
Type-Based Discretionary
Access Control

Silvia Crafa
joint work with

M. Bugliesi and D.Colazzo

Universita’ Ca’ Foscari of Venice MYTHS project

CONCUR, London, September 3, 2004

Access Control in π-calculus

spool < job1 >

! spool (x) . print < x > spool < job2 >

Access Control in π-calculus

spool < job1 >

! spool (x) . print < x > spool < job2 >

spool (y). 0

Capability Types for Access Control

pubPRINTER CLIENTS

(ν spool : T rw) pub < spool > pub (x :T w) . x <job>

x(y).0! spool (y) . print < y >

The spooler is a
write-only channel

Looking for stronger guarantees

•Client jobs should not be logged or leaked

log <job> spool<job>

log(y) . SPY ! spool (x) .
log<x>. print<x>

Looking for stronger guarantees

•Client want reliable acknowledgements

spool<job>

print<x>
ack <x>

! spool (x) . print<x> . ack<x> OK

! spool (x) . ack<x> CHEATING SPOOLER

Need more informative types

• Capability types [PS96] do not help to provide intended
guarantees.

• Control the flow of names among system components.

• One need the ability to express/enforce
discretionary policies of access control governing

– which authorities may receive values of a given type
– what (type) capabilities should be passed along with

the values

Controlling delivery of names

Associate names with delivery policies:
Capability-based system + new info to describe how values

may be exchanged among system components

Generalize Group Types [CGG00] adding DAC’s ingredients:

G [T || ∆]

structural info
about values

delivery policy, to control
how values are passed around

(to which authorities,
with which capabilities)

authority in control
of the value

Our goal
Use TYPES

1. to express powerful and flexible discretionary
access control policies over names (resources)

(by means of subtyping, capabilities,
a special default group, recursive types)

2. to prove that in well-typed processes
• all names flow according to the delivery

policies specified by their types,
• and they are received at the intended sites

with the intended capabilities.

Type-based control of the spooler

job : Job [fd || Spooler Printer Client]

spool<job>

print<x> ack <x>

to be first delivered to the spooler
then passed on to the printer, and

only then sent back to clients as an ack

job is a
file descriptor

Type-based control of the spooler

job : Job [fd || Spooler Printer Client]

spool<job>

print<x> ack <x>

spool : Spooler [(Job [fd || Printer Client])rw || ∆]

spool is a (r/w) channel
controlled by the Spooler

spool itself should be
delivered as dictated by ∆

It carries a file desc which may be passed on to a client
only after having been transmitted to the printer

Type based control of the spooler

The client spawns a job with the following type:
job : Job [fd || Spooler Printer Client]

spool <job>

print<job >

ack <job>

Type based control of the spooler

Job[fd || Printer Client]

Job [fd ||]
Job[fd || Client]

job must be given different types as it is delivered !!

Type based control of the spooler

The client spawns a job with the following type:
job : Job [fd || Spooler Printer Client]

Job[fd || Printer Client]

spool <job>

print<job > Job [fd ||]
Job[fd || Client] ack <job>

job must be given different types as it is delivered !!

A typed π-calculus with groups

Syntax as in [CGG00]:

P ::= 0 | a(x1:τ1,…,xk:τk).P | a <b1,…,bk> .P

(ν n:τ) P | (ν G) P | P|P | !P

Types generalize those in [CGG00]:

Structural types T ::= B | (τ1,…,τk)
χ

Resource types τ ::= G [T || ∆] | X | µX.G[T || ∆]

Delivery policies ∆ ::= [Gi → τi] Gi=Gj => τi=τjIi ∈

Sample types
• Channels of group G that may be received and

retransmitted at any other group as write-only channels:

µX. G[(nat)rw || G→X ;
Default→ µY.G[(nat)w|| Default → Y]]

• Alice and Bob establish a private exchange:
Alice sends a fresh name cAB to a trusted Server and delegates it to
forward it to Bob.
The Server should only act as a forwarder and not interfere with
the exchanges between Alice and Bob.

cAB : Alice[(data)rw || Server → Alice[(data) || Bob → Alice[(data)rw ||]]]

Operational Semantics
Different occurrences of the same name may flow along

different paths.

n1:G1[…], n2:G2[…], n3:G3[…] and m : G[B|| G1→G2 ; G3]

P = n1<m> | n3<m> | n1(x). n3(y). n2<x>

Q = n1<m> | n3<m> | n1(x). n3(y). n2<y>

P is safe, Q is unsafe, but P→→ n2<m> ←← Q

Operational Semantics
Names are tagged to record their flow history: m[npq]

n[φ] < m[ρ] >. A | n[η] (x:τ). B → A | B{ x := m[ρ n] }

Now the computation exhibits different flows for P and Q:

P = n1<m> | n3<m> | n1(x).n3(y).n2<x> →→ n2 < m[n1] >

Q = n1<m> | n3<m> | n1(x).n3(y).n2<x> →→ n2 < m[n3] >

Theorem:
1. If A →* B then |A| →* |B|.
2. If |A| →* Q then A→* B for some B s.t. |B| ≡ Q.

Type formation and Subtyping

Good types
G[T || G1 → G[T1 || G2 → G[T2 || D]]]

• Delivery preserves the authority in control of values
• Ti are supertypes of T

Subtyping Γ |− T <: T’ Γ |− ∆ <: ∆’
Γ |− G[T || ∆] <: G [T’ || ∆’]

Where T’ contains less capabilities then T and
∆’ is more restrictive then ∆

Core Typing Rules

(Delivery)

Γ |− n[φ] : G[T || ∆]

Γ |− m[φ] : G1[T1 || ∆1]

(G1→ τ ∆) or (Default → τ ∆) ∈ ∈

Γ |− n [φm] : τ

Core Typing Rules

(Input)
Γ |− a : G[(τ1…τk)r || ∆] Γ, x1:τ1,…, xk:τk |− P

Γ |− a(x1:τ1,…, xk:τk). P

(Output)
Γ |− a : G[(τ1…τk)w || ∆] Γ |− P
Γ |− bi: Gi [Ti || ∆i] Γ |− ∆i(G) <: τi

Γ |− a <b1,…, bk > . P

Soundness: Access Control

If Γ |− n[φ] < a1,…,ak >.A | n[ε](x1:ρ1,…,xk:ρk).B then

Γ|− n[φ] : G[(τ1,…,τk)w || ∆]
The write capability

has been grated
to the writer process

Γ|− n[ε] : G[(ρ1,…,ρk)r || ∆’]
The read capability

has been grated
to the reader process

Γ |− ai : σi σi ↓ G <: τi τi <: ρi
The types σi of the emitted values
allow ai to be delivered to G at a subtype
of the type ρi at which they are received

Soundness: Flow Control

Let Γ |− A be a derivable judgment
depending on the judgment Γ’|− n[φ] : τ

then
Γ’(n) = ρ such that ρ ↓ φ <: τ

n flowed as
described in φ

The type ρ allows n
to be delivered at a subtype of τ

after flowing according to φ

Type soundness
Access control + Flow control

+ Subject Reduction

Safety properties preserved
along the computation

… Secrecy as in [CGG00] observing that
«G[T1,…,Tn] » = µX. G[(«T1»,…, «Tn»)rw || Default → X]

Conclusions
What we have done
• Developed a new type foundation for discretionary access control

policies
• Flexible/powerful and provides strong security guarantees
• A conservative extension of [CGG00]’s type system

A lot to be done
• Allow changes in the ownership of names, account for ordering

relationships over authorities,
• Accommodate declassification mechanisms
• Study the import of type-based policies with typed behavioral

equivalences

Delivery Types vs Session Types

: Observation point

SESSION TYPES

DELIVERY TYPES

	Type-Based Discretionary Access Control
	Access Control in p-calculus
	Access Control in p-calculus
	Capability Types for Access Control
	Looking for stronger guarantees
	Looking for stronger guarantees
	Need more informative types
	Controlling delivery of names
	Our goal
	Type-based control of the spooler
	Type-based control of the spooler
	Type based control of the spooler
	Type based control of the spooler
	Type based control of the spooler
	A typed p-calculus with groups
	Sample types
	Operational Semantics
	Operational Semantics
	Type formation and Subtyping
	Core Typing Rules
	Core Typing Rules
	Soundness: Access Control
	Soundness: Flow Control
	Type soundness
	Conclusions
	Delivery Types vs Session Types

