
Hereditary history-preserving bisimilarity:
logics and automata

Paolo Baldan, Silvia Crafa

University of Padova

Abstract. We study hereditary history-preserving (hhp-) bisimilarity,
a canonical behavioural equivalence in the true concurrent spectrum, by
means of logics and automata. We first show that hhp-bisimilarity on
prime event structures can be characterised in terms of a simple logic
whose formulae just observe events in computations and check their exe-
cutability. The logic suggests a characterisation of hhp-bisimilarity based
on history-dependent automata, a formalism for modelling systems with
dynamic allocation and deallocation of resources, where the history of
resources is traced over time. Prime event structures can be naturally
mapped into history-dependent automata in a way that hhp-bisimilarity
exactly corresponds to the canonical behavioral equivalence for history-
dependent automata.

1 Introduction

Behavioural equivalences play a key role in the formal analysis of system speci-
fications. They can be used to equate specifications that, although syntactically
different, denote the same system behaviour, or to formally state that a system
enjoys a desired property. A number of behavioural equivalences have been de-
fined which take into account different concurrency features of computations. In
particular, true-concurrent equivalences (see, e.g., [1]) are a natural choice when
one is interested in analysing properties concerning the dependencies between
computational steps (e.g. causality). They can be convenient also because they
provide some relief to the so-called state-space explosion problem in the analysis
of concurrent systems (see, e.g., [2]).

Hereditary history preserving (hhp-)bisimilarity [3], the finest equivalence
in the true concurrent spectrum in [1], has been shown to arise as a canonical
behavioural equivalence when considering partially ordered computations [4].
True-concurrent models, such as Winskel’s event structures [5], often describe
the behaviour of systems in terms of events in computations and dependency
relations between such events, like causal dependency or concurrency. Hhp-
bisimilarity then precisely captures the interplay between branching, causality
and concurrency. Roughly, hhp-bisimilarity requires that events of one system
are simulated by events of the other system with the same causal history and
the same concurrency. The last constraint is often captured by means of a sort
of backtracking condition: for any two related computations, the computations

obtained by reversing a pair of related events, must be related too. As a conse-
quence, hhp-bisimilarity, together with other variants of forward-reverse equiv-
alences, are considered appropriate behavioural equivalences for systems with
reversible computations [6,7,8].

Recently, the logical characterisation of hhp-bisimilarity has received a re-
newed interest and corresponding event-based logics have been introduced, where
formulae include variables which can be bound to events. The logic L in [9] explic-
itly predicates on relations between events, namely causality and concurrency.
More precisely, L includes two main operators. The formula (x, y < a z)ϕ is
satisfied in a state when a a-labelled future event exists, which causally depends
on the event bound to x, and is independent from the event bound to y; such
an event is bound to variable z and then ϕ is required to hold. In general, x
and y can be replaced by tuples of variables. The formula 〈z〉ϕ says that the
event bound to z is enabled in the current state, and after its execution ϕ holds.
Instead, the logic EIL (Event Identifier Logic) in [10] relies on a backward step
modality: the formula 〈〈x〉 holds when the event bound to x can be undone and
then ϕ holds. This is similar to the past tense or future perfect modality studied
in [4,11,3,12].

In this paper we provide a logical characterisation of hhp-bisimilarity in terms
of a simple logic L0, a core fragment of L, which only predicates about existence
and executability of events, without explicitly referring to their dependencies.
Formally, the operator (x, y < a z)ϕ is replaced by (a z)ϕ. Syntactically, L0 is
also a subset of EIL, but it is different in spirit (as quantification is performed
only on future events and it does not include a backward modality). In particular,
although all such logics characterise hhp-bisimilarity, the modalities of EIL and
L are not interdefinable.

The fact that the logic L0 allows one to observe and track events in
computations suggests a connection with history-dependent automata (HD-
automata) [13], a computational formalism for modelling systems with dynamic
allocation and deallocation of resources, tracing the history of such resources over
time. Indeed, by considering events in computations as resources manipulated
by automata, we identify a class of HD-automata, called HDE-automata, where
prime event structures (pess) can be naturally mapped, in a way that the canon-
ical behavioural equivalence for HD-automata coincides with hhp-bisimilarity
over pess. More precisely, transitions of HDE-automata correspond to planning
an activity or event (which could be not immediately executable due to unsatis-
fied dependencies with other activities), executing a previously planned activity
and dismissing a planned activity (without executing it). We provide an en-
coding of any prime event structure E into an HDE-automaton H(E) such that
two prime event structures are hhp-bisimilar if and only if the corresponding
HDE-automata are bisimilar. The proof relies on a logical characterisation of
bisimilarity on HDE-automata in terms of a logic Lhd, a slight variant of the
logic L0, which adds an operator for deallocation, i.e., for forgetting an event
planned and not yet executed. Although developed for a specific class of HD-
automata, in our opinion the logical characterisation of HD-bisimilarity has an

2

interest which goes beyond the specific application in this paper and deserves to
be further investigated.

Moreover, our characterisation of hhp-bisimilarity in terms of HD-automata,
besides shedding light on the nature of this behavioural equivalence, can be
helpful in studying the decidability boundary for hhp-bisimilarity, which is un-
decidable for many basic models of concurrency, even in the finite state case (e.g.,
it is known that hhp-bisimilarity is undecidable for safe finite Petri nets [14]).
Indeed, the characterisation in terms of HD-automata naturally suggests effec-
tive approximations of hhp-bisimilarity, which can be obtained by establishing
bounds k on the distance in the future of planned events. Equivalence of pess
under k-hhp-bisimilarity can then be reduced to HD-bisimilarity of finite HDE-
automata. This result can in turn be used for developing algorithms for checking
such approximations in the case of concrete formalisms. The detailed study of
effective approximations of hhp-bisimilarity is posponed to the extended version
of the paper [15]. We focus here on an insightful investigation about the logical
and the automata-theoretic characterizations of hhp-bisimilarity.

The rest of the paper is structured as follows. In Section 2 we review the
definition of hhp-bisimilarity over prime event structures. In Section 3 we define
the logic L0 and show that hhp-bisimilarity is the logical equivalence induced by
logic L0 on (image finite) pess. In Section 4 we study HDE-automata: the class of
HD-automata operating over resources which can be seen as activities or events
in a computation. In Section 5 we provide a bisimilarity-preserving encoding of
prime event structures into HDE-automata. In Section 6 we comment on some
related work and outline future research. Most proofs are omitted due to space
limitations and made available in an Appendix.

2 Event Structures and hhp-Bisimilarity

Prime event structures [5] are a widely known model of concurrency. They de-
scribe the behaviour of a system in terms of events and dependency relations
between such events. Throughout the paper E is a fixed countable set of events,
Λ a set of labels ranged over by a, b, c . . . and λ : E→ Λ a labelling function.

Definition 1 (prime event structure). A (Λ-labelled) prime event structure
(pes) is a tuple E = 〈E,≤,#〉, where E ⊆ E is the set of events and ≤, # are
binary relations on E, called causality and conflict respectively, such that:

1. ≤ is a partial order and dee = {e′ ∈ E | e′ ≤ e} is finite for all e ∈ E;
2. # is irreflexive, symmetric and hereditary with respect to ≤, i.e., for all

e, e′, e′′ ∈ E, if e#e′ ≤ e′′ then e#e′′.

In the following, we will assume that the components of an event structure
E are named as in the definition above, possibly with subscripts.

Definition 2 (consistency, concurrency). Let E be a pes. We say that e, e′ ∈
E are consistent, written ea e′, if ¬(e#e′). A subset X ⊆ E is called consistent
if ea e′ for all e, e′ ∈ X. We say that e and e′ are concurrent, written e || e′, if
ea e′ and ¬(e ≤ e′), ¬(e′ ≤ e).

3

Causality and concurrency will be sometimes used on set of events. Given
X ⊆ E and e ∈ E, by X < e we mean that for all e′ ∈ X, e′ < e. Similarly
X || e, resp. X a e, means that for all e′ ∈ X, e′ || e, resp. e′a e.

The concept of (concurrent) computation for event structures is captured by
the notion of configuration.

Definition 3 (configuration). Let E be a pes. A (finite) configuration in E is
a (finite) consistent subset of events C ⊆ E closed w.r.t. causality (i.e., dee ⊆ C
for all e ∈ C). The set of finite configurations of E is denoted by C(E).

Observe that the empty set of events ∅ is always a configurations, which can
be interpreted as the initial state of the computation. Hereafter, unless explicitly
stated otherwise, all configurations will be assumed to be finite.

Definition 4 (residual). Let E be a pes. For a configuration C ∈ C(E), the
residual of E after C, is defined as E [C] = {e | e ∈ E \ C ∧ C a e}.

Concurrent behavioural equivalences can then be defined on the transition sys-
tem where configurations are states.

Definition 5 (transition system). Let E be a pes and let C ∈ C(E). Given

e ∈ E [C], if C ∪ {e} ∈ C(E) then we write C
e−→ C ∪ {e}.

A pes E is called image finite if for every C ∈ C(E) and a ∈ Λ, the set of

events {e ∈ E | C e−→ C ′ ∧ λ(e) = a} is finite. All the pess considered in this
paper will be assumed to be image finite, a standard requirement for getting a
logical characterisation of a behavioural equivalence based on a finitary logic.

Several equivalences have been defined in order to capture the concurrency
features of a system to different extents (see, e.g., [1]). Hereditary history-
preserving (hhp-)bisimilarity arises as a canonical equivalence for pess [4] which
fully takes into account the interplay between causality, concurrency and non-
determinism of events.

We need to fix some further notation. A consistent subset X ⊆ E of events
will be often seen as a pomset (partially ordered multiset) (X,≤X , λX), where
≤X and λX are the restrictions of ≤ and λ to X. Given X,Y ⊆ E we will write
X ∼ Y if X and Y are isomorphic as pomsets and write f : X

∼→ Y for a pomset
isomorphism.

Definition 6 (posetal product). Given two pess E1, E2, the posetal product
of their configurations, denoted C(E1)×̄C(E2), is defined as

{(C1, f, C2) | C1 ∈ C(E1), C2 ∈ C(E2), f : C1
∼→ C2}

A subset R⊆C(E1)×̄C(E2) is called a posetal relation. R is downward closed
when for any (C1, f, C2), (C ′1, f

′, C ′2) ∈ C(E1)×̄C(E2), if (C1, f, C2) ⊆ (C ′1, f
′, C ′2)

pointwise and (C ′1, f
′, C ′2) ∈ R then (C1, f, C2) ∈ R.

4

Given a function f : X1 → X2 we will use the notation f [x1 7→ x2] : X1 ∪
{x1} → X2 ∪ {x2} for the function defined by f [x1 7→ x2](x1) = x2 and f [x1 7→
x2](z) = f(z) for z ∈ X1 \ {x1}. Note that this can represent an update of f ,
when x1 ∈ X1, or an extension of its domain, otherwise.

Definition 7 ((hereditary) history-preserving bisimulation). A history-
preserving (hp-)bisimulation is a posetal relation R ⊆ C(E1)×̄C(E2) such that if

(C1, f, C2) ∈ R and C
e1−→ C ′1 then C2

e2−→ C ′2, with (C ′1, f [e1 7→ e2], C ′2) ∈ R, and
vice versa. We say that E1, E2 are history preserving (hp-)bisimilar and write
E1 ∼hp E2 if there exists a hp-bisimulation R such that (∅, ∅, ∅) ∈ R.

A hereditary history-preserving (hhp-)bisimulation is a downward closed hp-
bisimulation. When E1, E2 are hereditary history-preserving (hhp-)bisimilar we
write E1 ∼hhp E2.

3 A Logic for hhp-Bisimilarity

In this section we introduce the syntax and the semantics of a logic L0, used to
characterise hhp-bisimilarity. The formulae of L0 predicate about existence and
executability of events in computations. As already mentioned, L0 is a small
core of the logic L in [9], where the operators does not explicitly refer to the
dependencies between events. Still L0 is sufficiently powerful to capture such
dependencies and its logical equivalence is the same as that of the full logic in
that they both correspond to hhp-bisimilarity.

Definition 8 (syntax). Let Var be a countable set of variables ranged over by
x, y, z.... The logic L0 over the set of labels Λ is defined by the following syntax:

ϕ ::= T | ϕ ∧ ϕ | ¬ϕ | (a z)ϕ | 〈z〉ϕ

The operator (a z) acts as a binder for the variable z. Accordingly, the free
variables of a formula ϕ are defined as follows:

fv((a z)ϕ) = fv(ϕ) \ {z} fv(〈z〉ϕ) = fv(ϕ) ∪ {z}

fv(T) = ∅ fv(¬ϕ) = fv(ϕ) fv(ϕ1 ∧ ϕ2) = fv(ϕ1) ∪ fv(ϕ2)

Formulae are considered up to α-conversion of bound variables. The logic L0

is interpreted over pess. In particular, the satisfaction of a formula is defined
with respect to pairs (C, η), where C ∈ C(E) is a configuration representing the
state of the computation, and η : Var → E is a function, called environment,
that maps the free variables of ϕ to events.

Since, intuitively, a formula ϕ predicates about possible future computations,
the environment should map variables to events consistent with C and pairwise
consistent. The first condition ensures that the formula actually predicates about
events that belong to the future (residual) of the current state. The second con-
dition prevents the direct observation of conflicts, accordingly to the observation
power of hhp-bisimilarity (Some examples are provided below, after defining the
semantics.) Formally, this is captured by the notion of legal pair. Given a pes E ,

5

b d

a c a b

b a

a b
E1 E2 E3

Fig. 1. The pes E1 for a.b+ c.d, E2 for a | b and E3 for a.b+ b.a

let EnvE denote the set of environments, i.e., of functions η : Var → E. Given
a formula ϕ in L0, a pair (C, η) ∈ C(E) × EnvE is legal for ϕ if C ∪ η(fv(ϕ)) is
a consistent set of events. We write lpE(ϕ) for the set of legal pairs for ϕ. We
omit the subscripts and write Env and lp(ϕ) when the pes E is clear from the
context.

Definition 9 (semantics). Let E be a pes. The denotation of a formula ϕ,
written {|ϕ|}E ∈ 2C(E)×Env is defined inductively as follows:

{|T|}E = C(E)× EnvE

{|ϕ1 ∧ ϕ2|}E = {|ϕ1|}E ∩ {|ϕ2|}E ∩ lp(ϕ ∧ ψ)

{|¬ϕ|}E = lp(ϕ) \ {|ϕ|}E

{|(a z)ϕ|}E = {(C, η) | ∃e ∈ E[C].ea η(fv(ϕ) \ {z})
λ(e) = a ∧ (C, η[z 7→ e]) ∈ {|ϕ|}E}

{|〈z〉 ϕ|}E = {(C, η) | C η(z)−−−→ C′ ∧ (C′, η) ∈ {|ϕ|}E }

When (C, η) ∈ {|ϕ|}E we say that the pes E satisfies the formula ϕ in the con-
figuration C and environment η : Var → E, and write E , C |=η ϕ. For closed
formulae ϕ, we write E |= ϕ, when E , ∅ |=η ϕ for some η.

In words, the formula (a z)ϕ holds in (C, η) when in the future of the con-
figuration C there is an a-labelled event e consistent with the events already
observed (which are bound to free variables in ϕ) and binding such event e to
the variable z, the formula ϕ holds. The formula 〈z〉ϕ states that the event
bound to z is currently enabled, hence it can be executed producing a new con-
figuration which satisfies the formula ϕ. An environment η is a total function,
but it can be shown that the semantics of a formula ϕ depends only on the value
of the environment on the free variables fv(ϕ). In particular, for closed formulae
the environment is irrelevant. Moreover, it can be easily seen that α-equivalent
formulae have the same semantics.

As an example, consider the pes E1 in Fig. 1 corresponding to the CCS pro-
cess a.b + c.d, where dotted lines represent immediate conflict and the causal
order proceeds upwards along the straight lines. The empty configuration sat-
isfies the formula ϕ = (bx)T, i.e., E1 |= ϕ since in the future of the empty
configuration there is a b-labelled events. Instead E1 6|= (bx)〈x〉T since such
event is not immediately executable.

Observe also that E1 |= (bx)T ∧ (d y)T, since there are two possible (incom-
patible) future computations starting from the empty configuration that contain,

6

b

a

b b

a a
E4 E5

Fig. 2. The pes E4 for a.b, E5 for a.b+ a.b.

respectively, a b-labelled and a d-labelled event. For a similar reason, we have
also E1 |= (ax)〈x〉T ∧ (c y)〈y〉T. Finally observe that E1 |= (ax)(c y)T since in
this case, after binding the variable x to the a-labelled event, we can bind y to
the c-labelled event since x is not free in the remaining subformula T.

As a further example, consider the pess E2 and E3 in Fig. 1, corresponding
to the CCS processes a | b and a.b+ b.a, respectively. They are distinguished by
the formula (ax)(b y)(〈x〉 〈y〉T∧〈y〉 〈x〉T) that states that there are two events,
labelled a and b, that can be executed in any order. In a similar way, the processes
a | a and a.a are distinguished by the formula (ax)(a y)(〈x〉 〈y〉T ∧ 〈y〉 〈x〉T).

On the other hand, the pess E4 and E5 in Fig. 2, corresponding to the pro-
cesses a.b and a.b + a.b, are hhp-equivalent; accordingly, they both satisfy the
formula ϕ1 = (ax)(a y)T and falsify ϕ2 = (ax)(a y)〈x〉 〈y〉T. In particular, for
E4 to satisfy ϕ1 both x and y must be bound to the unique a-labelled event.
These pess can be also used for clarifying the need of restricting to legal pairs
in the semantics. Consider the formula ϕ = (ax)(b y)〈x〉 ¬〈y〉T. While, clearly,
E4 6|= ϕ, one could believe that E5 |= ϕ since after binding the variable x to the
right a-labelled event, we could think of binding y to the left b-labelled event,
thus satisfying the remaining subformula 〈x〉 ¬〈y〉T. However, this is not correct:
since x occurs free in the subformula 〈x〉 ¬〈y〉T, the event bound to y must be
consistent to that bound to x in order to lead to a legal pair, hence the only
possibility is to choose the b-labelled event caused by that bound to x.

Roughly speaking, the logic L0 observes conflicting futures, as long as con-
flicting events are kept separate and not combined in a computation. This cor-
responds to the observation power of hhp-bisimilarity, which explicitly captures
the interplay between branching and causality/concurrency without explicitly
observing conflicts. We observe that the fragment L0 is less expressive than the
full logic L. For instance, it can be shown that the formula (ax)(x < a y)T in
L, which states the existence of two causally dependent a-labelled events at ar-
bitrary causal distance, is not encodable by a finite formula of L0. Still, logics
L0 is sufficiently expressive to capture the same logical equivalence of L, i.e.,
hhp-bisimilarity.

In the following we will denote lists of variables like x1, ..., xn by x.

Theorem 1 (hhp-bisimilarity, logically). Let E1, E2 be two pess. Then
E1 ∼hhp E2 iff E1 and E2 satisfy the same closed formulae in L0.

Proof (Sketch). The only if part follows from [9, Theorem 1], since the logic L0

is a fragment of L. For the converse implication, fix a surjective environment
η1 : Var → E1. Then given an event e ∈ E1, we let xe denote a chosen variable

7

such that η1(xe) = e. For a configuration C1 = {e1, . . . , en} we denote by XC1

the set of variables {xe1 , . . . , xen}.
Then one can prove that the posetal relation R ⊆ C(E1)×̄C(E2) defined by:

R = { (C1, f, C2) | ∀ϕ ∈ L. fv(ϕ) ⊆ XC1

(E1, ∅ |=η1 ϕ iff E2, ∅ |=f◦η1 ϕ) } (1)

is a hhp-bisimulation. Above, given an isomorphism of pomsets f : C1 → C2,
we denote by f ◦ η1 an environment such that f ◦ η1(x) = f(η1(x)) for x ∈ XC1

and f ◦ η1(x) has any value, otherwise (the semantics of ϕ only depends on
the value of the environment on fv(ϕ) and fv(ϕ) ⊆ XC1

by construction). Note
that R relates two configurations C1 and C2 when the same formulae ϕ are
satisfied by the empty configuration (rather than by the configurations C1 and
C2 themselves). The formulae ϕ considered in (3) refer to events in C1 and in
C2 by means of their free variables. This is according to the intuition that hhp-
bisimilarity does not only compare the future of two configurations but also their
alternative evolutions, that is evolutions from the past. ut

Similarly to what has been done in [9] for the full logic L, one can identify
fragments of L0 that characterise various other behavioural equivalences in the
true concurrent spectrum [1]. First of all notice that the standard Hennessy-
Milner logic can be recovered as the following fragment of L0, where whenever
we state the existence of an event we are forced to execute it:

ϕ ::= T | ϕ ∧ ϕ | ¬ϕ | (ax)〈x〉ϕ

Note that in such a fragment the variable x is irrelevant, and the induced logical
equivalence is (interleaving) bisimilarity [16]. Moreover, along the lines of [9,
Theorem 4], one can prove that history-preserving bisimilarity (Definition 7)
corresponds to the logical equivalence induced by the following fragment of L0:

ϕ ::= T | ϕ ∧ ϕ | ¬ϕ | 〈|x,y < a z|〉ϕ

where x, y are lists of variables and 〈|x,y < a z|〉ϕ denotes the formula

(a z)(〈x〉 〈z〉 〈y〉T ∧ 〈x〉 〈y〉T ∧
∧

x′⊂x

¬〈x′〉 〈z〉T ∧ ϕ). (2)

Above, given a list of variables x = x1 . . . xn the abbreviation 〈x〉 is used as
a shortcut for 〈x1〉 . . . 〈xn〉 . Intuitively, the formula (2) states the existence of
an a-labelled event, which is bound to z, that causally depends on the events
bound to x and that is concurrent with the events bound to y. In fact, z can be
executed only after x, while y can be executed after or before z. The event is
required to be immediately executable, and once executed, formula ϕ holds. For
the above to work, the events bound to x and y must form a ≤-closed set, i.e.,
dη(w)e ⊆ η(x ∪ y) for any w ∈ x ∪ y. More formally, it is not difficult to prove
that {|〈|x,y < a z|〉ϕ|}E is

{〈C, η〉 | ∃e ∈ E [C]. ea η(fv(ϕ) \ {z}) ∧
C

e−→ C ∪ {e} ∧ λ(e) = a ∧
η(x) < e ∧ η(y) || e ∧ η(x ∪ y) ≤-closed ∧
〈C ∪ {e}, η[z 7→ e]〉 ∈ {|ϕ|}E}

8

Incidentally, this derived operator illustrates how L0 formulae can be used to
express causal (in)dependence between events. Analogously, fragments inducing
pomset and step bisimilarity can be identified.

4 History-Dependent automata over events

The logic L0 for hhp-bisimilarity, singled out in the previous section, allows one
to trace events in computations and check their executability. This hints at a
connection with HD-automata, a generalised model of automata that has been
indeed introduced to describe systems with dynamic allocation and deallocation
of resources, tracing the history of such resources over time [13]. In this section
we lay the bases of such a connection by identifying a class of HD-automata
where pess can be naturally mapped and providing a logical characterisation of
bisimilarity for this class of automata in terms of a mild extension of L0.

4.1 HDE-automata and HD-bisimilarity

HD-automata extend ordinary automata in order to manipulate resources gener-
ically identified as names. The allocation of a resource is modelled by the gener-
ation of a fresh name and the usage of a resource in a transition is modelled by
observing the corresponding name in the transition label. A resource is implicitly
deallocated when the corresponding name is no longer referenced. Concretely,
with respect to an ordinary automaton, states of an HD-automaton are enriched
with a set of local names corresponding to the resources that are active at that
states. Transitions, in turn, modify these sets and explicitly trace the correspon-
dence between the local names of the source and the target states.

We introduce a class of HD-automata, referred to as HDE-automata, where
pess will be naturally encoded. In HDE-automata the names can be thought
of as activities or events in a computation. HDE transitions are of three kinds:
plan(e) , exec(e) , drop(e) which can be interpreted, respectively, as planning an
activity or event e (which might be not immediately executable due to unsatisfied
dependencies with other activities), executing a previously planned activity and
dismissing a planned activity (without executing it).

Formally, as before, we fix a countable set E whose elements are thought of
as activities, labelled by λ : E → Λ. Given two subsets A1, A2 ⊆ E, a labelled
bijection, denoted δ : A1

∼→ A2, is a bijection such that for any e1 ∈ A1, it holds
that λ(e1) = λ(δ(e1)). Let R(E) be the set of renamings, i.e., label preserving
partial injective functions ρ : E → E. Given ρ ∈ R(E), we write dom(ρ) and
cod(ρ) for the domain and codomain of ρ, respectively. The set of labels for the
automata transitions is L(E) = {plan(e) , exec(e) , drop(e) | e ∈ E}.

Definition 10 (HDE-automata). A HDE-automaton H is a tuple
〈Q,n, q0,→〉 where Q is a set of states, n : Q → 2E associates with each
state a set of activities and →⊆ Q × L(E) × R(E) × Q is a transition relation,

written q
`−→ρ q

′ for(q, `, ρ, q′) ∈→, such that dom(ρ) ⊆ n(q′) and cod(ρ) ⊆ n(q)
(hence ρ is a partial injection n(q′)→ n(q)) and

9

n(q1)

∼δ
��

n(q′1)
ρ1oo

∼δ′
��

n(q2) n(q′2)
ρ2
oo

Fig. 3. HD-bisimulation.

– if q
plan(e)−−−−−→ρ q

′ then cod(ρ)=n(q), dom(ρ)=n(q′) \ {e};
– if q

exec(e)−−−−−→ρ q
′ or q

drop(e)−−−−−→ρ q
′ then cod(ρ)=n(q) \ {e} and dom(ρ)=n(q′).

Note that for a plan(e) transition ρ is a bijection between n(q) and n(q′)\{e}.
Intuitively, e is the newly planned activity, while n(q′)\{e} represents, via the
renaming ρ, activities already planned in q. In an exec(e) transition the activity
e is executed, while for drop(e) activity e is dropped without being executed.
In both cases the other activities planned in the source state are kept, the cor-
respondence being established by ρ which is a bijection between n(q)\{e} and
n(q′).

We write q →ρ q
′ when q

`−→ρ q
′ for some label ` ∈ L(E), and we denote by

→∗ρ the reflexive and transitive closure of the transition relation, with ρ resulting
as the composition of the involved renamings, i.e., q →∗id q and if q →∗ρ q′ →ρ′ q

′′

then q →∗ρ′◦ρ q′′.
The theory of HD-automata [13] provides a notion of behavioural equiva-

lence, which we specialise in the following to the case of HDE-automata. First,
according to the general theory, it is not restrictive to assume that all HDE-
automata are irredundant, i.e. that all names occurring in a state are eventually
used. Actually, we work with a slightly strengthened notion of irredundancy, i.e.,
we will assume that for any e ∈ n(q) there exists a state reachable from q where
e can be executed. Formally, we assume that for any q ∈ Q and any e ∈ n(q)

there exists some q′ ∈ Q such that q →∗ρ q′ and q′
exec(e′)−−−−−→ρ′ q

′′ with ρ(e′) = e.

Definition 11 (HD-bisimilarity). Let H1 and H2 be two HDE-automata. A
HD-bisimulation is a relation

R = {(q1, δ, q2) | q1 ∈ Q1 ∧ q2 ∈ Q2 ∧ δ : n1(q1)
∼→ n2(q2)}

such that, whenever (q1, δ, q2) ∈ R,

1. if q1
plan(e1)−−−−−→ρ1 q

′
1, then there exists a transition q2

plan(e2)−−−−−→ρ2 q
′
2 such that

(q′1, δ
′, q′2) ∈ R;

2. if q1
exec(e1)−−−−−→ρ1 q

′
1, resp. q1

drop(e1)−−−−−→ρ2 q
′
1, then there exists a transition

q2
exec(e2)−−−−−→ρ1 q

′
2, resp. q2

drop(e2)−−−−−→ρ2 q
′
2, such that δ(e1)=e2 and (q′1, δ

′, q′2)∈R;

where both for 1) and 2) it holds ρ2 ◦ δ′ = δ ◦ ρ1 (see Fig. 3). Dually, transitions
of H2 are simulated in H1.

We say that H1 and H2 are HD-bisimilar, written H1 ∼hd H2, when there
exists a HD-bisimulation R such that (q01, δ, q02) ∈ R for some δ.

10

Observe that, by commutativity of the diagram in Fig. 3, in case (1) we get
that δ′ = ρ−12 ◦ δ ◦ ρ1 ∪ {(e1, e2)} and in case (2) δ = ρ2 ◦ δ′ ◦ ρ−11 ∪ {(e1, e2)}.
Hence, since the δ-component in R is a labelled bijection, whenever we match
two transitions, the involved activities are required to have the same label.

4.2 Logical characterisation of HD-bisimilarity

We next show that HD-bisimilarity admits a natural logical characterisation in
terms of a mild extension of the logic L0 introduced in Section 3.

Definition 12 (Lhd syntax). Let Var be a countable set of variables ranged
over by x, y, z.... The logic Lhd over the set of labels Λ is defined as:

ϕ ::= T | ϕ ∧ ϕ | ¬ϕ | (a z)ϕ | 〈z〉ϕ | ↓z ϕ

The logic Lhd, besides the operators of L0 for planning and executing ac-
tivities, includes an additional operator ↓ z that represents the dismissal of a
planned activity. More precisely, the formula ↓z ϕ holds if η(z) ∈ n(q), i.e., η(z)
is a planned activity in the current state (namely, an active name), and after
dismissing such activity (i.e., forgetting the corresponding name) ϕ holds.

The free variables of a formula in Lhd are as in Section 3, with the additional
clause fv(↓z ϕ) = fv(ϕ) ∪ {z}. Concerning the semantics, Lhd formulae are now
interpreted over HDE-automata. More precisely, let Env be the set of environ-
ments, i.e., functions η : Var → E. Given a HDE-automaton H and a formula ϕ
in Lhd, the denotation of ϕ will be a set of pairs (q, η) ∈ Q×Env . Note that the
semantics of Lhd does not involve a notion of legal pair, which was instead essen-
tial in Section 3 to correctly deal with the conflict relation distinctive of pess.
Below given a renaming ρ ∈ R(E) and an environment η : Var → E we write
η; ρ−1 for the environment defined by η; ρ−1(x) = ρ−1(η(x)) when η(x) ∈ cod(ρ)
and η; ρ−1(x) = η(x), otherwise.

Definition 13 (semantics). Let H be a HDE-automaton. The denotation of
a formula ϕ, written {|ϕ|}H ∈ 2Q×Env , is inductively defined as follow:

{|T|}H =Q× Env

{|ϕ1 ∧ ϕ2|}H ={|ϕ1|}H ∩ {|ϕ2|}H

{|¬ϕ|}H =(Q× Env) \ {|ϕ|}H

{|(a z)ϕ|}H ={(q, η) | ∃q plan(e)−−−−→ρ q
′ ∧ λ(e) = a ∧

(q′, η; ρ−1[z 7→ e]) ∈ {|ϕ|}H }

{|〈z〉 ϕ|}H ={(q, η) | q exec(η(z))−−−−−−→ρ q
′ ∧ (q′, η; ρ−1)∈{|ϕ|}H}

{|↓z ϕ|}H ={(q, η) | q drop(η(z))−−−−−−→ρ q
′ ∧ (q′, η; ρ−1)∈{|ϕ|}H}

When (q, η) ∈ {|ϕ|}H we say that the automaton H satisfies the formula ϕ in the
state q and environment η : Var → E, and write H, q |=η ϕ. For closed formulae
ϕ, we write H |= ϕ, when H, q0 |=η ϕ for some η.

11

The logical equivalence induced by Lhd over HDE-automata can be shown to
be HD-bisimilarity. Actually, as it commonly happens when dealing with a fini-
tary logic (with finite conjunctions and disjunctions), the result holds under suit-
able hypotheses which restrict the branching cardinality of HDE-automata. The
standard requirement is image-finiteness, which, however, for HDE-automata
would be too restrictive as plan(·) steps allow one to plan activities which
are executable unboundedly far in the future. Instead, we assume the following
weaker notion of boundedness for HDE-automata.

Definition 14 (bounded HDE-automata). A HDE-automaton H is called
bounded if for any q ∈ Q, k ∈ N and A ⊆fin Λ the set below is finite:

q(k,A) = {e ∈ E | q plan(e)−−−−→ρ q
′ `1−→ρ1 q1 . . .

`k−→ρk qk
exec(e′)−−−−−→

∧ ρk ◦ . . . ◦ ρ1(e′) = e ∧ λ(e) ∈ A ∧
if `i = plan(ei) then λ(ei) ∈ A}.

In words, q(k,A) is the set of activities labelled in A which can be planned
in the current state and executed within k steps, using only already planned
activities or new activities labelled in A. This set is required to be finite when
A is finite. We will show later that the automaton corresponding to a pes is
bounded iff the original pes is image finite. Under the boundedness hypothesis,
we can prove that the logical equivalence induced by Lhd on HDE-automata is
HD-bisimilarity.

Proposition 1 (HD-bisimilarity, logically). Let H1, H2 be bounded HDE-
automata. Then H1 ∼hd H2 iff H1, H2 satisfy the same closed formulae in Lhd.

The boundedness hypothesis is essential to ensure the existence of a finite
formula distinguishing any two non bisimilar HDE-automata. Roughly, the point
is that a plan(e1) transition of an automaton could be simulated, in principle, by
infinitely many plan(e2) transitions of the other. However, by the irredundancy
assumption on the class of HDE-automata, we know that e1 is executable in some
reachable state. Let k be the number of transitions of a run leading to a state
where e1 is executable and let A be the set of labels of events planned in such
run. Then it is not difficult to see that the event e2 of the simulating transition
plan(e2) must be itself executable within k steps, involving only already planned
events or events labelled in the set A. By the boundedness hypothesis there are
only finitely many such events, a fact which plays a basic role in the proof of
Proposition 1.

5 Hhp-bisimilarity via HD-automata

In order to obtain a characterisation of hhp-bisimilarity in terms of HD-automata
we proceed as follows: first we provide an encoding of pess into the class of HDE-
automata. Then we encode the logic L0 into Lhd and back, in a way that a pes
satisfies a formula in L0 iff the corresponding automaton satisfies the formula

12

({a}, ∅)
plan(b) // ({a}, {b})

exec(b) //

drop(b)

tt
({a, b}, ∅)

(∅, {a})
exec(a)

OO

plan(b) //
drop(a)

��

(∅, {a, b})
exec(a)

OO

drop(b)jj

drop(a)

jj(∅, ∅)

plan(a)
44

plan(b) //

plan(c)

00

XX

drop(c)

(∅, {b})
plan(a)

;;

drop(b)ii

(∅, {c})
exec(c) // ({c}, ∅)

Fig. 4. HDE automaton corresponding to the CCS process a.b+ c.

in Lhd. Finally we rely on the logical characterisations of HD-bisimilarity and
of hhp-bisimilarity to show that two pess are hhp-bisimilar if and only if their
corresponding HDE-automata are HD-bisimilar.

5.1 From Event Structures to HDE-automata

We now show how pess can be mapped into HDE-automata in a way which
is later shown to preserve and reflect behavioural equivalence. Throughout this
section, the correspondence between activities in the source, label and target of
a transition are given by (partial) identities and hence kept implicit.

Definition 15 (from PES to HDE-automata). Let E be a pes. The HDE-
automaton H(E)=(Q, q0, n,→) is defined as

– Q={〈C,X〉 | C ∈ C(E) ∧ X ⊆fin E [C] ∧ X×X ⊆ a }
– q0 = (∅, ∅)
– n(〈C,X〉) = X
– the transition relation is given as follows where it is assumed that e 6∈ X
• 〈C,X〉 plan(e)−−−−−→ 〈C,X ∪ {e}〉 when e ∈ E [C] and eaX;

• 〈C,X ∪ {e}〉 exec(e)−−−−−→ 〈C ∪ {e}, X〉 when C ∪ {e} ∈ C(E) ;

• 〈C,X ∪ {e}〉 drop(e)−−−−−→ 〈C,X〉.

In words, a pes E corresponds to an automaton H(E) whose states are pairs
〈C,X〉 where C ∈ C(E) represents the current state of the computation, and X is
a set of events belonging to a possible future computation extending C, planned
but not yet executed. Note that, in order to represent a set of events which can
occur in a computation starting from C, the events in X must be both pairwise
consistent and consistent with C. Instead, we do not require X to be causally
closed, that is we do not require C ∪X ∈ C(E).

According to this intuition, given a state 〈C,X〉, the transition plan(e) allows
one to plan a new event e whenever e is compatible both with C and its future

13

X. On the other hand, any event planned and not yet executed, i.e., any event
e ∈ X can be dismissed by means of a drop(e) transition. Finally, an event
e can be executed if it belongs to the planned future X and it is enabled by
the configuration C. As an example, the automaton corresponding to the (pes
associated with the) CCS process a.b+c is given in Fig. 4. Observe that the HDE-
automaton obtained from a pes is irredundant. Roughly, plan(·) and drop(·)
transitions allow one to construct alternative futures of the current configuration.
The concurrent structure of such futures can then be analysed by means of
exec(·) moves.

Note that, as mentioned above, the ρ-component of transitions is omitted and

it is implicitly assumed to be a partial identity. More precisely when 〈C,X〉 `−→
〈C ′, X ′〉, the renaming is ρ = idX∩X′ . For instance, when 〈C,X〉 plan(e)−−−−−→ 〈C,X∪
{e}〉, the renaming ρ : X ∪ {e} → X is defined by ρ(e′) = e′ for e′ ∈ X and ρ(e)
undefined.

The image finiteness property for pess exactly corresponds to the bounded-
ness property for the corresponding HDE-automata as given in Definition 14.

Proposition 2 (image finiteness). Let E a pes. Then E is image finite iff
H(E) is bounded.

5.2 From L0 to Lhd and back: Hhp-bisimilarity via hd-bisimilarity

In order to prove that behavioural equivalence is preserved and reflected by the
encoding of pess into HDE-automata we rely on the logical characterisation of
such equivalences, which is given in terms of very similar logics. Specifically, here
we prove that a tight link exists between satisfaction of L0 formulae by a pes
and satisfaction of Lhd formulae by HDE-automata, in a way that the two logical
equivalences can then be shown to coincide. Below, we write |=L0 and |=Lhd in
order to clarify to which notion of satisfaction we are referring to.

First of all, notice that although L0 is syntactically a subset of Lhd, for a
pes E and a formula ϕ in L0, it is not the case that if E |=L0 ϕ then H(E) |=Lhd

ϕ. As an example, consider the pes E1 in Fig. 1 associated with the process
a.b+ c.d and the formula ϕ = (ax)((c y)〈y〉T ∧ (b z)〈x〉 〈z〉T). Then E1 |=L0 ϕ,
because ∅ |=L0

η[x→a] (c y)〈y〉T and ∅ |=L0

η[x→a] (b z)〈x〉 〈z〉T. In fact, for the first

subformula, note that y can be bound to the c-labelled event even though it is
in conflict with a, since x is no longer free in the subformula.

Instead, H(E1) 6|=Lhd ϕ since satisfaction reduces to (∅, {a})|=Lhd

η[x→a](c y)〈y〉T
and (∅, {a})|=Lhd

η[x→a](b z)〈x〉 〈z〉T. The first is false since the automaton cannot

perform a plan(c) step as long as the conflicting event a belongs to the planned
future. However, H(E) |=Lhd (ax)(↓ x (c y)〈y〉T ∧ (b z)〈x〉 〈z〉T) since, in this
case, after planning a, the left branch forgets it in a way that b can be planned
and executed.

More generally, a L0 formula ϕ can be encoded into a Lhd formula that
uses the ↓ operator to explicitly drop planned events that intuitively no longer
pertain to the future that the formula describes, i.e., events planned but no longer

14

referred to by free variables in the remaining part of the formula. Formally, given
ϕ ∈ L0, we define an encoding of ϕ into Lhd which is parametric on a set of
variables X such that fv(ϕ) ⊆ X, representing the events planned in the past.
Given a set of variables Z = {z1, . . . , zn} we write ↓Z for ↓x1 . . . ↓xn .

Definition 16 (from L0 to Lhd). The encoding function [[·]] : L0 × 2Var→Lhd
is inductively defined as follows:

[[T]]X = T [[¬ϕ]]X = ¬[[ϕ]]X

[[ϕ1 ∧ ϕ2]]X = [[ϕ1]]X ∧ [[ϕ2]]X [[〈x〉ϕ]]X = 〈x〉 [[ϕ]]X

[[(ax)ϕ]]X = ↓Z (ax)[[ϕ]]fv(ϕ)∪{x} where Z = X\(fv(ϕ)\{x})

In words, before binding a new event to x, the Lhd encoding drops any (pre-
viously planned) event that is not bound to the free variables of the subformula.

As an example, consider the formula ϕ = (ax)((c y)〈y〉T ∧ (b z)〈x〉 〈z〉T) in
L0 discussed at the beginning of the section, satisfied by E1 but not by H(E1).
The formula [[ϕ]]∅ is exactly the Lhd formula previously constructed by hand in
order to be satisfied by the automaton, i.e., (ax)(↓x (c y)〈y〉T ∧ (b z)〈x〉 〈z〉T).
As a further example, consider the L0 formulae ϕ1 = (ax)(b y)(c z)〈z〉T and
ϕ2 = (ax)(b y)(〈y〉T ∧ (c z)〈z〉T), which are both true for the pes consisting
of three pairwise conflicting events. Then we have that [[ϕ1]]∅ = (ax) ↓x (b y) ↓
y (c z)〈z〉T and [[ϕ2]]∅ = (ax) ↓x (b y)(〈y〉T∧ ↓y (c z)〈z〉T).

We next prove a technical lemma. It roughly asserts that, given a formula
ϕ ∈ L0, the satisfaction of its encoding in Lhd by a state of the HD-automaton
does not depend on planned events bound to variables which are not free in the
formula, as long as the encoding takes care of dropping such events.

Lemma 1. Let E be a pes. Let ϕ ∈ Lhd be a formula, η : Var → E an environ-
ment and X1, X2 ⊆ Var sets of variables such that fv(ϕ) ⊆ Xi and C ∪ η(Xi) is
compatible for i ∈ {1, 2}. Then in the HDE-automata H(E) it holds

〈C, η(X1) \ C〉 |=η [[ϕ]]X1 iff 〈C, η(X2) \ C〉 |=η [[ϕ]]X2 .

Then we can prove the following.

Lemma 2 (from L0 to Lhd). Let E be a pes. For any closed formula ϕ∈L0 it
holds E|=L0ϕ if and only if H(E)|=Lhd [[ϕ]]∅.

Conversely, we show how formulae of Lhd can be encoded in L0. This is some-
how more difficult as the notion of satisfaction in L0 rely on simpler states, con-
sisting only of a configuration (executed events), while states of HDE-automata,
where Lhd satisfaction is defined, include explicitly also those events which have
been planned and not executed. In order to fill this gap the idea is to “keep”
events planned but not yet executed as free variables in the formulae of L0.

Definition 17 (from Lhd to L0). Given a set of variables X={x1, . . . , xn} ⊆
Var, let st(X) denote the formula in L0

st(X) = (
∨n
i=1〈x〉T) ∨ T

15

The encoding function ‖·‖ : Lhd × 2Var → L0 is inductively defined as follows:

‖T‖X = T ‖F‖X = F ‖¬ϕ‖X = ¬‖ϕ‖X

‖ϕ1 ∧ ϕ2‖X = ‖ϕ1‖X ∧ ‖ϕ2‖X ‖(ax)ϕ‖X = (ax)(‖ϕ‖X∪{x} ∧ st(X))

‖↓x ϕ‖X =

{
‖ϕ‖X\{x} if x ∈ X
F otherwise

‖〈x〉 ϕ‖X =

{
〈x〉 ‖ϕ‖X\{x} if x ∈ X
F otherwise

Observe that the encoding of a formula of Lhd into L0 is parametric w.r.t. a
set of variables which represent those events which have been planned but not
yet dropped or executed. In order to understand this, note that in the formula
st(X) the disjunction with T does not make it trivially equivalent to true. In fact
fv(st(X)) = X, and thus st(X) is satisfied only by pairs (C, η) which are legal,
i.e., such that η(X) ⊆ C[E] and pairwise consistent. The role of st(X) is exactly
to keep alive the events associated with variable in X and impose that they are
consistent. It can be proved inductively that, more generally, fv(‖ϕ‖) ⊆ X.

Lemma 3 (from Lhd to L0). Let E be a pes, let H(E) be the corresponding
automaton. For any closed formula ϕ ∈ Lhd, H(E) |=Lhd ϕ iff E |=L0 ‖ϕ‖∅.

Combining the results above we can immediately deduce that hhp-
bisimilarity between pess is faithfully captured by bisimilarity of the correspond-
ing HDE-automata.

Theorem 2 (hhp-bisimilarity vs. hd-bisimilarity). Let E1 and E2 be pess.
Then E1 ∼hhp E2 iff H(E1) ∼hd H(E2).

6 Conclusions: related and future work

We studied hereditary history-preserving bisimilarity, a canonical behavioural
equivalence in the true concurrent spectrum, by means of logics and automata.
We provided a characterisation in terms of an event-based logic L0 that predi-
cates on the existence and executability of events. This in turn suggests a con-
nection with HD-automata. More precisely, we defined a class of HD-automata
whose transitions allow one to plan the execution of an activity, execute a
planned activity and to dismiss a planned activity. We then showed that pess
can be mapped into such class of automata in a way that the canonical be-
havioural equivalence for HD-automata coincides with hhp-bisimilarity over the
corresponding pess.

Both characterisations show that, in order to capture hhp-bisimilarity, the
observer must be able to compare states by checking unboundedly large concur-
rent computations in the future of such states. Intuitively, this can be seen as a
source of ineffectiveness of hhp-bisimilarity which indeed is known to be unde-
cidable for many basic models of concurrency, even in the finite state case (e.g.,
it is known that hhp-bisimilarity is undecidable for safe finite Petri nets [14]).

The results in the paper can be helpful in the study of decidable approx-
imations of hhp-bisimilarity, possibly opening the road to the development of

16

verification techniques. This represents an interesting line of investigation that
is already partly developed in the extended version of this paper [15]. Indeed, it
can be proved that fixing a bound on the distance of the future that an observer
is allowed to check, one gets effective approximations of hhp-bisimilarity. More
precisely, when fixing such a bound, regular pess (which typically arise as seman-
tics of finite state systems [17]) can be transformed into finite HD-automata for
which bisimilarity checking is decidable. On these bases, algorithms for checking
such approximations of ∼hhp-bisimilarity can be obtained by simply providing
an explicit construction of the finite HD-automata for specific formalisms. E.g.,
in [15] this is done for finite (n-)safe Petri nets along the lines of the work
in [18,19] for history preserving bisimilarity. The construction also resembles the
one in [20], used for proving decidability of approximations of hhp-bisimilarity
on finite safe Petri nets.

The fact that HDE-automata deal with infinite sets of events, but with the
possibility of testing only equality and labels, suggests a connection with register
automata and, more generally, with the recent line of work on nominal automata
(see, e.g., [21] and references therein), which would be interesting to deepen.

In order to capture hhp-bisimilarity in the setting of HD-automata, we pro-
vided a characterisation of HD-bisimilarity in terms of a logic Lhd that enriches
L0 with an operator for explicitly dropping activities planned but not yet ex-
ecuted. Interestingly, even if it is defined over HDE-automata, we think that
the logic Lhd will be useful to establish a precise connection with the logic EIL
in [10], which includes a reverse step-modality which is related to the drop tran-
sitions and the ↓ · modality in Lhd. We believe a further investigation of the
relation between L0 and EIL (and the other logics for concurrency in the lit-
erature) can bring some interesting insights, at least at conceptual level. This,
despite the fact that it is clear that some modalities of L0 and EIL are not
interdefinable. For instance, the formula (x : a)ϕ in EIL which binds x to an
a-labelled event in the current configuration is not encodable in L0. Conversely,
the formula (ax)ϕ where x is bound to an an a-labelled event in the future of
the current configuration is not encodable in EIL. A connection to be further
investigated seems to exist also with the work on higher-dimensional automata
and ST-configuration structures in [22], where a logic, again with backward step
modalities, is proposed for hhp-bisimilarity. Additionally, we believe that the
logical characterisation of HD-bisimilarity has an interest which goes beyond
the specific class of HD-automata considered in this paper and deserves to be
studied further.

Acknowledgments. We are grateful to Alberto Meneghello for several insight-
ful discussions on this work at its early stages of development.

References

1. van Glabbeek, R., Goltz, U.: Refinement of actions and equivalence notions for
concurrent systems. Acta Informatica 37(4/5) (2001) 229–327

17

2. Esparza, J., Heljanko, K.: Unfoldings - A Partial order Approach to Model Check-
ing. EACTS Monographs. Springer (2008)

3. Bednarczyk, M.A.: Hereditary history preserving bisimulations or what is the
power of the future perfect in program logics. Technical report, Polish Academy
of Sciences (1991)

4. Joyal, A., Nielsen, M., Winskel, G.: Bisimulation from open maps. Information
and Computation 127(2) (1996) 164–185

5. Winskel, G.: Event Structures. In: Petri Nets: Applications and Relationships to
Other Models of Concurrency. Volume 255 of LNCS., Springer (1987) 325–392

6. Phillips, I., Ulidowski, I.: A hierarchy of reverse bisimulations on stable config-
uration structures. Mathematical Structures in Computer Science 22 (4 2012)
333–372

7. Phillips, I., Ulidowski, I.: Reversing algebraic process calculi. In: Proc of FOS-
SACS06. Volume 3921 of LNCS., Springer (2006) 246–260

8. Cristescu, I., Krivine, J., Varacca, D.: A compositional semantics for the reversible
p-calculus. In: Proc. of LICS 2013. (2013) 388–397

9. Baldan, P., Crafa, S.: A logic for true concurrency. In: Proc. of CONCUR’10.
Volume 6269 of LNCS., Springer (2010) 147–161 Full version available at http:

//arxiv.org/abs/1110.4094. To appear in JACM.

10. Phillips, I., Ulidowski, I.: Event identifier logic. Mathematical Structures in Com-
puter Science 24(2) (2014) 1–51

11. Nielsen, M., Clausen, C.: Games and logics for a noninterleaving bisimulation.
Nordic Journal of Computing 2(2) (1995) 221–249

12. Hennessy, M., Stirling, C.: The power of the future perfect in program logics.
Information and Control 67(1-3) (1985) 23–52

13. Montanari, U., Pistore, M.: An introduction to history-dependent automata. In:
Proc. of HOOTS’98. Volume 10 of Electronic Notes in Theoretical Computer Sci-
ence. (1998)

14. Jurdzinski, M., Nielsen, M., Srba, J.: Undecidability of domino games and hhp-
bisimilarity. Information and Computation 184(2) (2003) 343–368

15. Baldan, P., Crafa, S.: Hereditary history-preserving bisimilarity: logics and
automata (extended version). Link http://www.math.unipd.it/~baldan/tmp/

hhphd-extended.pdf (2014)

16. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency.
Journal of the ACM 32 (1985) 137–161

17. Thiagarajan, P.S.: Regular event structures and finite Petri nets: A conjecture.
In: Formal and Natural Computing - Essays Dedicated to Grzegorz Rozenberg [on
occasion of his 60th birthday]. Volume 2300 of LNCS., Springer (2002) 244–256

18. Vogler, W.: Deciding history preserving bisimilarity. In: Proc. of ICALP’91. Vol-
ume 510 of LNCS., Springer (1991) 495–505

19. Montanari, U., Pistore, M.: Minimal transition systems for history-preserving
bisimulation. In: Proc. of STACS’97. Volume 1200 of LNCS., Springer (1997)
413–425

20. Fröschle, S., Hildebrandt, T.: On plain and hereditary history-preserving bisimu-
lation. In: Proc. of MFCS’99. Volume 1672 of LNCS., Springer (1999) 354–365

21. Bojanczyk, M., Klin, B., Lasota, S.: Automata with group actions. In: Proc. of
LICS 2011, IEEE Computer Society (2011) 355–364

22. Prisacariu, C.: The glory of the past and geometrical concurrency. CoRR
abs/1206.3136 (2012)

18

http://arxiv.org/abs/1110.4094
http://arxiv.org/abs/1110.4094
http://www.math.unipd.it/~baldan/tmp/hhphd-extended.pdf
http://www.math.unipd.it/~baldan/tmp/hhphd-extended.pdf

A Proofs

This appendix provides the proofs of the results in the paper which are omitted
in the main text.

Theorem 1 (hhp-bisimilarity, logically) Let E1, E2 be two pess. Then
E1 ∼hhp E2 iff E1 and E2 satisfy the same closed formulae in L0.

Proof. The only if part follows from [9, Theorem 1], since the logic L0 is a
fragment of L. For the converse implication, fix a surjective environment η1 :
Var → E1. Then given an event e ∈ E1, we let xe denote a chosen variable such
that η1(xe) = e. For a configuration C1 = {e1, . . . , en} we denote by XC1 the set
of variables {xe1 , . . . , xen}.
Then one can prove that the posetal relation R ⊆ C(E1)×̄C(E2) defined by:

R = { (C1, f, C2) | ∀ϕ ∈ L. fv(ϕ) ⊆ XC1

(E1, ∅ |=η1 ϕ iff E2, ∅ |=f◦η1 ϕ) } (3)

is a hhp-bisimulation. Above, given an isomorphism of pomsets f : C1 → C2,
we denote by f ◦ η1 an environment such that f ◦ η1(x) = f(η1(x)) for x ∈ XC1

and f ◦ η1(x) has any value, otherwise (the semantics of ϕ only depends on the
value of the environment on fv(ϕ) and fv(ϕ) ⊆ XC1

by construction).

Let us first show that R is a hp-bisimulation, i.e., given (C1, f, C2) ∈ R, if

C1
e−→ C ′1 then there exists a transition C2

g−→ C ′2 such that f ′ = f [e 7→ g] :
C ′1 → C ′2 is an isomorphism of pomsets (hence in particular λ1(e) = λ2(g)) and
(C ′1, f

′, C ′2) ∈ R.
We proceed by contradiction. Since all pess are assumed to be image finite,

there are finitely many transitions C2
gi−→ Ci2, i ∈ {1, . . . , n}, such that C ′1 ∼

Ci2 (as pomsets). By contradiction assume that (C ′1, f
i, Ci2) 6∈ R for any i ∈

{1, . . . , n}. Hence, by definition of R (3), there exists a formula ψi such that

E1, ∅ |=η1 ψ
i and E2, ∅ 6|=fi◦η1 ψ

i

where fv(ψi) ⊆ XC′1
= XC1

∪ {xe} and f i = f [e 7→ gi]. Observe that it could

either be that E1, ∅ 6|=η1 ψ
i and E2, ∅ |=fi◦η1 ψ

i, but we can reduce to the case
above by taking the negation of ψi. Then consider the formula

ϕ = (axe)(〈x〉 〈xe〉 〈y〉T ∧ 〈x〉 〈y〉T ∧ (
∧

x′⊂x ¬〈x′〉 〈xe〉) ∧ ψ1 ∧ . . . ∧ ψn)

where a = λ1(e) and the x,y ⊆ XC1 are such that η1(x) is the set of causes of
e in C1 and η1(y) is the set of events in C1 which are concurrent with e. Note
that

fv(ϕ) = (x ∪ y ∪ {xe} ∪
⋃n
i=1 fv(ψi)) \ {xe} ⊆ XC1

since, by construction, XC1
= x ∪ y and fv(ψi) ⊆ XC1∪{e} = XC1

∪ {xe} for
i ∈ {1, . . . , n}. Moreover, it is easy to see that E1, ∅ |=η1 ϕ and E2, ∅ 6|=f◦η1 ϕ,
contradicting the hypotheses. Note that this works also when n = 0, i.e., when
there are no transitions of C2 which could possibly simulate that of C1.

19

The fact that also the converse holds, i.e., if C2
g−→ C ′2 then there exists a

transition C1
e−→ C ′1 such that f ′ = f [e 7→ g] : C ′1 → C ′2 is an isomorphism of

pomsets and (C ′1, f
′, C ′2) ∈ R, can be proved analogously.

Relation R is downward-closed, hence it is a hhp-bisimulation. Take
(C1, f, C2) ∈ R and consider (C ′1, f

′, C ′2) ⊆ (C1, f, C2) pointwise. We have to
show that (C ′1, f

′, C ′2) ∈ R.
Let ψ be any formula such that fv(ψ) ⊆ XC′1

. Since C ′1 ⊆ C1, clearly fv(ψ) ⊆
XC1 and thus, since (C1, f, C2) ∈ R, by definition of R (3), we have that

E1, ∅ |=η1 ψ iff E2, ∅ |=f◦η1 ψ,

Moreover, since fv(ψ) ⊆ XC′1
, η1(XC′1

) = C ′1 and f ′ = f |C′1 , we have that
(f ◦ η1)|fv(ψ) = (f ′ ◦ η1)|fv(ψ) and thus

E2, ∅ |=f◦η1 ψ iff E2, ∅ |=f ′◦η1 ψ

Summing up, for any ψ such that fv(ψ) ⊆ XC′1
, it holds E1, ∅ |=η1 ψ iff

E2, ∅ |=f ′◦η1 ψ. Therefore (C ′1, f
′, C ′2) ∈ R, as desired.

Lastly, we note that (∅, ∅, ∅) ∈ R since by hypothesis E1 and E2 satisfy the
same closed L0 formulae. ut

Proposition 1 (HD-bisimilarity, logically) Let H1, H2 be bounded HDE-
automata. Then H1 ∼hd H2 iff H1, H2 satisfy the same closed formulae in Lhd.

Proof. (1)⇒ (2) Given a bisimulation R between H1 and H2, we prove that for
all ϕ ∈ Lhd, for (q1, δ, q2) ∈ R it holds q1 |=η1 ϕ iff q2 |=δ◦η1 ϕ. The proof is a
routine by induction on the structure of ϕ.

Let us discuss, for instance, the case in which ϕ = (ax)ψ. Since q1 |=η1 (ax)ψ
there exists a transition

q1
plan(e1)−−−−−→ρ1 q

′
1

with λ(e1) = a and q′1 |=η1;ρ
−1
1 [x 7→e1] ψ. By definition of HD-bisimulation, there

must be a transition

q2
plan(e2)−−−−−→ρ2 q

′
2

and (q′1, δ
′, q′2) ∈ R where ρ2 ◦ δ′ = δ ◦ ρ1 hence δ′(e1) = e2. By inductive

hypothesis q′2 |=δ′◦(η1;ρ−1
1 [x 7→e1]) ψ. Now note that δ′ ◦ (η1; ρ−11 [x 7→ e1]) = (δ′ ◦

(η1; ρ−11))[x 7→ e2] = (δ ◦ η1); ρ−12 [x 7→ e2] and thus q2 |=δ◦η1 (ax)ψ, as desired.
The other cases are analogous.

(2)⇒ (1) It is convenient to fix a surjective environment η : Var → E. Given
an event e ∈ E, we let xe denote a chosen variable such that η(xe) = e. Then,
for a finite subset F = {e1, . . . , en} ⊆ E we denote by XF the set of variables
{xe1 , . . . , xen}.

20

With this notation, let us define a relation

R = {(q1, δ, q2) | ∀ϕ. η(fv(ϕ)) ⊆ n1(q1)⇒
(H1, q1 |=η ϕ⇔ H2, q2 |=δ◦η ϕ)} (4)

We show that R is a HD-bisimulation.
As a first step, let us note that the possibility of executing an event bound to

a variable x, within k steps, involving events bound to variables in a set X ⊆ Var
and possibly new events labelled in a set A ⊆fin Λ, can be captured by a formula
of the logic as follows:

distk,A(x,X) =
∨
{σ1 . . . σk 〈x〉T | σi ∈ S}

where S = {(b z), ↓w , 〈w〉 | z ∈ Z ∧ w ∈ X ∪ Z ∧ b ∈ A}, with Z ⊆ Var a set
of k variables, i.e., |Z| = k such that Z ∩ (X ∪ {x}) 6= ∅. The formula is finite
since A is finite.

In order to show that R is a HD-bisimulation, assume that (q1, δ, q2) ∈ R.
We must prove that any transition of q1 can be simulated by q2, according to

Definition 11. Assume that q1
plan(e1)−−−−−→ρ1 q

′
1. By irredundancy of HDE-automata,

we know that e1 is executable in a state reachable from q1. More precisely, there

exists a transition sequence q′1
`1−→ρ′1

. . .
`k−→ρ′k

q′′1
exec(e′1)−−−−−→, with ρ′k ◦ . . .◦ρ′1(e′1) =

e1. Let A be the set of labels of events involved in plan(·) transitions, i.e.,

A = {λ(e)} ∪ {λ(ei) | `i = plan(ei) for i ∈ {1, . . . , k}}.

Hence H1, q1 |=η (ax) distk,A(x,Xn(q1)). We have to show that there exists a

transition q2
plan(e2)−−−−−→ρ2 q

′
2 such that (q′1, δ

′, q′2) ∈ R, with ρ2 ◦ δ′ = δ ◦ ρ1, i.e.,
δ′ = ρ−12 ◦ δ ◦ ρ1 ∪ {(e1, e2)}. We proceed by contradiction. Since the automata

are assumed to be bounded, there are finitely many transitions q2
plan(ei2)−−−−−→ρi2

qi2,
i ∈ {1, . . . , n}, which can be use to have H2, q2 |=δ◦η1 (ax) distk,A(x,Xn(q1))
(use the boundedness hypothesis on the set of labels {λ(e1)} ∪A).

By contradiction assume that (q1, δ
i, qi2) 6∈ R, with δi = (ρi2)−1 ◦ δ ◦ ρ1 ∪

{(e1, ei2)}, for any i ∈ {1, . . . , n}. Hence, by definition of R (4), there exists a
formula ψi such that H1, q

′
1 |=η ψ

i and H2, q
i
2 6|=δi◦η ψ

i where fv(ψi) ⊆ Xn(q′1)
=

Xn(q1) ∪ {xe1}. Then consider the formula

ϕ = (axe1)(distA,k(xe1 , Xn(q1)) ∧ ψ1 ∧ . . . ∧ ψn)

where a = λ(e1). Note that

fv(ϕ) = (Xn(q1) ∪ {xe1} ∪
⋃n
i=1 fv(ψi)) \ {xe1} ⊆ Xn(q1)

Moreover, it is easy to see thatH1, q1 |=η1 ϕ, by using transition q1
plan(e1)−−−−−→ρ1 q

′
1.

Instead, H2, q2 6|=δ◦η ϕ, since the candidate transitions for satisfying the formula

are q2
plan(ei2)−−−−−→ρi2

qi2, i ∈ {1, . . . , n} which satisfy the first conjunct. However, by

construction for each j, H2, q
i
2 6|=δi◦η ψ

i. This contradicts the hypotheses.

Assume that q1
exec(e1)−−−−−→ρ1 q

′
1, we must prove that q2

exec(δ(e1))−−−−−−−→ρ2 q
′
2 and

(q′1, δ
′, q′2) ∈ R where δ′ = ρ−12 ◦ δ ◦ ρ1. If this does not hold then, either there

21

is no transition q2
exec(δ(e1))−−−−−−−→ q′2 or there exists a formula ψ, with fv(ψ) ⊆

Xn(q′1)
= Xn(q1) \ {xe1}, such that H1, q

′
1 |=η;ρ−1

1
ψ and H2, q

′
2 6|=δ′◦η;ρ−1

1
ψ

where δ′ = ρ−12 ◦ δ ◦ ρ1. In both cases, defining ϕ = 〈xe1〉ψ, we have that
fv(ϕ) = {xe1} ∪ fv(ψ) ⊆ Xn(q1), and H1, q1 |=η;ρ−1

1
ϕ, while H2, q2 6|=δ◦η;ρ−1

1
ϕ,

contradicting the hypothesis.

Finally, if q1
drop(e1)−−−−−→ρ1 q

′
1, the fact that q2

drop(δ(e1))−−−−−−−→ρ2 q
′
2 with (q′1, δ

′, q′2) ∈
R, can be proved as in the previous case, relying on the formula ϕ =↓xe1 ψ. ut

Proposition 2 (image finiteness) Let E a pes. Then E is image finite iff
H(E) is bounded.

Proof. (⇒) Let E be image-finite. Observe that given a state q = (C,X) of H(E),
A ⊆fin Λ and k ∈ N

q(k,A)= {e0 ∈ E | q plan(e0)−−−−−→ q′
`1−→ q1 . . .

`k−→ qk
exec(e0)−−−−−→ ∧

λ(e) ∈ A ∧ if `i = plan(ei) then λ(ei) ∈ A}

⊆ {e0 ∈ E | C e1−→ . . .
ek−→ e−→ ∧(ei ∈ X ∨ λ(ei) ∈ A)}

The last set is finite since E is image-finite. This can be proved inductively on
k, recalling that also X is finite. Hence H(E) is bounded.

(⇐) Let H(E) be bounded. Then for any a ∈ Λ we have

{e | C e−→ C′ ∧ λ(e) = a} =

= {e | (C, ∅) plan(e)−−−−→ (C, {e}) exec(e)−−−−→ (C ∪ {e}, ∅) ∧ λ(e)=a}

The set is finite since H(E) is bounded. Hence E is image finite. ut

Lemma 1 Let E be a pes. Let ϕ ∈ Lhd be a formula, η : Var → E an
environment and X1, X2 ⊆ Var sets of variables such that fv(ϕ) ⊆ Xi and
C ∪ η(Xi) is compatible for i ∈ {1, 2}. Then in the HDE-automata H(E) it holds

〈C, η(X1) \ C〉 |=η [[ϕ]]X1 iff 〈C, η(X2) \ C〉 |=η [[ϕ]]X2 .

Proof. The proof is by induction on ϕ. For all the operators but (ax), one simply
recurs on the subformulae using the induction hypothesis and the fact that the
only transitions which can be inhibited by the presence of planned events in the
state are other plan(·) transitions.

Let us focus on the case ϕ = (ax)ψ. Assume

〈C, η(X1) \ C〉 |=η [[ϕ]]X1
. (5)

Note that

[[ϕ]]X1 = [[(ax)ψ]]X1 =↓x 1 . . . ↓x k(ax)[[ψ]]fv(ψ)∪{x},

22

where {x1, . . . , xk} = (X1 \ (fv(ψ) \ {x}) = X1 \ fv(ϕ).
Then, according to the semantics of the operator ↓· in Definition 13, equation

(5) amounts to
〈C, η(fv(ϕ)) \ C〉 |=η (ax)[[ψ]]fv(ψ)∪{x}. (6)

Now, in the same way also 〈C, η(X2) \C〉 |=η [[ϕ]]X2
reduces to equation (6),

thus completing this case. ut

Note that, by the lemma above, in particular, 〈C, η(fv(ϕ)) \ C〉 |=η [[ϕ]]fv(ϕ) iff
for all X ⊆ Var , X ⊇ fv(ϕ) such that C ∪ η(X) compatible:

〈C, η(X) \ C〉 |=η [[ϕ]]X .

Lemma 2 (from L0 to Lhd) Let E be a pes. For any closed formula ϕ∈L0 it
holds E|=L0ϕ if and only if H(E)|=Lhd [[ϕ]]∅.

Proof. We prove that for any formula ϕ ∈ L0 it holds C |=L0
η ϕ iff

(C, η(fv(ϕ))) |=Lhd
η [[ϕ]]fv(ϕ). The proof is by induction on ϕ.

Here are some representative cases:
(ϕ = ϕ1∧ϕ2) If C |=L0

η ϕ then C |=L0
η ϕ1, C |=L0

η ϕ1 and η(fv(ϕ1)∪fv(ϕ2))∪
C pairwise compatible. By inductive hypothesis, for i ∈ {1, 2}

〈C, η(fv(ϕi)) \ C〉 |=Lhd
η [[ϕi]]fv(ϕi).

By Lemma 1, this implies for i ∈ {1, 2}

〈C, η(fv(ϕ1) ∪ fv(ϕ2)) \ C〉 |=η [[ϕi]]fv(ϕ1)∪fv(ϕ2).

Therefore

〈C, η(fv(ϕ1) ∪ fv(ϕ2)) \ C〉 |=η [[ϕ1 ∧ ϕ2]]fv(ϕ1)∪fv(ϕ2).

The converse implication is obtained just reversing the steps above.

(ϕ = (ax)ψ) If C |=L0
η ϕ then there exists e ∈ E [C] such that ea η(fv(ψ))

and C |=L0

η′ ψ, where η′ = η[x 7→ e]
Now observe that

〈C, η(fv(ϕ)) \ C〉 plan(e)−−−−−→ 〈C, η′(fv(ϕ) ∪ {x}) \ C〉

Moreover, by inductive hypothesis,

〈C, η′(fv(ψ)) \ C〉 |=η′ [[ψ]]fv(ψ)

hence by Lemma 1, since fv(ψ)∪ {x} ⊇ fv(ψ) and η′(fv(ψ)∪ {x}) is compatible
by construction

〈C, η′(fv(ψ) ∪ {x}) \ C〉 |=η′ [[ψ]]fv(ψ)∪{x}

Therefore 〈C, η(fv(ϕ))\C〉 |=η [[ϕ]]fv(ϕ) = (ax)[[ψ]]fv(ψ)∪{x}. Also in this case, all
deductions can be inverted to get the converse implication. ut

23

Lemma 3 (from Lhd to L0) Let E be a pes, let H(E) be the corresponding
automaton. For any closed formula ϕ ∈ Lhd, H(E) |=Lhd ϕ iff E |=L0 ‖ϕ‖∅.

Proof. We prove that, more generally, given any configuration C ∈ C(E), finite
set of variables X ⊆ Var , and environment η such that η(X) ⊆ E [C], η(X)
consistent, η injective on X and satisfying that if x ∈ fv(ϕ) and η(x) ∈ X then
x ∈ X, it holds

〈C, η(X)〉 |=η ϕ iff C |=η ‖ϕ‖X

The proof is by induction on the structure of ϕ.

[cases T, F]
Trivial.

[case ϕ1 ∧ ϕ2]
We have that if 〈C, η(X)〉 |=η ϕ1 ∧ ϕ2 then 〈C, η(X)〉 |=η ϕi for i ∈ {1, 2}.
Therefore, by inductive hypothesis, C |=η ‖ϕi‖X for i ∈ {1, 2}. From this
we deduce C |=η ‖ϕ1‖X ∧ ‖ϕ2‖X since fv(‖ϕi‖X) ⊆ X and by hypothesis
η(X) ⊆ E [C] and consistent, hence 〈C, η〉 is a legal pair for ‖ϕi‖X . Recalling
that ‖ϕ1 ∧ ϕ2‖X = ‖ϕ1‖X ∧ ‖ϕ2‖X we conclude. The converse implication is
obtained just reversing all the steps.

[case (ax)ϕ]
(⇒) Assume that 〈C, η(X)〉 |=η (ax)ϕ. This means that there is e ∈ E,

1. λ(e) = a and 〈C, η(X)〉 plan(e)−−−−−→ 〈C, η(X) ∪ {e}〉 and

2. 〈C, η(X) ∪ {e}〉 |=η[x 7→e] ϕ.

Item (2) can be written as 〈C, η[x 7→ e](X ∪{x}〉 |=η[x 7→e] ϕ. Hence by inductive
hypothesis we deduce

C |=η[x 7→e] ‖ϕ‖X∪{x}

Item (1), by the definition of the automaton H(E) amounts to the fact that
e ∈ E [C], e 6∈ η(X) and ea η(X). Since fv(‖ϕ‖X∪{x}) ⊆ X ∪ {x}, by definition
of L0 we have that

C |=η (ax) (‖ϕ‖X∪{x} ∧ st(X))

and which, recalling that (ax) (‖ϕ‖X∪{x} ∧ st(X)) = ‖(ax)ϕ‖X , is the desired
result.

(⇐) Assume that C |=η ‖(ax)ϕ‖X = (ax) (‖ϕ‖X∪{x} ∧ st(X)). This means
that there exists e ∈ E [C], λ(e) = a and ea η(fv(‖ϕ‖X∪{x} ∧ st(X))) ⊇ η(X),
and C |=η[x7→e] ‖ϕ‖X∪{x}. According to the definition of the automaton H(E)

〈C, η(X)〉 plan(e)−−−−→ 〈C, η(X) ∪ {e}〉 = 〈C, η[x 7→ e](X ∪ {x})〉

24

and by inductive hypothesis, 〈C, η[x 7→ e](X ∪ {x})〉 |=η[x 7→e] ϕ. Hence
〈C, η(X)〉 |=η (ax)ϕ.

[case ↓x ϕ]
Assume that 〈C, η(X)〉 |=η↓ xϕ. This amounts to the fact that

〈C, η(X)〉 drop(η(x))−−−−−−−→ 〈C,F 〉 and

〈C,F 〉 |=η ϕ. (7)

By definition of the automaton H(E), it must be η(x) ∈ η(X) (hence x ∈ X).
Thus (7) can be written

〈C, η(X \ {x})〉 |=η ϕ

By inductive hypothesis,

C |=η ‖ϕ‖X\{x}

and, since x ∈ X, it holds ‖ϕ‖X\{x} = ‖↓x ϕ‖X
Vice versa, if C |=η ‖↓x ϕ‖X , we deduce that necessarily x ∈ X and thus

‖↓x ϕ‖X = ‖ϕ‖X\{x} (otherwise the encoding would just be false and could not
be satisfied). Then the steps above can be reverted.

[case 〈x〉 ϕ]

Assume that 〈C, η(X)〉 |=η 〈x〉ϕ. This amounts to say that 〈C, η(X)〉 exec(η(x))−−−−−−−→
〈C ′, F ′〉 and

〈C ′, F ′〉 |=η ϕ. (8)

By definition of the automaton H(E), it must be η(x) ∈ η(X) (hence x ∈ X).
Thus (8) can be written

〈C ∪ {η(x)}, η(X \ {x})〉 |=η ϕ

By inductive hypothesis,

C ∪ {η(x)} |=η ‖ϕ‖X\{x}

hence

C |=η 〈x〉 ‖ϕ‖X\{x}

Since x ∈ X, it holds 〈x〉 ‖ϕ‖X\{x} = ‖〈x〉 ϕ‖X
Vice versa, if C |=η ‖〈x〉 ϕ‖X , we deduce that necessarily x ∈ X and thus

‖〈x〉 ϕ‖X = 〈x〉 ‖ϕ‖X\{x} (otherwise the encoding would just be false and could
not be satisfied). Then the steps above can be reverted. ut

Theorem 2 (hhp-bisimilarity vs. hd-bisimilarity) Let E1 and E2 be pess.
Then E1 ∼hhp E2 iff H(E1) ∼hd H(E2).

25

Proof. (⇐) Let H(E1) ∼hd H(E2). Then by Proposition 1 we have H(E1) |=Lhd ϕ
iff H(E2) |=Lhd ϕ, for any closed ϕ ∈ Lhd. In order to conclude E1 ∼hhp E2, by
Theorem 1 it is sufficient to prove that for any ϕ ∈ L0, E1 |= ϕ iff E2 |= ϕ.

Now, assume E1 |=L0 ϕ. By Lemma 2 we have H(E1) |=Lhd [[ϕ]]∅. From the
above we also have H(E2) |=Lhd [[ϕ]]∅, and thus, again by Lemma 2, E2 |=L0 ϕ,
as desired.

Since the role of E1 and E2 is completely symmetric, this allows us to conclude.
(⇒) Let E1 ∼hhp E2. Then for any ϕ ∈ L0, E1 |= ϕ iff E2 |= ϕ. By Propo-

sition 1, it is sufficient to prove that H(E1) and H(E2) satisfy the same closed
formulae in Lhd. Now, ifH(E1) |=Lhd ϕ, then by Lemma 3, we have E1 |=L0 ‖ϕ‖∅.
From the hypothesis also E2 |=L0 ‖ϕ‖∅, and thus, again by Lemma 3, we have
H(E2) |=Lhd ϕ.

Since the role of E1 and E2 is completely symmetric, this allows us to conclude.
ut

26

	Hereditary history-preserving bisimilarity: logics and automata

