace revealed a well-known
concurrency bug, i.e. priority inversion.

Rephrase in terms of counterfactual reasoning
on top of the (concurrent) operational model

they looked at (the huge) system
model until they found a behavior

ending up in the error state

• possible runs: A .B . D or B . A . D or (A|B).D or A . C . F or A . C . E

• The (huge) model had not been entirely built hence the error state went
unnoticed

it is dark: Error

A

F

C

B

E

D

take pictures move

Communicate
with Earth

Inspect a specific object

there is light: Ok

actual run

• possible runs: A .B . D or B . A . D or (A|B).D or A . C . F or A . C . E

• The (huge) model had not been entirely built hence the error state went
unnoticed

it is dark: Error

A

F

C

B

E

D

Error explanation:

Since it was dark, if the first Rover’s action had been B, it
would not have entered the error state

take pictures move

Communicate
with Earth

Inspect a specific object

there is light: Ok

actual run

it is dark: Error

A

F

C

B

E

D

take pictures move

Communicate
with Earth

Inspect a specific object

there is light: Ok

Since it was dark, if the first Rover’s action had been B,
it would not have entered the error state

1. it was dark
2. the Rover did not perform B as its first action
3. the Rover performed C
4. the Rover ended up in E
5. The execution of B prevents the execution of E
6. If E is executed, then it is dark and C has been previously executed

fact
fact
fact
fact
law
law

List of the salient beliefs:

A . C . E

actual run

it is dark: Error

A

F

C

B

E

D

take pictures move

Communicate
with Earth

Inspect a specific object

there is light: Ok

Since it was dark, if the first Rover’s action had been B,
it would not have entered the error state

1. it was dark
2. the Rover did not perform B as its first action
3. the Rover performed C
4. the Rover ended up in E
5. The execution of B prevents the execution of E
6. If E is executed, then it is dark and C has been previously executed

fact
fact
fact
fact
law
law

List of the salient beliefs:

A . C . E

actual run assume not 2
then 4 and 5 are incompatible
reject 4: 5 is a law hence it has priority over 4

B is the first action

it is dark: Error

A

F

C

B

E

D

take pictures move

Communicate
with Earth

Inspect a specific object

there is light: Ok

Since it was dark, if the first Rover’s action had been B,
it would not have entered the error state

1. it was dark
2. the Rover did not perform B as its first action
3. the Rover performed C
4. the Rover ended up in E
5. The execution of B prevents the execution of E
6. If E is executed, then it is dark and C has been previously executed

fact
fact
fact
fact
law
law

List of the salient beliefs:

A . C . E

actual run assume not 2
then 4 and 5 are incompatible
reject 4: 5 is a law hence it has priority over 4

B is the first action

The rover does not end up in E

Counterfactual reasoning

• Resher’s account well fits model-based trace analysis
– the different priority levels (Meaning, Existence, Lawfulness, Fact)

boil down to the distinction between facts (“event E occurred”), and
laws (“A and B are independent”)

– with such a clear distinction we can always decide the priority of beliefs,
while in Lewis’ theory the similarity between possible worlds is an open
problem

Counterfactual reasoning

• Resher’s account well fits model-based trace analysis
– the different priority levels (Meaning, Existence, Lawfulness, Fact)

boil down to the distinction between facts (“event E occurred”), and
laws (“A and B are independent”)

– with such a clear distinction we can always decide the priority of beliefs,
while in Lewis’ theory the similarity between possible worlds is an open
problem

• the model can be used to refute a counterfactual by showing a
possible execution violating the c.
– If the first action had been A, it would have ended up in error state

– Show an allowed behavior where the counterfactual is false: A – B – D

– Resher doesn’t refer to c. refutation, but only to proving c. negation
(deinal) If the first action had been A, it would NOT have ended up in error
state

Conclusions

• The formalization of concurrent systems is an interesting area
where to investigate the meaning and the use of causal concepts

• Causal talking is used in many other approaches to concurrent
systems , each one with its peculiarities

Philosophy
of Causality Computer Science

Conclusions

• The formalization of concurrent systems is an interesting area
where to investigate the meaning and the use of causal concepts

• Causal talking is used in many other approaches to concurrent
systems , each one with its peculiarities

• We don’t aim to be general, but

– to point out how tricky and subtle is causal talking, even in
Computer Science

– to build a bridge with the philosophy of causality developed in
other scientific contexts

Philosophy
of Causality Computer Science

THE END

