Stipula: a domain specific language for legal contracts

Silvia Crafa!, Cosimo Laneve?, and Giovanni Sartor>

! University of Padova
2 University of Bologna — Inria FOCUS
3 University of Bologna — European University Institute

Abstract. We illustrate Stipula, a novel domain specific language that can assist lawyers
in programming legal contracts through specific software patterns. The language is based
on a small set of programming abstractions that have a precise correspondence with the
distinctive elements of legal contracts. We overview the language by using a simple rental
contract, we discuss a number of formal methods developed for Stipula, and we hint at its
implementation, that can take advantage of (but is not limited to) a blockchain platform.

1 Introduction

Law is one of the domains that are currently most influenced by the so-called digital revolution.
The main difficulty in computationally dealing with the laws is represented by the complexity of
the legal documents, whose understanding often requires human judgement in order to interpret
the natural language, which is at the same time very expressive and quite ambiguous.

Our research focuses on a specific subset of legal documents, the legal contracts, which define
“those agreements that are intended to give rise to a binding legal relationship or to have some
other legal effect” [4]. According to the principle of freedom of form, which is shared by the
contractual law of modern legal systems, the parties of a legal contract are free to express their
agreement using the language and medium they prefer, including a programming language. When
a programming language is selected, it is necessary that its abstraction level is high enough so
that writing and inspecting a software contract do not require proficiency in computer science.
In fact, a genuine agreement over the content of the contract arises only if the parties (ordinary
citizens, possibly supported by legal experts, e.g. notaries or solicitors) are fully aware of the
computational effects of their code. This is mandatory in legal contracts, in order to reduce or
eliminate applications to courts for either misinterpretations or misunderstandings.

We then put forward a new domain-specific language, called Stipula, that uses few selected,
concise and hopefully intelligible (to lawyers) primitives that have a precise correspondence with
the distinctive elements of legal contracts. Stipula is based on the observation that contractual
agreements basically are protocols that regulate interactions between parties in terms of permis-
sions, obligations, prohibitions, escrows and securities. Accordingly, the formal definition of Stipula
is influenced by the rich theory of concurrency in computer science, which provides a rich toolset of
formal techniques that can be adapted to automatically verify the properties and the correctness
of software contracts.

In this extended abstract we overview Stipula by discussing a paradigmatic example — the
Bike Rental contract — and we outline the corresponding toolset that has been devised for it and
that is either already implemented or is going to be implemented.

2 An overview of Stipula

Stipula is pivoted on few abstractions that capture the distinctive elements of legal contracts,
namely permissions, prohibitions, obligations, fungible and non fungible assets exchanges, and
aleatory or real-world data retrieval. These elements are combined into common legal patterns,
that either establish new obligations, rights, powers and liabilities between the parties, or transfer
rights (such as rights to property) from one party to another, often subject to specific conditions



Bow N

0 N o v

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

stipula Bike_Rental {
assets wallet
fields cost, rentTime, code

agreement (Lender, Borrower, Authority)(rentTime,cost) {
Lender, Borrower : rentTime, cost
} = @Inactive

@Inactive Lender : offer (z){ z — code } = @QPayment

QPayment Borrower : pay [y]
(y == cost) {
y —o wallet
code — Borrower
now + rentTime » @Using {
"End_Reached" — Borrower
wallet —o Lender
} = QEnd
} = @Using

QUsing Borrower : end { wallet —o Lender } = @End // the bike is returned

QUsing Authority : compensation(v)
(v <= 1) {
vxwallet —o wallet, Lender // drain the amount v from wallet, send it to Lender
wallet —o Borrower // drain the rest and sent it to Borrower
} = QEnd // contract’s wallet is empty

Fig. 1. The bike rental contract

and by taking advantage of escrows and securities. The main features of Stipula are illustrated in
Figure 1 by means of a simple contract for renting bikes.

A Stipula contract is an object with assets, fields and functions. Assets and fields are separated
because the formers are linear entities and are handled by ad-hoc operations. A basic function in
Stipula is the agreement that acts as a constructor: it defines the parties that get involved in the
contract and the fields’ values on which (a subset of) parties must reach a consensus. In Figure 1,
the agreement at lines 5-7 expresses that there are three parties — Lender, Borrower and Authority
— and Lender and Borrower agree on the rentTime and on the rental cost. The Authority is
charged to monitor contextual/external constraints, such as obligations of diligent storage and
care, and of litigations and dispute resolution (see lines 23-27 as a simple example). It does not
contribute to setting rentTime and cost. Technically, the agreement is a joint synchronization [3].

Once the parties agree, the contract starts and it goes into a state @Inactive (line 7), expressing
that no rent occurs until a payment is received. States are pervasive in Stipula, which commits to a
state-aware programming style, an approach that is widely used to specify interaction protocols [1].
This is supported by the fact that normative elements of legal contracts are expressed by a strictly
regimented behaviour: permissions and empowerments correspond to the possibility of performing
an action at a certain stage, prohibitions correspond to the interdiction of doing an action, while
obligations are recast into commitments that are checked at a specific time limit. Moreover, the
set of normative elements changes over time, according to the actions that have been done (or
not). Accordingly, Stipula’s function definitions specify state pre and post-conditions, and which
party that is authorized to call that function. As an example, the function offer at line 9 can be
invoked only by the Lender when the contract is in the state @Inactive. In other terms, state pre-
conditions in Bike Rental are programmed so that the agreement fragment is giving permission
to the Lender to invoke offer. And, since no further function is defined at @Inactive, then the
contract is prohibiting other parties to do any action at this stage. The same reasoning in terms
of permissions and prohibitions, encoded by state conditions, holds for all the stages of the rental
protocol, whose life cycle goes through the states @Inactive, @Payment, QUsing, ©@End.

The function offer stores the temporary access code of a bike in the contract’s field code
(this disallows the lender to withdraw from the rental; the code is disclosed to the Borrower after
the payment, see line 14 in the function pay). The corresponding operation — z — code at line 9



— is a standard update, to be distinguished from assets updates that are noted —o. For example,
the payment of the rental performed by the function pay at line 11-19 moves the currency y, sent
by Borrower, to the asset wallet — the operation y — wallet at line 13 —, which is the unique
possible operation for assets parameters. More explicitly, Stipula adopts a different syntax to send
and update values — the curved brackets in offer(z) and z — code — and to transfer and move
linear assets — the square brackets in pay[y] and y —o wallet. This design choice promotes a
safer, asset-aware, programming discipline that reduces the risk of the so-called double spending,
the accidental loss or the locked-in assets. Notice that, in the example, borrower’s money is kept
in the contract as an escrow until the end of the rental (either line 17 or 21). This guarantees
the third-party enforcement of the compensations decided by the Authority in case of litigations
(lines 23-27).

Finally, Stipula uses events to trigger obligations and schedule a future statement that auto-
matically executes a corresponding penalty, if the obligation is not met. In Figure 1, the function
pay, after sending the code to the borrower (line 14), issues an event that will be executed at
the expiration of the renting time (line 15). At that time, if the contract will be in state @Using,
i.e. the borrower is still using the bike, then lines 16-17 will be executed. In this simple example,
the “penalty code” just sends a warning message to Borrower and transfers the rental payment
to Lender. Observe that, even if this does not seem a serious penalty, once the lender has received
the rental money, nothing prevents/discourages him form changing the usage code of the bike, so
that the borrower cannot use it anymore.

3 A toolset of formal methods for Stipula

Since the definition of Stipula draws several concepts from concurrency theory, the corresponding
toolset relies on techniques from this domain.

In [2], the syntax and the semantics of Stipula — as a transition system between states — are
formally defined. Using a bisimulation technique we then develop an observational equivalence that
bears an equational theory of software contracts. In particular, the equivalence identifies contracts
differing for hidden elements, such as names of states, and singles out conditions for equating
contracts that send assets in different order.

On top of observational equivalence, we define two techniques for verifying software contracts’
properties in an automatic way. The first one is a type inference system. Stipula syntax is untyped
to ease the understanding of the language and of the codes to lawyers (in particular), but we
designed an algorithm for deriving types of assets, fields and functions. In particular, the algorithm
recognizes whether an asset is used in a divisible or indivisible way. The second technique verifies
liquidity of software contracts. This property is held by those contracts that do not freeze any
asset forever, i.e. that are not redeemable by any party. Our technique works in two steps: it
labels every function and event with the input-output behaviour on assets. Then (upper bound)
balances of cycles and of computations to final states is computed and a warning message is
emitted in correspondence of every positive difference in balances.

The definition of Stipula is implementation-agnostic: it can be executed either as a centralized
application or it can be run on a distributed system. For simplicity, we are currently developing a
centralized prototype of Stipula because the effort in implementing the corresponding primitives
is low. Actually, blockchain systems have been advocated for digitally encoding legal contracts,
bringing the advantages of a public and decentralized platform, such as a trusted execution that
is trackable and irreversible. While this implementation is in our agenda, we observe that software
contracts can benefit from more efficiency, energy save, and additional privacy of a centralized
implementation. Moreover, a controlled level of intermediation (rather than a blockchain) can
better monitor the contract enforcement, deal with disputes between contract’s parties, and carry
out third-party enforcements.



References

1. Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. J. ACM, 30(2):3237342,
1983.

2. Silvia Crafa, Cosimo Laneve, and Giovanni Sartor. Pacta sunt servanda: legal contracts in Stipula.
Technical report, arXiv:2110.11069, 10 2021.

3. Cédric Fournet and Georges Gonthier. The join calculus: A language for distributed mobile program-
ming. In Applied Semantics, International Summer School, APPSEM 2000, volume 2395 of Lecture
Notes in Computer Science, pages 268—-332. Springer, 2000.

4. Research Group on EC Private Law (Acquis Group) Study Group on a European Civil Code. Principles,

Definitions and Model Rules of European Private Law: Draft Common Frame of Reference (DCFR),
Outline Edition. Sellier, 2009.



