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Abstract

A number of algorithms are available for computing the
simulation relation on Kripke structures and on labelled
transition systems representing concurrent systems. Among
them, the algorithm by Ranzato and Tapparo [2007] has
the best time complexity, while the algorithm by Gentilini
et al. [2003] – successively corrected by van Glabbeek and
Ploeger [2008] – has the best space complexity. Both space
and time complexities are critical issues in a simulation
algorithm, in particular memory requirements are crucial
in the context of model checking when dealing with large
state spaces. We propose here a new simulation algorithm
that is obtained as a space saving modification of the time
efficient algorithm by Ranzato and Tapparo: a symbolic
representation of sets is embedded in this algorithm so
that any set of states manipulated by the algorithm can
be efficiently stored as a set of blocks of a suitable state
partition. It turns out that this new simulation algorithm
retains a space complexity comparable with Gentilini et al.’s
algorithm while improving on Gentilini et al.’s time bound.

1. Introduction

The simulation preorder is widely used both as a be-
havioural relation in concurrent systems [7], [13], [16] and
in model checking as an appropriate abstraction to reduce
state spaces [2], [5]. In particular, in model checking one
is often interested in quotienting the concrete state space
w.r.t. simulation equivalence. More precisely, the simulation
problem consists in computing the greatest simulation re-
lation Rsim among the states of a given Kripke structure
or of a given labelled transition system (LTS), where for
any state s, Rsim(s) gives the set of states that simulate
s. Simulation equivalence is then the equivalence relation
obtained as symmetric reduction of the preorder Rsim,
namely Rsim ∩R−1

sim. Moreover, it is not hard to reduce the
simulation problem for LTSs to that for Kripke sturctures,
and conversely, algorithms working over Kripke structures
can be easily adapted to LTSs.

A simulation algorithm should address both time and
space efficiency issues, since memory requirement is clearly
a critical problem in the context of model checking.

Among the algorithms for computing the simulation pre-
order, the most well known are by Henzinger, Henzinger and
Kopke [12], Bloom and Paige [3], Bustan and Grumberg [4],
Tan and Cleaveland [17], Gentilini, Piazza and Policriti [9]
and Ranzato and Tapparo [14]. Let Σ denote the state space,
� the transition relation and Psim the partition of Σ induced
by simulation equivalence. The algorithm by Ranzato and
Tapparo [14], here denoted by RT, runs in O(|Psim||�|)-
time and O(|Psim||Σ| log |Σ|)-space and is the best algo-
rithm for what concerns time complexity. On the other hand,
the algorithm by Gentilini, Piazza and Policriti [9], that
was originally flawed and has been successively corrected
by van Glabbeek and Ploeger [10], has the best space
complexity O(|Psim|2 + |Σ| log |Psim|). However, Gentilini
et al.-van Glabbeek and Ploeger’s algorithm, here denoted
by GPP-GP, runs in O(|Psim|2|�|)-time and in this respect
is therefore significantly less efficient than RT.

The efficiency of the best available simulation algorithms
RT and GPP-GP actually depends on the fact that they
solve the simulation problem in terms of a so-called coarsest
partition problem, where the simulation relation is sym-
bolically represented by a state partition P and a relation
R ⊆ P ×P among the blocks of P . In these algorithms, the
partition P is an over-approximation of (i.e., coarser than)
simulation equivalence Psim, where two distinct states s and
t that will be eventually determined to be equivalent are
symbolically represented as belonging to a same block of the
partition P instead of being represented separately in an ex-
plicit way. On the other hand, the relation R between blocks
of P represents the simulation relation between blocks of
equivalent states. Space efficiency crucially depends on this
kind of representation, since while a relation on the whole
state space Σ takes O(|Σ|2)-space, a partition-relation pair
〈P,R〉 can be represented in O(|Σ| log |Psim| + |Psim|2)-
space, where |Σ| log |Psim| accounts for the relation that
maps each state to the block of P containing it and |Psim|2
is the space needed for storing the relation R.

Compared to GPP-GP, the algorithm RT relies on a
faster approach to solve a coarsest partition problem. Very
roughly, in any partition refinement iteration, RT stores a
piece of information that is useful for the next iteration,
thus saving the time to recompute it from scratch. On the
other hand, this time efficiency benefit gives rise to the space
efficiency loss of RT w.r.t. GPP-GP, that is triggered by
the need of RT of maintaining this information between



different iterations.
We propose here a simulation algorithm, denoted by SA,

that keeps as much as possible the fast approach of RT and
improves the space complexity of RT. The main point of
SA is to rely on an additional state partition Q to sym-
bolically represent all the concrete information maintained
between different iterations. Interestingly, it turns out that it
is sufficient to define Q as the coarsest partition that refines
P and strongly progresses (in the sense of Sangiorgi and
Walker [15]) to P , meaning that Q is bisimulation stable
for P but possibly not for itself. We show that in SA
such a compact representation of the information needed
for computing the simulation preorder leads to an effective
space saving w.r.t. RT, but has the major drawback of
being time-consuming when updated. More precisely, let Psp

be the coarsest partition refinement of Psim that strongly
progresses to Psim, and let �Psp,Psim denote the existential
abstract transition relation between Psp and Psim, i.e., for
any E ∈ Psp and B ∈ Psim, (E,B) ∈ �Psp,Psim iff
there exist s ∈ E and t ∈ B such that s � t. Then, the
space complexity of the new simulation algorithm SA is
O((|Psim||Psp| + |Σ|) log |Psp|) while its time complexity
is O(|Psim||�| + |Psim|2|�Psp,Psim |)-time. Thus, the cubic
factor |Psim|2|�Psp,Psim | represents the price to pay for
saving space in RT. While in general |Psim| ≤ |Psp|,
we show experimentally (see Section 4) on a significant
set of benchmarks that for relatively large state spaces
|Psim| ≈ |Psp|, since their sizes differ on average by less
than 1% (and are often equal). Hence, on the one hand SA
retains a space complexity comparable with that of GPP-GP
while improving the time complexity of GPP-GP, and, on
the other hand SA improves the space complexity of RT
while significantly worsening the time complexity of RT.
We think that this algorithm SA therefore sheds new light
on the trade-off between time and space efficiency in the
simulation problem.

The rest of the paper is organized as follows. Section
2 present the notation and the algorithms SA is based on.
Section 3 illustrates the new algorithm: it shows an execution
on a simple example, proves its correctness and complexity
bounds, and hints at how to adapt it to LTSs. A final section
reports on the experimental evaluation of SA on a number of
concurrent benchmarks, and discusses the trade-off between
time and space efficiency between the algorithms SA, RT
and GPP-GP.

2. Background

2.1. Basics

Part(Σ) denotes the set of partitions of the state space Σ.
If P1, P2 ∈ Part(Σ) then P1 � P2, i.e. P2 is coarser than
P1 (or P1 refines P2) if ∀B ∈ P1.∃B′ ∈ P2. B ⊆ B′. If
P1, P2 ∈ Part(Σ), P1 � P2 and B ∈ P1 then parentP2

(B)

denotes the unique block in P2 that contains B. For a given
subset S ⊆ Σ called splitter, we denote by Split(P, S) the
partition obtained from P by replacing each block B ∈ P
with its nonempty subsets B ∩S and B rS, where we also
allow no splitting, namely Split(P, S) = P (this happens
precisely when S is a union of some blocks of P ). Given a
relation R ⊆ Σ×Σ, the set R(s) def= {t ∈ Σ | (s, t) ∈ R} is
the R-image of s ∈ Σ. For a partition P ∈ Part(Σ), P (s)
denotes the block of P that contains s.

We consider finite transition systems (Σ, �). The pre-
decessor/successor transformers pre, post : ℘(Σ) → ℘(Σ)
are defined as usual. Notice that both pre and post are
additive operators, namely they preserve unions of sets. We
denote by �∃ and �∀, respectively, the abstract existential
and universal transition relations, i.e., if S1, S2 ⊆ Σ then
S1 �∃ S2 when S1 ∩ pre(S2) 6= ∅ and S1 �∀ S2 when
S1 ⊆ pre(S2). If P,Q ∈ Part(Σ) are two partitions then
�P,Q
∃ ⊆ P × Q denotes the abstract existential transition

relation between the blocks in P and the blocks in Q.
Given a set AP of atomic propositions (of some spec-

ification language), a Kripke structure (Σ, �, `) over AP
consists of a transition system (Σ, �) together with a state
labeling function ` : Σ → ℘(AP). We use the following
notation: for any s ∈ Σ, [s]`

def= {s′ ∈ Σ | `(s) = `(s′)}
denotes the equivalence class of a state s w.r.t. the labeling
`, while P`

def= {[s]` | s ∈ Σ} ∈ Part(Σ) is the partition
induced by `.

2.2. Simulation

A relation R ⊆ Σ × Σ is a simulation on a Kripke
structure K = (Σ, �, `) if for any s ∈ Σ: (1) R(s) ⊆ [s]`;
(2) for any t ∈ Σ, if s � t then R(s) �∀ R(t). R(s)
is called a simulator set of s. The empty relation is a
simulation and simulation relations are closed under union,
so that the largest simulation relation exists. It turns out
that the largest simulation is a preorder relation called
simulation preorder (on K) and denoted by Rsim. Thus,
for any s ∈ Σ, Rsim(s) is the set of all the states that
simulate s. Simulation equivalence ∼sim⊆ Σ × Σ is the
symmetric reduction of Rsim, namely ∼sim

def= Rsim ∩ R−1
sim

and Psim ∈ Part(Σ) denotes the partition corresponding
to the equivalence ∼sim. The relation R is a bisimulation
if both R and R−1 are simulation relations. The largest
bisimulation relation exists and is an equivalence relation
called bisimulation equivalence whose corresponding state
partition is denoted by Pbis ∈ Part(Σ).

Let us recall the notion of strong (bisimulation) pro-
gression [15]. Consider two relations R,S ⊆ Σ × Σ. The
relation R strongly progresses to S when (s, t) ∈ R implies
that (1) if s � v then there exists w such that t � w and
(v, w) ∈ S and (2) if t � w then there exists v such that
s � v and (v, w) ∈ S.

As a running example, consider the Kripke structure in
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Figure 1. Example

Figure 1, where Σ = {1, 2, 3, 4, 5, 6, 7} and the labeling
induces the partition P` = {{1, 2, 3}, {4, 5}, {6, 7}}. In this
example, the simulation equivalence is given by the partition
Psim = {{1, 2, 3}, {4, 5}, {6}, {7}}, and the simulation
preorder is given by Rsim(1) = Rsim(2) = Rsim(3) =
{1, 2, 3}, Rsim(4) = Rsim(5) = {4, 5}, Rsim(6) = {6}
and Rsim(7) = {6, 7}. In Section 3 we will show how this
simulation preorder is computed by the new algorithm SA.

2.3. Simulation Algorithms

The rest of the section illustrates the two simulation
algorithms SA is based on, namely Henzinger, Henzinger
and Kopke’s algorithm HHK [12], and Ranzato and Tap-
paro’s algorithm RT [14], that can be viewed as a symbolic
partition-based version of HHK.

Algorithm HHK. The algorithm HHK [12] iteratively re-
fines it a current relation between states until a fixpoint, i.e.
the simulation preorder Rsim, is reached. In HHK, the cur-
rent relation between states is explicitly represented through
a family of sets of states 〈Sim(s)〉s∈Σ indexed on the whole
state space Σ, where, for any state s ∈ Σ, Sim(s) ⊆ Σ
represents the current set of states that are candidates to
simulate s. Thus, the current family of sets 〈Sim(s)〉s∈Σ is
a preorder relation that approximates from above the simula-
tion preorder, i.e., for any state s, Rsim(s) ⊆ Sim(s). At any
iteration of HHK, some set Sim(s) is selected and pruned so
that the output family of sets provides exactly the simulation
preorder Rsim. The O(|Σ||�|)-time implementation of HHK
relies on the following two key points:
(A) For any state t ∈ Σ, HHK maintains a set of states

Remove(t) ⊆ Σ such that if s � t then Sim(s) is
pruned to Sim(s) r Remove(t).

(B) HHK maintains an integer matrix Count(s, t), indexed
on states s, t ∈ Σ, such that Count(s, t) = |post(s) ∩
Sim(t)|, i.e. Count(s, t) stores the number of transi-
tions from s to some state in Sim(t).

As a consequence, HHK has the serious drawback
of a quadratic space complexity. In fact, HHK needs
O(|Σ|2 log |Σ|)-space because the representation of the
matrix Count takes exactly |Σ|2 log |Σ| space and both
〈Sim(s)〉s∈Σ and 〈Remove(s)〉s∈Σ need |Σ|2 space in the
worst case.

RT(PartitionRelation 〈P, Rel〉){1
forall B ∈ P do Remove(B) := Σ r pre(∪Rel(B));2
initializeCount();3
while ∃B ∈ P such that (Remove(B) 6= ∅) do4

Remove := Remove(B);5
Remove(B) := ∅;6
Bprev := B;7
Pprev := P ;8
P := Split(P, Remove);9
newBlocksP := P r Pprev;10
if newBlocksP 6= ∅ then11

updateRel();12
updateCount();13
updateRemove();14

RemoveList := {D ∈ P | D ⊆ Remove};15
forall C ∈ P such that C ∩ pre(Bprev) 6= ∅ do16

forall D ∈ RemoveList do17
if Rel(C, D) then18

Rel(C, D) := ff ;19
forall s ∈ pre(D) do20

Count(s, C)--;21
if Count(s, C) = 0 then22

Remove(C) :=23
Remove(C) ∪ {s};

}24

Figure 2. RT Simulation Algorithm.

Algorithm RT. The algorithm RT [14] is recalled in
Figure 2. It is obtained as a modification of HHK that
exploits the idea of representing an over-approximation of
the simulation preorder Rsim through a so-called partition-
relation pair 〈P,Rel〉, where P ∈ Part(Σ) is a partition of Σ
and Rel ⊆ P ×P is a partial order (i.e., reflexive, transitive
and antisymmetric) relation on P . In fact, preorders and
partition-relation pairs can be related through a bijection:

(1) A preorder Sim ⊆ Σ × Σ induces the following
partition-relation pair 〈P,Rel〉: s1 ∼P s2 if ∀s ∈
Σ. s1 ∈ Sim(s) ⇔ s2 ∈ Sim(s), and (B1, B2) ∈ Rel
if B2 ⊆ Sim(B1).

(2) Conversely, a partition-relation pair 〈P,Rel〉 induces
the following preorder Sim ⊆ Σ× Σ: (x, y) ∈ Sim if
(P (x), P (y)) ∈ Rel .

Moreover, these two correspondences are one the inverse
of the other. Thus, a family of sets 〈Sim(s)〉s∈Σ that
approximates from above the simulation preorder Rsim is
represented in RT by the corresponding partition-relation
pair 〈P,Rel〉. More precisely, the partition P is maintained
as an over-approximation of (i.e., coarser than) simulation
equivalence Psim, namely Psim � P , so that if s and t are
not in the same block of P then they are not simulation
equivalent. On the other hand, the partial order relation Rel
is maintained as an over-approximation of the simulation
preorder, meaning that if a pair (B1, B2) of blocks of P



does not belong to the relation Rel , then no state s ∈ B1

can be simulated by a state t ∈ B2. The simulation
problem can then be rephrased as the problem of finding the
coarsest partition-relation pair representing the simulation
preorder, that is a pair 〈P,Rel〉 such that (1) P � P`, and
(2) ∀B1, B2 ∈ P. B1 �∃ B2 ⇒ ∪Rel(B1) �∀ ∪Rel(B2).

The input partition-relation pair for RT is determined
by the state labeling `: P` is the input partition while the
identity Rel `

def= {(B, B) | B ∈ P`} is the input relation. RT
iteratively refines the current partition-relation pair 〈P,Rel〉
until a fixpoint is reached, namely when 〈P,Rel〉 represents
a simulation relation.

In RT, the representation based on partition-relation pairs
allows to save both space and time w.r.t. HHK. Intuitively,
this depends on the fact that refining a partition and a
relation between blocks can be more efficient than refining
a relation between states. Consider for instance the example
in Figure 1: the states 1, 2 and 3 have the same label as well
as the same set of simulators, hence they may correctly (and
efficiently) be compacted into a single (abstract) state. More
precisely, storing the partition-relation 〈P,Rel〉 rather that
the relation 〈Sim(s)〉s∈Σ on the whole state space, requires
|Psim|2 space instead of |Σ|2. In particular, Rel is stored
as a resizable boolean matrix so that insert operations take
amortized constant time.

Relying on partition-relation pairs, partition blocks play
the role of (abstract) states, therefore, similarly to HHK,
RT maintains for any block B ∈ P a set of remove states
Remove(B) ⊆ Σ and an integer table Count(s, B), indexed
on states s ∈ Σ and blocks B ∈ P , where Count(s, B)
stores the number of transitions from s to some state in
∪Rel(B), i.e., Count(s, B) =

∑
C∈P,(B,C)∈Rel |post(s) ∩

C|. The space needed to store these two structures is in the
worst case O(|Psim||Σ|) and O(|Σ||Psim| log |Σ|), respec-
tively. Finally, each state must have a pointer to the block
of the partition P containing it. Overall, it turns out that the
space complexity of RT is therefore in O(|Σ||Psim| log |Σ|).
It is worth remarking that we are considering here a space
bit-complexity measure where integers and pointers cannot
be stored in constant space.

As for time complexity, the O(|Psim||�|) time bound of
RT crucially depends on the following properties.
• The Count table allows to perform the test

Count(s, C) = 0 at line 22 in constant time. This
test logically corresponds to check whether s 6∈
pre(∪Rel(C)).

• The update functions at lines 12-14 for the data struc-
tures Rel , Count and Remove after a split opera-
tion work as follows: if a block B is split into two
new blocks B1 and B2 then Rel(Bi) = Rel(B),
Remove(Bi) = Remove(B) and Count(s, Bi) =
Count(s, B).

• If Bi and Bj are two blocks successively selected by
the main while-loop at line 4 such that Bi ⊆ Bj then

Remove(Bi) ∩ Remove(Bj) = ∅. As a consequence
of this property:
� A split operation Split(P,Remove) at line 9 can

be done in O(|Remove |)-time. Thus, the overall
cost of all the split operations is in O(|Psim||Σ|)-
time.

� If some block D is selected at line 17 as a subset
of Remove(B) then for any block C ⊆ B which
is selected at some successive iteration it turns out
that any block E contained in D cannot be selected
at line 17 as a subset of Remove(C). Using this
key property, one can prove that the overall time
complexity of the for-loop at lines 16-22 is in
O(|Psim||�|).

3. A New Simulation Algorithm

As discussed above, RT can be viewed as a symbolic
partition-based version of HHK, where two distinct states
s and t that will be eventually determined to be simulation
equivalent are symbolically represented as belonging to a
same block of a state partition P . However, RT maintains
two data structures that are still explicit: (1) in the family
{Remove(B)}B∈P any Remove(B) ⊆ Σ is represented
as a set of explicit states; (2) the rows of the integer
table {Count(s, B)}s∈Σ,B∈P are explicitly indexed on the
whole space state Σ. We introduce here a new simulation
algorithm that makes RT fully symbolic. The idea is to
use an additional state partition Q in order to symbolically
represent the data structures Remove and Count in terms
of blocks of Q. This allows us to save space in the time
efficient algorithm RT, although this space saving will give
rise to a price to pay in time complexity for maintaining
these fully symbolic data structures. This new simulation
algorithm, called SA, is in Figure 3.

Embedding an additional partition in RT. The basic idea
of the algorithm SA is to maintain an additional state parti-
tion Q, finer than the partition P already maintained by the
algorithm RT, that allows us to have the following invariant
property: for any B ∈ P , any remove set Remove(B) can
be represented as a set of blocks of Q. Of course, such a
partition Q should be as coarse as possible in order to have
this invariant property satisfied.

The algorithm RT initializes and then modifies a remove
set at lines 2, 6 and 22, whereas the updateRemove()
function at line 14 does not affect the remove sets. At line 2,
Remove(B) is initialized as Σrpre(∪Rel(B)). Then, after
selecting a block B ∈ P , RT empties the corresponding
Remove(B) at line 6. Finally, a remove set Remove(C)
can be modified at line 22, where the states that are added
to Remove(C) are those in the set pre(D)rpre(∪Rel(C))
for some D ∈ P . Recall that any set ∪Rel(B) ⊆ Σ is a
union of blocks of P and that the predecessor operator pre



is additive. Thus, in order to represent the remove sets as
sets of blocks of Q, it is enough to have a partition Q such
that any predecessor set pre(C), for some block C ∈ P , is a
union of blocks of Q. This leads to define Q as the coarsest
refinement of P that satisfies this condition. We observe that
the stability of Q w.r.t. the predecessor sets of the blocks of
P precisely corresponds to the notion of strong progression
[15]. Hence, Q can be equivalently defined as the coarsest
partition that refines P and strongly progresses to P . We
denote this partition by sp(P ) so that the invariant property
that we have to guarantee becomes Q = sp(P ). This is
achieved by the algorithm SA as follows:
• The initialization of Q is performed at lines 2 and 3

by iteratively splitting P for all the predecessor sets
pre(B) where B ∈ P . This guarantees exactly that
Q = sp(P ) initially holds.

• On the other hand, the partition P is refined by the
split operation at line 14. Hence, in order to satisfy
the invariant Q = sp(P ) we need to split the current
partition Q for all the predecessor sets pre(C) where
C is a newly generated block of P . This is done by the
for-loop at lines 17-19.

Hence, this allows us to represent any remove set
Remove(B) as a set of blocks of the partition Q. At the end
of SA, the partition Q will be Psp

def= sp(Psim), namely the
coarsest partition refinement of Psim that strongly progresses
to Psim. Therefore, our representation of the remove sets
takes O(|Psim||Psp|) space in the worst case. Since Pbis

strongly progresses to Psim, we have that Pbis � Psp so
that Pbis � Psp � Psim. Hence, |Psim| ≤ |Psp| ≤ |Pbis|. To
the best of our knowledge, there is no theoretical estimate
of |Psp| in terms of |Psim|. As expected, we observed
experimentally (see Section 4) that |Psp| tends to be much
closer to |Psim| rather than to |Pbis|, so that the space
complexity O(|Psim||Psp|) is comparable to O(|Psim|2).

Exploiting abstract transitions. Blocks of the additional
partition Q play the role of symbolic states in SA. Hence,
our second basic idea consists in replacing the semi-
symbolic integer table {Count(s, B)}s∈Σ,B∈P , which takes
O(|Σ||Psim| log |Σ|) space, with a fully symbolic integer ta-
ble {Count(E,B)}E∈Q,B∈P , where rows are indexed over
symbolic states in Q, which takes O(|Psp||Psim| log |Psp|)
space. Let us recall that Count(s, C) stores the number
of transitions from the state s to some state in ∪Rel(C)
and that this information is used crucially in RT at line 22
to check whether s 6∈ pre(∪Rel(C)) in constant time so
that the states in pre(D) r pre(∪Rel(C)) are added to
Remove(C). Notice that in SA, thanks to the representation
of remove sets in terms of blocks of Q, if some state
s ∈ pre(D)rpre(∪Rel(C)) must be added to Remove(C),
then the whole block Q(s) of Q that contains s can be added
to Remove(C). Therefore, instead of adding single states to
Remove(C) we add blocks E of Q and this must be done

SA(PartitionRelation 〈P, Rel〉){1
Q := P ;2
forall C ∈ P do Q := Split(Q, pre(C));3
computePreEE(P);4
computeCount();5
forall B ∈ P do6

forall E ∈ Q do7
if Count(E, B) = 0 then8
Remove(B).append(E);

while ∃B ∈ P such that (Remove(B) 6= ∅) do9
Remove := Remove(B);10
Remove(B) := ∅;11
Bprev := B;12
Pprev := P ;13
P := Split(P,∪Remove);14
newBlocksP := P r Pprev;15
Qprev := Q;16
forall C ∈ newBlocksP do17

Remove(C) := Remove(parentPprev
(C));18

Q := Split(Q, pre(C));19

newBlocksQ := Q r Qprev;20
if newBlocksP 6= ∅ then21

updateRel();22
if newBlocksQ 6= ∅ then23

computePreEE(P);24
updateRemove();25

else26
computePreEE(newBlocksP);27

computeCount();28

RemoveList := {D ∈ P | D ⊆ Remove};29
forall C ∈ P such that C ∩ pre(Bprev) 6= ∅ do30

forall D ∈ RemoveList do31
if Rel(C, D) then32

Rel(C, D) := ff ;33
forall E ∈ preEE(D) do34

Count(E, C)--;35
if Count(E, C) = 0 then36

Remove(C).append(E);37

}38

Figure 3. A New Simulation Algorithm.

exactly when no state in E can reach a state in ∪Rel(C),
i.e., when E ∩ pre(∪Rel(C)) = ∅. Hence, what we need
to store in the symbolic table Count is some information
that allows us to check whether E ∩ pre(∪Rel(C)) = ∅
in constant time. To this purpose, it is enough to store in
Count(E,C) the number of abstract existential transitions
from the block E ∈ Q to some block B ∈ Rel(C): in fact,
with this representation, we have that Count(E,C) = 0
iff E ∩ pre(∪Rel(C)) = ∅. More precisely, for any block
E ∈ Q and C ∈ P ,

Count(E,C) def= |{B ∈ P | B ∈ Rel(C), E �∃ B}|.



The advantage of this choice lies in the time complexity
of computing the table Count . The table Count has to be
updated whenever either P or Q are refined. Unfortunately,
Count has to be recomputed from scratch because the
previous information stored in Count cannot be easily
updated. However, this recomputation of Count can be
done by traversing the abstract existential transition relation
�∃⊆ Q × P between Q and P instead of the concrete
transition relation � ⊆ Σ×Σ and this is the key point that
allows us to save time w.r.t. the GPP-GP algorithm. Thus,
we also store and maintain the abstract transition relation �∃
as predecessor transformer: for any block B ∈ P , preEE (B)
is a list containing all the blocks E in Q such that E�∃B.
This data structure takes O(|�Psp,Psim |) space in the worst
case (notice that |�Psp,Psim | ≤ |�| always holds).

The functions computePreEE and computeCount
that compute, respectively, the data structures preEE and
Count are given in Figure 4. Notice that given a list L
of blocks of P a call computePreEE(L) computes the
predecessor list preEE (B) for all the blocks B ∈ L. A
call to the function computeCount resizes and initializes
Count as a |Q|×|P | integer table of 0 and then computes the
information by traversing the existential predecessors stored
in preEE .

The updateRel function in Figure 4 updates the resiz-
able boolean matrix Rel and works exactly as in RT. It is
called at line 22 each time the partition P is refined. The
updateRemove function in Figure 4 is called at line 25
each time the partition Q is refined and simply replaces in all
the remove lists the old blocks of Q with the corresponding
new blocks of Q that are generated by the splitting operation.
Notice at lines 17-19 that the partition Q can be refined only
when P is refined.

The algorithm at work on an example. We illustrate the
execution of SA showing how it computes the simulation
preorder for the Kripke structure given in Figure 1. The input
is the partition-relation 〈P`,Rel`〉, where the initial partition
corresponds to the state labeling, i.e., P` = {B1, B2, B3}
with B1 = {1, 2, 3}, B2 = {4, 5}, B3 = {6, 7}, and the
initial relation Rel` is the identity function over the blocks
of P`.

The initialization phase computes the partition Q by
refining P` w.r.t. the predecessor sets of every block of
P`. The resulting partition is Q = {E1, E2, E3, E4} with
E1 = {1, 2, 3}, E2 = {4, 5}, E3 = {6}, E4 = {7}, which is
strictly finer than P`. Now, for every block B ∈ P` the set
Remove(B) is built up as the set of blocks E ∈ Q such that
there is no existential transition from E to Rel`(B) = {B}.
This results in the initialization of the following remove sets,
that will be emptied during the iterations of the main loop:

Remove(B1) = {E1, E2, E3, E4}
Remove(B2) = {E2, E4}
Remove(B3) = {E1}

computePreEE(ListOfBlocks L){
forall B ∈ L do preEE(B) := ∅;
forall B ∈ L do

forall y ∈ B do
forall x ∈ pre({y}) do

if (Q(x) unmarked) then
preEE(B).append(Q(x));
mark(Q(x));

forall E ∈ preEE(B) do unmark(E);
}

computeCount(){
Resize the table Count ;
forall E ∈ Q do

forall B ∈ P do Count(E, B) := 0;
forall C ∈ P do

forall E ∈ preEE(C) do
forall B ∈ P such that Rel(B, C) do

Count(E, B)++;

}

updateRel(){
Resize the matrix Rel ;
forall B ∈ newBlocksP do

forall C ∈ P do
Rel(B, C) :=

Rel(parentPprev
(B), parentPprev

(C));

forall C ∈ newBlocksP do
forall B ∈ P r newBlocksP do

Rel(B, C) :=
Rel(parentPprev

(B), parentPprev
(C));

}

updateRemove(){
forall B ∈ P do

forall E ∈ Remove(B) do
replace E with {F ∈ newBlocksQ | F ⊆ E};

}

Figure 4. Auxiliary functions.

The first iteration chooses B1 as pivot, hence the set
Remove(B1) is cleared out and the initial partition is split
w.r.t. the set of states corresponding to

⋃
i=1,..,4 Ei, which

does not modify the partition P`. Moreover, since there is
no block C ∈ P such that C ∩ pre(B1) 6= ∅, also the
relation Rel` is not modified. The second iteration chooses
B2 as pivot; it clears out the set Remove(B2) and splits P`

w.r.t. the set {4, 5, 7} = E2 ∪ E4. The resulting partition
is P ′ = {B1, B2, B

′
3, B

′′
3 }, where the block B3 splits into

B′3 = {7} and B′′3 = {6}. The refinement of the partition P`

induces the refinement of Q into Q′ = {E1, E
′
2, E

′′
2 , E3, E4}

with E′2 = {4}, E′′2 = {5}, and the rearrangement of the



Algorithm Space complexity Time complexity
RT O(|Psim||Σ| log |Σ|) O(|Psim||�|)

GPP-GP O(|Psim|2 + |Σ| log |Psim|) O(|Psim|2|�|)
SA O((|Psp||Psim| + |Σ|) log |Psp|) O(|Psim||�| + |Psim|2|�Psp,Psim |)

Table 1. Space and time complexities.

relation and the remove sets, which are updated as follows:

Rel(B1) = {B1} Remove(B1) = ∅
Rel(B2) = {B2} Remove(B2) = ∅
Rel(B′3) = {B′3, B′′3 } Remove(B′3) = {E1}
Rel(B′′3 ) = {B′3, B′′3 } Remove(B′′3 ) = {E1}

Using B2 as pivot, the lines 30-37 of the second iteration
remove the blocks {D ∈ P ′|D ⊆ {4, 5, 7}} from the set of
simulators of every C ∈ P ′ such that C ∩ pre(B2) 6= ∅. In
particular, this step modifies the simulators of B′′3 as well
as its remove set, which become

Rel(B′′3 ) = {B′′3 } Remove(B′′3 ) = {E1, E3, E4}

The third iteration clears out the set Remove(B′3) and
leaves untouched both the partitions and the relation. A
final iteration clears out the last set Remove(B′′3 ) without
any modification of the partitions and the relation. The final
output is then the following:

Psim = {{1, 2, 3}, {4, 5}, {6}, {7}}

Psp = {{1, 2, 3}, {4}, {5}, {6}, {7}}

Rel({1, 2, 3}) = {1, 2, 3} Rel({4, 5}) = {4, 5}

Rel({6}) = {6} Rel({7}) = {6, 7}

First, notice that in this case Psp ≺ Psim, and Psp is
strictly coarser than Pbis that in this example is the identity
equivalence over states. Moreover, this example shows the
space saving of SA compared to both RT and HHK.
Compared to the concrete algorithm HHK, in SA (as in
RT) the sets of equivalent states as {1, 2, 3} and {4, 5} are
represented as single blocks, saving the cost of maintaining
replicated information. On the other hand, SA obtains a
similar space saving over RT by compactly representing the
remove sets using blocks (of Q) instead of sets of equivalent
states, namely the blocks E1 and E2 rather than {1, 2, 3} and
{4, 5}.

Correctness and Complexity. The correctness of the SA
algorithm is a consequence of the correctness of the RT
algorithm and the properties described above. Analogously
to RT, the input partition-relation pair of SA is determined
by the labeling ` of the Kripke structure, namely the input
partition-relation pair is 〈P`,Rel `〉.

Theorem 3.1 (Correctness). The algorithm SA always
terminates on a finite Kripke structure K and outputs a

partition-relation pair that induces the simulation preorder
Rsim on K.

On the other hand, space and time bounds for SA are as
follows, where we assume, as it is usual in model checking,
that the transition relation � is total (viz., ∀s ∈ Σ.∃t ∈
Σ. s � t) so that |Psp| ≤ |�Psp,Psim | and this allows us to
simplify the time bound.

Theorem 3.2 (Complexity). The algorithm SA runs in
O(|Psim||�|+|Psim|2|�Psp,Psim |)-time and O((|Psp||Psim|+
|Σ|) log |Psp|)-space.

Proof: Space complexity. The algorithm SA relies on
the following data structures, where we consider a space
bit-complexity measure:

• The state partitions Q and P that take, resp., O(|Psp|)
and O(|Psim|).

• Any state in Σ has a pointer to the block of Q contain-
ing it and any block of Q has a pointer to the block of
P containing it. These take, resp., O(|Σ| log |Psp|) and
O(|Psp| log |Psim|).

• The resizable boolean matrix {Rel(B, C)}B,C∈P that
takes O(|Psim|2).

• The remove lists {Remove(B)}B∈P that takes
O(|Psim||Psp| log |Psp|).

• The integer table {Count(E,B)}E∈Q,B∈P that takes
O(|Psp||Psim| log |Psp|).

• The lists of existential predecessors {preEE (B)}B∈P

that takes O(|Psim||Psp| log |Psp|).

Thus, the overall space complexity is in O((|Psp||Psim| +
|Σ|) log |Psp|).

Time complexity. Let us analyze the time complexity of SA.
Let us recall that a splitting operation Split(P, S) can be
implemented by scanning all the states in S and therefore
it takes O(|S|) time. Also, since the transition relation is
supposed to be total, we have that |Q| ≤ |�Q,P |.
• The initializations of Q (line 3), preEE (line 4), Count

(line 5) and Remove (lines 6-8) take time, resp.,
O(

∑
B∈P |pre(B)|) = O(|�|), O(|�|), O(|P ||Q| +

|P ||�Q,P |) and O(|P ||Q|). Thus, the initialization
phase takes O(|�| + |P ||�Q,P |) time, i.e. O(|�| +
|Psim||�Psp,Psim |).

• As shown in [14] for RT, the overall time complexity
of splitting the partition P and updating the resizable
matrix Rel (lines 14 and 22) is O(|Psim||�|).



• As shown in [14] for RT, the overall number of newly
generated blocks by the splitting operation at line 14 is
2(|Psim| − |P`|), namely it is in O(|Psim|). Moreover,
each splitting of the partition Q takes O(|pre(C)|) time
and therefore O(|�|)-time. This is done for all the new
blocks of P so that the overall time complexity of
splitting the partition Q is in O(|Psim||�|)-time.

• Each call to computePreEE takes O(|�|) time. This
function is called at lines 24 and 27 at most O(|Psim|)
time so that the overall time complexity of lines 24
and 27 is in O(|Psim||�|).

• Each call to computeCount takes O(|P ||Q| +
|P ||�Q,P |) time. This function is called at line 28 at
most O(|Psim|) time so that the overall time complexity
of line 28 is in O(|Psim|2|Psp|+ |Psim|2|�Psp,Psim |).

• Each call to updateRemove takes O(|P ||Q|) time.
This function is called at line 25 at most O(|Psim|)
time so that the overall time complexity of line 25 is
in O(|Psim|2|Psp|).

• As shown in [14] for RT, the overall time complexity
of lines 30-31 is in O(|Psim||�|).

• Following the same pattern of proof in [14], one can
show that the overall time complexity of lines 32-
37 is in O(|Psim||�Psp,Psim |). The difference between
lines 18-22 in RT and lines 32-37 in SA lies in the
fact that in RT at line 20 by means of s ∈ pre(D)
we traverse the concrete transition relation � while in
SA at line 34 by means of E ∈ preEE (D) we traverse
instead the abstract existential transition relation �Q,P .

Thus, summing up and recalling that, by totality of
the transition relation, we have that |Psim|2|Psp| ≤
|Psim|2|�Psp,Psim |, it turns out that the time complexity of
SA is in O(|Psim||�|+ |Psim|2|�Psp,Psim |).

Table 1 sums up the time and space complexities for the
simulation algorithms RT, GPP-GP and SA.

Adapting the algorithm to LTSs. The algorithms discussed
so far compute the simulation relation on Kripke structures,
but they can be easily adapted to work over LTSs. The LTS
version of the algorithm RT is given in [1]; the key point is
that for each block B, instead of a single set Remove(B),
the algorithm maintains a family of sets Removea(B)
indexed over the labels a ∈ L of the LTS. Intuitively, the
set Removea(B) collects the states that do not have an a-
transition going into states that are in B nor to states of any
block B′ such that (B, B′) ∈ Rel . Similarly, the Count ta-
ble is generalized to the table {Counta(s, B)}s∈Σ,B∈P,a∈L

whose additional third dimension takes into account the label
of the transitions from s to some state in ∪Rel(B). The
complexity of this algorithm is equal to that of RT, up to a
multiplicative factor corresponding to the cardinality of the
set of labels L.

Combining the approach of [1] with that described in this
section, also the algorithm SA can be adapted to LTSs. The

only additional issue is that, for any B ∈ P and a ∈ L,
any set Removea(B) must still be represented as a set of
blocks of the partition Q. In order to satisfy this invariant it
is sufficient to take a partition Q such that any a-predecessor
set prea(C), for some label a ∈ L and some block C ∈ P ,
is a union of blocks of Q. More precisely, it is sufficient
to iterate the split operations in lines 3 and 19 for any a-
predecessor set prea(C) where a ranges over the set L of
labels.

Alternatively, in order to compute the simulation relation
over the states of an LTS M , it is sufficient to transform M
into a Kripke structure M ′ in such a way that simulation
equivalences on M and M ′ coincide. This transformation
(by Dovier et al. [8]) acts as follows: any labeled transition
s1

a−→ s2 is replaced by two unlabeled transitions s1 → n
and n→ s2, where n is a new state that is labeled with a,
while all the original states in M have the same label. This
labeling provides an initial partition on M ′, that can be used
as input of the original SA algorithm. This approach is used
in the experimental evaluation of SA discussed below.

4. Experimental Evaluation and Discussion

A prototype of the SA algorithm has been developed in
C++ and has been evaluated on a number of concurrent
benchmarks. Our benchmarks include systems taken from
publicly available examples in the VLTS (Very Large Transi-
tion Systems) benchmark suite [18], CWB-NC (The Concur-
rency WorkBench of New Century) [6] and mCRL2 (micro
Common Representation Language 2) [11]. In particular, the
benchmarks taken from CWB-NC have been also used in [9]
for evaluating the GPP-GP algorithm. These models are
represented as labelled transition systems, hence we exploit
the procedure described above to transforms a LTS M into
a Kripke structure M ′, together with an initial partition
Pinit, that preserves simulation equivalence. Notice that this
transformation grows the size of the model as follows: the
number of transitions is doubled and the number of states
of M ′ is the sum of the number of states and transitions of
M .

We ran our implementation of SA on M ′ on an Intel Core
2 Duo 1.86 GHz PC with 2GB RAM running Linux. Table 2
reports the size of the input model, the number of blocks
of Psim, Psp and Pbis, the size of the existential transition
relation �Psp,Psim from Psp to Psim, the execution time in
seconds and the allocated memory in MB (this has been
obtained by means of glibc-memusage). Table 3 provides,
resp., the comparisons between the size of the partition Psp

w.r.t. the size of the state space Σ, the size of Psim w.r.t.
Psp and the size of the abstract transition relation �Psp,Psim

w.r.t. the concrete transition relation �. We may therefore
observe that (1) the average reduction by Psp of the concrete
state space is 66.74%; (2) the average decrease of Psp w.r.t.
Psim is 0.66%, namely the size of Psp tends to be close to



Input Output Experim. Results
Model |Σ| |�| |Pinit| |Psim| |Psp| |Pbis| |�Psp,Psim | Time(s) Space(MB)
ABP-lossy [6] 187 260 4 32 32 32 48 0.003 0.03
ABP-lossy-2 [6] 1821 3280 12 1004 1004 1004 2456 4.264 7.40
ABP-safe [6] 123 148 4 40 40 40 53 0.003 0.03
two-link-netw [6] 8408 13638 4 336 375 448 883 0.670 1.38
cwi 1 2 [18] 4339 4774 27 2401 2401 2401 2701 103.89 3.6
cwi 3 14 [18] 18548 29104 3 123 123 123 122 1.045 1.67
vasy 0 1 [18] 1513 2448 3 21 21 21 32 0.013 0.13
vasy 1 4 [18] 5647 8928 7 87 87 87 118 0.074 0.43
brp [11] 22716 24336 5 591 591 591 648 2.80 3.18
leader [11] 1520 2256 3 47 47 47 46 0.031 0.14
mpsu [11] 202 300 15 145 145 145 229 0.021 0.19
par [11] 209 236 6 58 58 58 67 0.007 0.05
parallel [11] 8000 14000 286 1540 1540 1540 2640 16.158 19.86
tree [11] 2049 2048 3 43 43 43 59 0.014 0.15
cabp [11] 2096 3264 6 210 213 216 411 0.098 0.56
scheduler [11] 32 38 6 30 30 30 36 0.001 0.01
dining-phil-4 [11] 418 600 21 418 418 418 600 0.338 1.64
dining-phil-5 [11] 1642 2500 26 1642 1642 1642 2500 24.463 23.02

Table 2. Results of the experimental evaluation.

Comparison
Model % |Psp|/|Σ| % |Psim|/|Psp| % |�Psp,Psim |/|�|
ABP-lossy [6] 17.11 100.00 18.46
ABP-lossy-2 [6] 55.13 100.00 74.88
ABP-safe [6] 32.52 100.00 35.81
two-link-netw [6] 4.46 89.60 6.47
cwi 1 2 [18] 55.34 100.00 56.58
cwi 3 14 [18] 0.66 100.00 0.42
vasy 0 1 [18] 1.39 100.00 1.31
vasy 1 4 [18] 1.54 100.00 1.32
brp [11] 2.60 100.00 2.66
leader [11] 3.09 100.00 2.04
mpsu [11] 71.78 100.00 76.33
par [11] 27.75 100.00 28.39
parallel [11] 19.25 100.00 18.86
tree [11] 2.10 100.00 2.88
cabp [11] 10.16 98.59 12.59
scheduler [11] 93.75 100.00 94.74
dining-phil-4 [11] 100.00 100.00 100.00
dining-phil-5 [11] 100.00 100.00 100.00
Average 33.26 99.34 35.21

Table 3. Experimental comparison.

that of simulation equivalence Psim; (3) the average decrease
of the number of arcs of �Psp,Psim w.r.t. � is 64.79%, i.e.
|�Psp,Psim | ≈ |�|/3.

This suggests us the following comparison of the theoret-
ical time and space complexities between SA on one side
and RT and GPP-GP on the other side, that we summarized
above in Table 1. The time complexity of SA may signifi-
cantly improve the time complexity of GPP-GP as much as
the size of the abstract transition relation �Psp,Psim is smaller
than that of the concrete transition relation �. However, the
time complexity of RT still continues to be the best. As far
as space complexity is concerned, the space complexity of
SA may be only moderately worse than the space complexity
of GPP-GP because the size of |Psp| ≈ |Psim|. On the other
hand, the space complexity of SA may significantly improve

the space complexity of RT when Psp provides a notable
reduction of the concrete state space Σ.
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