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Drawing on the idea that biochemical pathways can be viewed as deductive processes, Boniolo et al.
([BDDF10, BDPP13, BDPP15]) proposed a suitable fragment of linear logic as a toolbox for molecular
biology. More precisely, in their logical calculus, called Zsyntax, a proof of Γ ` ∆ can be seen as de-
scribing the biochemical path of reactions going from the molecular aggregate represented by Γ to the one
represented by ∆. The underlying biological interpretation determines two main features that distinguish
Zsyntax from the standard linear logic: controlled monotonicity and non commutativity of derivations.

Traditional linear consequence is monotonic with respect to multiplicative conjunction, in the sense that
A ` B always implies A⊗ C ` B ⊗ C for any instantiation of the propositional variables. This is at odds
with the fact that many state transitions of interest in molecular biology are context-sensitive: a reaction
may be inhibited by the presence of a suitable molecular aggregate in the context in which it occurs. There-
fore, the deductive system of Zsyntax ([BDPP13, BDPP15]) considers context-sensitive state transitions: a
transition may take place in every molecular context that satisfies its control condition, which describes all
the contexts that inhibit such transition. In this sense, it is reminiscent of other formalisms like default logic
([Rei87]). A direct consequence of context-sensitivity is non commutativity of derivations, that is Zsyn-
tax proofs crucially depend on the order in which conditional formulas are eliminated. Moreover, control
conditions —expressed in Zsyntax with so-called control sets—are intended to be empirically determined,
i.e., they result from empirical knowledge obtained in the laboratory. Since their content may change over
time as new experimental data is collected, the resulting logical system is “open”: theorems may lose their
status depending on modifications of the empirical knowledge.

In this work we present the development of an automated theorem prover for a fragment of Zsyntax
with Z-conjunction and Z-conditional operators (the Zsyntax counterparts of multiplicative conjunction
and linear implication), which covers both controlled monotonicity, non commutativity and openness of
the system, and is expressive enough to encode all the biochemical pathways considered in [BDDF10,
BDPP15, Bon16], such as the glycolytic pathway from D-Glucose to Fructose-1,6-bisphosphate or the
melanoma network. Both the logical foundation of the theorem prover and the efficient implementation of
the automated deduction procedure draw on existing literature on automated deduction and intuitionistic
linear logic but they require new solutions to deal with nontrivial aspects such as control conditions and the
temporal dimension of transition processes.

A proof search-oriented logical foundation. As a first step, the original natural deduction-style for-
mulation of [BDPP15] is reformulated as a sequent calculus for intuitionistic linear logic enriched with
annotations to represent biochemical features and perform monotonicity control. More precisely, inference
rules rely on annotated sequents of the form Γ;∆ =⇒l C, where Γ and ∆ are, respectively, an unrestricted
context and a linear context ([Cha06, Gir93]), C is a single formula and l is a reaction list. The unrestricted
context is one where the usual structural rules of contraction and weakening are allowed, and provides in
our setting a natural and elegant way to represent the set of biological axioms that are assumed to hold,
and that can be freely used during proof search. Reaction lists are used to deal with the distinctive concept
of control sets: they essentially keep track of the intermediate transitions that were used to transform the
initial context ∆ into the final C, and the intermediate forms assumed by ∆ in the process. In biological
terms, a valid sequent Γ;∆ =⇒l C states that, under the empirical knowledge encoded by Γ, there exists
a biochemical reaction starting from the aggregate ∆ and ending in the aggregate C, with a sequence of
intermediate reactions described by l. Moreover, this reaction is allowed to happen in any surrounding
biochemical context that is compatible with l.
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An analysis of Zsyntax shows that the Z-conditional operator contains an implicit existential quantifica-
tion which is not fine-tuned to a calculus with control sets. Indeed, introducing an element of type A→ B
requires to show that there exists an aggregate that, paired with A, transitions to B, while to prove some-
thing by elimination on an element of type A → B is to prove it without knowledge on which aggregate
was used to establish A → B, thus the contexts of valid deductions are required to inhibit no (currently
known) instance of A→ B. We therefore rely on an alternative, annotated conditional operator, allowing a
deduction to refer to a specific instance of a conditional formula, i.e., a specific biochemical reaction. No-
tice that the annotated conditional introduces a further source of non commutativity in the logical proofs,
since the specific order in which conditionals are introduced is reflected into the annotations. We claim that
a conditional operator annotated with biologically relevant information is well suited to a formal language
for molecular biology, and we observe that the original Z-conditional can be obtained from the newer one
by an explicit existential quantification over the annotations; more details about a preliminary investiga-
tion on the precise relationships between the original and the annotated conditionals can be found in the
extended abstract.

The automated deduction procedure. To implement an efficient automated deduction procedure, we
resort to Chauduri’s idea ([Cha06]) of combining two well-known reasoning techniques for linear logic:
focusing and the inverse method. The main issue here is the non commutativity of Zsyntax derivations:
since the focusing mechanism imposes a precise order in the application of inference rules, many deriva-
tions that would be equivalent in a focused calculus for linear logic are very different under the biochemical,
non-monotonic interpretation of Zsyntax. Therefore we consider a weaker form of focusing that only acts
on multiplicative conjunction and preserves completeness. The resulting backward calculus of derived
rules is then converted to the forward direction, that does not suffer from multiplicative non-determinism
but lacks the goal-orientation typical of backward search. Therefore, still following Chaudhuri’s work, we
use the inverse method to recover goal-orientation in the forward direction, and combine it with focusing
to get a focused inverse method for Zsyntax.

A final important issue is the decidability of the logical calculus, which is nontrivial since the presence
of the unrestricted context—the possibility of freely introducing formulas representing biochemical axioms
into the linear context— suggests a correspondence with the intuitionistic fragment of multiplicative linear
logic with “of course” exponential (MELL) [Lin94]. A precise characterization of the complexity of the
logic of Zsyntax is out of scope, even if it obviously affects the design of an automated theorem prover.
Our implementation uses a simple solution by limiting the number of sequents that can be generated during
the search for a single goal sequent, and signalling a failure when such a limit is reached. This is a common
approach, for instance the llprover[llp] theorem prover for a fragment of linear logic with “of course”
exponential imposes a bound on the number of contractions per derivation path. The search procedure we
employ is a standard Otter loop [Kal01]. As in [Cha06] we represent inference rules as sort of curried
functions, so to treat partially applied rules in a uniform way.

Front-end. The theorem prover is implemented under the design principle that the intended users are
molecular biologists. Therefore its front-end shows almost nothing of the underlying logical complexity
such as reaction lists or any other monotonicity control technicalities. The user simply enters the set
of empirically valid axioms and queries for the validity of a goal sequent, no biochemical annotation is
required and any sequent that is found to logically subsume the goal is returned, regardless of its reaction
list. The only conditionals that we allow to be specified in the goal sequent are those contained in the
unrestricted context of empirical axioms; we instead prevent their addition to the linear context since their
treatment requires the above mentioned existential quantification over the annotated information.

To conclude, we observe that our theorem prover, although relatively simple, is still expressive enough
to encode many biologically interesting cases. All the examples using Zsyntax to encode biochemical
pathways as deductions given in [BDDF10, BDPP15, Bon16] have been easily formalized and checked in
the tool. Finally, the theorem prover is currently used as en experimental tool for biological reasoning by a
group of molecular biologists of Università di Ferrara, Italy.
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