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Abstract. We propose the first compositional event structure semantics for a
very expressive π-calculus, generalising Winskel’s event structures for CCS. The
π-calculus we model is the πI-calculus with recursive definitions and summa-
tions. First we model the synchronous calculus, introducing a notion of dynamic
renaming to the standard operators on event structures. Then we model the asyn-
chronous calculus, for which a new additional operator, called rooting, is nec-
essary for representing causality due to new name binding. The semantics are
shown to be operationally adequate and sound with respect to bisimulation.

1 Introduction

Event structures [18] are a causal model for concurrency which is particularly suited
for the traditional process calculi such as CCS, CSP, SCCS and ACP. Event structures
intuitively and faithfully represent causality and concurrency, simply as a partial order
and an irreflexive binary relation. The key point of the generality and applicability of
this model is the compositionality of the parallel composition operator: the behaviour
of the parallel composition of two event structures is determined by the behaviours of
the two event structures. This modularity, together with other algebraic operators such
as summation, renaming and hiding, leads also to a straightforward correspondence be-
tween the event structures semantics and the operational semantics - such as the labelled
transition system - of a given calculus [26].

In this paper we propose the first compositional event structure semantics of a fully
concurrent variant of the π-calculus. The semantics we propose generalises Winskel’s
semantics of CCS [22], it is operationally adequate with respect to the standard labelled
transition semantics, and consequently it is sound with respect to bisimilarity.

The π-calculus we consider is known in the literature as the πI-calculus [20], where
the output of free names is disallowed. The symmetry of input and output prefixes,
that are both binders, simplifies considerably the theory, while preserving most of the
expressiveness of the calculi with free name passing [2,17,19].

In order to provide an event structure semantics of the π-calculus, one has in particu-
lar to be able to represent dynamic creations of new synchronisation channels, a feature
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that is not present in traditional process algebras. In Winskel’s event structure seman-
tics of CCS [22], the parallel composition is defined as product in a suitable category
followed by relabelling and hiding. The product represents all conceivable synchroni-
sations, the hiding removes synchronisations that are not allowed, while the relabelling
chooses suitable names for synchronisation events. In CCS one can decide statically
whether two events are allowed to synchronise, whereas in the π-calculus, a synchroni-
sation between two events may depend on which synchronisations took place before.

Consider for instance the π-process a(x).x(u).0 | a(z).z(v).0 where a(x).P is an
input at a, a(z).Q is an output of a new name z to a and 0 denotes the inaction. This
process contains two synchronisations, first along the channel a and then along a private,
newly created, channel z. The second synchronisation is possible only since the names
x and z are made equal by the previous synchronisation along a. To account for this
phenomenon, we define the semantics of the parallel composition by performing hiding
and relabelling not uniformly on the whole event structure, but relative to the causal
history of events.

The full symmetry underlying the πI-calculus theory has a further advantage: it
allows a uniform treatment of causal dependencies. Causal dependencies in the π-
processes arise in two ways [3,11]: by nesting prefixes (called structural or prefix-
ing or subject causality) and by using a name that has been bound by a previous
action (called link or name or object causality). While subject causality is already
present in CCS, object causality is distinctive of the π-calculus. In the synchronous
πI-calculus, object causality always appears under subject causality, as in a(x).x(y).0
or in (νc)a(x).(c(z).0 | c(w).x(y).0), where the input on x causally depends in both
senses from the input on a. As a result, the causality of synchronous πI-calculus can be
naturally captured by the standard prefixing operator of the event structures, as in CCS.

On the other hand, in the asynchronous πI-calculus, the bound output process is no
longer a prefix: in a(x)P , the continuation process P can perform any action α before
the output of x on a, provided that α does not contain x. Thus the asynchronous output
has a looser causal dependency. For example, in (νc)a(x)(c(z).0 | c(w)x(y).0), a(x)
only binds the input at x, and the interaction between c(z) and c(w) can perform before
a(x), thus there exists no subject causality. Representing this output object causality
requires a novel operator on event structures that we call rooting, whose construction is
inspired from a recent study on Ludics [9].

In this paper we present these new constructions, and use them to obtain compo-
sitional, sound and adequate semantics for both synchronous and asynchronous πI-
calculus. Proofs and more explanations can be found in the extended version [8].

2 Internal π-Calculus

This section gives basic definitions of the πI-calculus [20]. This subcalculus captures
the essence of name passing with a simple labelled transition relation. In contrast with
the full π-calculus, only one notion of strong bisimulation exists, and it is a congruence.

Syntax. The syntax of the monadic, synchronous πI-calculus [20] is the following,
where the symbols a, b, . . . , x, y, z range over the infinite set of names denoted by
Names.
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Prefixes π ::= a(x) | a(x) Definitions A(x̃ | z) = PA

Processes P, Q ::=
∑

i∈I πi.Pi | P | Q | (νa)P | A〈x̃ | z〉

The syntax consists of the parallel composition, name restriction, finite summation of
guarded processes and recursive definition. In

∑
i∈I πi.Pi, I is a finite indexing set;

when I is empty we simply write 0 and denote with + the binary sum. The two prefixes
a(x) and a(x) represent, respectively, an input prefix and a bound output prefix. A
process a(x).P can perform an input at a and x is the placeholder for the name so
received. The bound output case is symmetric: a process a(x).P can perform an output
of the fresh name x along the channel a. Differently from the π-calculus, where both
bound and free names can be sent along channels, in the πI-calculus only bound names
can be communicated, modelling the so called internal mobility. We often omit 0 and
objects (e.g. write a instead of a(x).0).

The choice of recursive definitions rather than replication for infinite processes is
justified by the fact that the πI-calculus with replication is strictly less expressive [20].
We assume that every constant A has a unique defining equation A(x̃ | z) = PA. The
symbol x̃ denotes a tuple of distinct names, while z represents an infinite sequence of
distinct names N → Names. We denote z(n) as zn. The tuple x̃ contains all free names
of PA and the range of z contains all bound names of PA. The parameter z does not
usually appear in recursive definitions in the literature. The reason we add it is that we
want to maintain the following Assumption:

Every bound name is different from any other name, either bound or free. (1)

In the π-calculus, this policy is usually implicit and maintained along the computation
by dynamic α-conversion: every time the definition A is unfolded, a new copy of the
process PA is created whose bound names must be fresh. This dynamic choice of names
is difficult to interpret in the event structures. Hence our recursive definitions prescribe
all the names that will be possibly used for a precise semantic correspondence. Notice
also that this assumption has no impact on the process behaviour since every π-process
can be α-renamed so that it satisfies (1).

The set of free and bound names of P , written by fn(P ) and bn(P ), is defined as
usual, for instance fn(a(x).P ) = {a} ∪ (fn(P ) \ {x}). As for constant processes, the
definition is as follows: fn(A〈x̃ | z〉) = {x̃} and bn(A〈x̃ | z〉) = z(N).

Operational Semantics. The operational semantics is given in the following in terms of
an LTS (in late style) where we let α,β range over the set of labels {τ, a(x), a(x)}.

(IN LATE)

a(x).P
a(x)
−−→ P

(OUT)

a(x).P
a(x)
−−→ P

(COMM)

P
a(x)
−−→ P ′ Q

a(y)
−−→ Q′

P | Q
τ

−−→ (νy)(P ′{y/x} | Q′)

(PAR)

P
α

−−→ P ′

P | Q
α

−−→ P ′ | Q

(SUM)

Pi

α
−−→ P ′

i

i∈I Pi

α
−−→ P ′

i

i ∈ I

(RES)

P
α

−−→ P ′

(νa)P
α

−−→ (νa)P ′
a /∈ fn(α)
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(REC)

PA{ỹ/x̃}{w/z}
α

−−→ P ′

A〈ỹ | w〉
α

−−→ P ′
A(x̃ | z) = PA

The rules above illustrate the internal mobility characterising the πI-calculus communi-
cation. In particular, according to (COMM), we have that a(x).P | a(y).Q τ−→
(νy)(P{y/x} | Q) where the fresh name y appearing in the output is chosen as the
“canonical representative” of the private value that has been communicated. In (REC), the
unfolding of a new copy of the recursive process updates the sequence of bound names.
The definition of the substitution {w/z} can be found in [8] and is sketched in the Ap-
pendix. Note also that the use of Assumption 1, makes it unnecessary to have the side
conditions that usually accompany (PAR) and (RES).

Proposition 1. Let P be a process that satisfies Assumption 1. Suppose P
α−→ P ′. Then

P ′ satisfies Assumption 1.

Example 1. Consider A(x | z) = x(z0).A〈z0 | z′〉 | x(z1).A〈z1 | z′′〉, where z′(n) =
z(2n+2) and z′′(n) = z(2n+3). In this case the sequence of names z is partitioned into
two infinite subsequences z′ and z′′ (corresponding to even and odd name occurrences),
so that the bound names used in the left branch of A are different from those used in
the right branch. Intuitively A〈a | z〉 partially “unfolds” to a(z0).(z0(z2).A〈z2 | z′1〉
| z0(z4).A〈z4 | z′2〉) | a(z1).(z1(z3).A〈z3 | z′′1 〉 | z1(z5).A〈z3 | z′′2 〉) with suitable
z′1, z′2, z′′1 , z′′2 .

We end this section with the definition of strong bisimilarity in the πI-calculus.

Definition 1 (πI strong bisimilarity). A symmetric relation R on πI processes is a
strong bisimulation if P R Q implies:

– whenever P
τ

−−→ P ′, there is Q′ s.t. Q
τ

−−→ Q′ and P ′RQ′.

– whenever P
a(x)

−−−→ P ′, there is Q′ s.t. Q
a(y)

−−−→ Q′ and P ′{z/x}RQ′{z/y}.

– whenever P
a(x)

−−−→ P ′, there is Q′ s.t. Q
a(y)

−−−→ Q′ and P ′{z/x}RQ′{z/y}.

with z being any fresh variable. Two processes P, Q are bisimilar, written P ∼ Q, if
they are related by some strong bisimulation.

This definition differs from the corresponding definition in [20] because we do not have
the α-conversion rule, and thus we must allow Q to mimic P using a different bound
name. The relation ∼ is a congruence.

3 Event Structures

This section reviews basic definitions of event structures, that will be useful in Section 4.
Event structures appear in the literature in different forms, the one we introduce here is
usually referred to as prime event structures [10,18,23].
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Definition 2 (Event Structure). An event structure is a triple E = 〈E, ≤,%〉 s.t.

– E is a countable set of events;
– 〈E, ≤〉 is a partial order, called the causal order;
– for every e ∈ E, the set [e) := {e′ | e′ < e}, called the enabling set of e, is finite;
– % is an irreflexive and symmetric relation, called the conflict relation, satisfying

the following: for every e1, e2, e3 ∈ E if e1 ≤ e2 and e1 % e3 then e2 % e3.

The reflexive closure of conflict is denoted by ). We say that the conflict e2 % e3 is
inherited from the conflict e1 % e3, when e1 < e2. If a conflict e1 % e2 is not inherited
from any other conflict we say that it is immediate. If two events are not causally related
nor in conflict they are said to be concurrent.

Definition 3 (Labelled event structure). Let L be a set of labels. A labelled event
structure E = 〈E, ≤,%,λ〉 is an event structure together with a labelling function
λ : E → L that associates a label to each event in E.

Intuitively, labels represent actions, and events should be thought of as occurrences of
actions. Labels allow us to identify events which represent different occurrences of the
same action. In addition, labels are essential when composing two event structures in a
parallel composition, in that they are used to point out which events may synchronise.

In order to give the semantics of a process P as an event structure E , we have to
show how the computational steps of P are reflected into E . This will be formalised
in the Operational Adequacy Theorem 2 in Section 4, which is based on the following
labelled transition systems over event structures.

Definition 4. Let E = 〈E, ≤,%,λ〉 be a labelled event structure and let e be one of its
minimal events. The event structure E*e = 〈E′, ≤′,%′,λ′〉 is defined by: E′ = {e′ ∈
E | e′ +) e}, ≤′=≤|E′ , %′=%|E′ , and λ′ = λE′ . If λ(e) = β, we write E β−→ E*e .

Roughly speaking, E*e is E minus the event e, and minus all events that are in conflict
with e. The reachable LTS with initial state E corresponds to the computations over
E . It is usually defined using the notion of configuration [26]. However, by relying on
the LTS as defined above, the adequacy theorem has a simpler formulation. A precise
correspondence between the two notions of LTS can be easily defined.

Event structures have been shown to be the class of objects of a category [26], whose
morphisms are defined as follows. Let E1 = 〈E1, ≤1,%1〉, E2 = 〈E2, ≤2,%2〉 be
event structures. A morphism f : E1 → E2 is a partial function f : E1 → E2 such
that (i) f reflects causality: if f(e1) is defined, then

[
f(e1)

)
⊆ f

(
[e1)

)
; (ii) f reflects

reflexive conflict: if f(e1), f(e2) are defined, and if f(e1) ) f(e2), then e1 ) e2.
It is easily shown that an isomorphism in this category is a bijective function that

preserves and reflects causality and conflict. In the presence of labelled event structures
E1 = 〈E1, ≤1,%1,λ1〉, E2 = 〈E2, ≤2,%2,λ2〉 on the same set of labels L, we will
consider only label preserving isomorphisms, i.e. isomorphisms f : E1 → E2 such that
λ2(f(e1)) = λ1(e1). If there is an isomorphism f : E1 → E2, we say that E1, E2 are
isomorphic, written E1 ∼= E2.

We provide here an informal description of several operations on labelled event struc-
tures, that we are going to use in the next section. See [23] for more details.
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– Prefixing a.E . This operation adds to the event structure a new minimal element,
labelled by a, below every other event in E . Conflict, order, and labels of original
elements remain the same as in E .

– Prefixed sum
∑

i∈I ai.Ei. This is obtained as the disjoint union of copies of the
event structures ai.Ei. The order relation of the new event structure is the disjoint
union of the orders of ai.Ei and the labelling function is the disjoint union of the
labelling functions of ai.Ei. As for the conflict relation, we take the disjoint union
of the conflicts appearing in ai.Ei and we extend it by putting in conflict every pair
of events belonging to two different copies of ai.Ei.

– Restriction (or Hiding) E \X where X ⊆ L is a set of labels. This is obtained by re-
moving from E all events with label in X and all events that are above (i.e., causally
depend on) one of those. On the remaining events, order, conflict and labelling are
unchanged.

– Relabelling E [f ] where L and L′ are two sets of labels and f : L → L′. This
operation just consists in composing the labelling function λ of E with the function.
The new event structure is labelled over L′ and its labelling function is f ◦ λ.

3.1 The Parallel Composition

The parallel composition of two event structures E1 and E2 gives a new event structure
E ′ whose events model the parallel occurrence of events e1 ∈ E1 and e2 ∈ E2. In par-
ticular, when the labels of e1 and e2 match according to an underlying synchronisation
model, E ′ records (with an event e′ ∈ E′) that a synchronisation between e1 and e2 is
possible, and deals with the causal effects of such a synchronisation.

The parallel composition is defined as the categorical product followed by restriction
and relabelling [26]. The categorical product is unique up to isomorphism, but it can be
explicitly constructed in different ways. We give a brief outline of one such construc-
tion [10,21]. Let E1 := 〈E1, ≤1,%1〉 and E2 := 〈E2, ≤2,%2〉 be event structures. Let
E∗

i := Ei . {∗}, where ∗ is a distinguished event. The categorical product is given by
an event structure E = 〈E, ≤,%〉 and two morphisms πi : E → Ei (the projections).
The elements of E are of the form (W, e1, e2) where W is a finite subset of E, and
ei ∈ E∗

i . Intuitively W is the enabling set of the event (W, e1, e2). Order and conflict
are defined using order and conflict relations of E1, E2 (see [10,21] for the details).
The projections are defined as π1(W, e1, e2) = e1 and π2(W, e1, e2) = e2. For event
structures with labels in L, let be L∗ := L . {∗} where ∗ is a distinguished label.
Then the labelling function of the product takes on the set L∗ × L∗, and we define
λ(W, e1, e2) = (λ∗1(e1),λ∗2(e2)), where λ∗i (ei) = λi(ei) if ei += ∗, and λ∗i (∗) = ∗.

The synchronisation model underlying the relabelling operation needed for parallel
composition is formalised by the notion of synchronisation algebra [26]. A synchroni-
sation algebra S is a partial binary operation •S defined on L∗. If αi are the labels of
events ei ∈ Ei, then α1 •S α2 is the label of the event e′ ∈ E′ representing the syn-
chronisation of e1 and e2. If α1 •S α2 is undefined, the synchronisation event is given a
distinguished label bad indicating that this event is not allowed and should be deleted.

Definition 5 (Parallel Composition of Event Structures). Let E1, E2 two event struc-
tures labelled over L, let S be a synchronisation algebra, and let fS : L∗ → L′ =
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L∗ ∪ {bad} be a function defined as fS(α1,α2) = α1 •S α2, if S is defined on
(α1,α2), and fS(α1,α2) = bad otherwise. The parallel composition E1‖SE2 is de-
fined as the categorical product followed by relabelling and restriction1: E1‖SE2 =
(E1 × E2)[fS ] \ {bad}. The subscripts S are omitted when the synchronisation algebra
is clear from the context.

Example 2. We show a simple example of parallel composition. Let L = {α,β,α, τ}
Consider the two event structures E1, E2, where E1 = {a, b}, E2 = {a′}, with a ≤1 b
and λ1(a) = α,λ1(b) = β,λ2(a′) = α. The event structures are represented as follows:

E1 :
β

E2 : E3 :
β β

α α α !"!" τ !"!" α

where curly lines represent immediate conflict, while the causal order proceeds upwards
along the straight lines. Consider the synchronisation algebra obtained as the symmetric
closure of the following rules: α•α = τ , α•∗ = α, α•∗ = α, β •∗ = β and undefined
otherwise. Then E3 := E1‖E2 is the event structure 〈E3, ≤,%,λ〉 where E3 = {e :=
(∅, a, ∗), e′ := (∅, ∗, a′), e′′ := (∅, a, a′), d := ({e}, a′, ∗), d′′ := ({e′′}, a′, ∗)}, the
ordering ≤ is defined as e ≤ d, e′′ ≤ d′′, while the conflict % is defined as e % e′′,
e′ % e′′, e % d′′, e′ % d′′, e′′ % d, d % d′′. The labelling function is λ(e) = α,
λ(e′) = α,λ(e′′) = τ ,λ(d) = λ(d′′) = β.

A large CPO of event structures. We say that an event structure E is a prefix of an event
structure E ′, denoted E ≤ E ′ if there exists E ′′ ∼= E ′ such that E ⊆ E′′ and no event in
E′′ \ E is below any event of E.

Winskel [22] has shown that the class of event structures with the prefix order is a
large CPO, and thus the limits of countable increasing chains exist. Moreover all oper-
ators on event structures are continuous. We will use this fact to define the semantics of
the recursive definitions.

4 Event Structure Semantics

This section defines the denotational semantics of πI-processes in terms of labelled
event structures. Given a process P , we associate to P an event structure EP whose
events e represent the occurrence of an action λ(e) in the LTS of P . Our main issue is
compositionality: the semantics of the process P | Q should be defined as EP || EQ so
that the operator || satisfactorily models the parallel composition of P and Q.

4.1 Generalised Relabelling

It is clear from Definition 5 that the core of the parallel composition of event structures
is the definition of a relabelling function encoding the intended synchronisation model.

1 In [26], the definition of parallel composition is (E1 × E2 \X)[f ], where X is the set of labels
(pairs) for which f is undefined. We can prove that such a definition is equivalent to ours,
which is more suitable to be generalised to the π-calculus.
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As discussed in the Introduction, name dependences appearing in πI-processes let a
synchronisation between two events possibly depend on the previous synchronisations.
We then define a generalised relabelling operation where the relabelling of an event de-
pends on (the labels of) its causal history. Such a new operator is well-suited to encode
the πI-communication model and allows the semantics of the πI-calculus to be defined
as an extension of CCS event structure semantics.

Definition 6 (Generalised Relabelling). Let L and L′ be two sets of labels, and let
Pom(L′) be a pomset (i.e., partially ordered multiset) of labels in L′. Given an event
structure E = 〈E, ≤,%,λ〉 over the set of labels L, and a function f : Pom(L′) ×
L −→ L′, we define the relabelling operation E [f ] as the event structure E ′ = 〈E, ≤
,%,λ′〉 with labels in L′, where λ′ : E −→ L′ is defined as follows by induction on
the height of an element of E:

if h(e) = 0 then λ′(e) = f( ∅, λ(e) )

if h(e) = n + 1 then λ′(e) = f(λ′([e)), λ(e) )

In words, an event e is relabelled with a label λ′(e) that depends on the (pomset of)
labels of the events belonging to its causal history [e).

The set of labels we consider is L = {a(x), a(x), τ | a, x ∈ Names}. For the par-
allel composition we need an auxiliary set of labels L′ = {a(x), a(x), τx=y | a, x, y ∈
Names} ∪ {bad, hide}, where bad and hide are distinguished labels.

In L′, the silent action τ is tagged with the couple of bound names that get identified
through the synchronisation. This extra piece of information carried by τ -actions is
essential in the definition of the generalised relabelling function. Let for instance e
encode the parallel occurrence of two events e1, e2 labelled, resp., x(x′) and y(y′),
then e1 and e2 do synchronise only if x and y are equal, that is only if in the causal
history of e there is an event labelled with τx=y; in such a case e can then be labelled
with τx′=y′ .

The distinguished label bad denotes, as before, synchronisations that are not allowed,
while the new label hide denotes the hiding of newly generated names. Both labels are
finally deleted.

Let fπ : Pom(L′)× (L. {∗}×L. {∗}) −→ L′ be the relabelling function defined
as:

fπ(X, 〈a(y), a(z)〉) = fπ(X, 〈a(z), a(y)〉) = τy=z

fπ(X, 〈a(y), b(z)〉) = fπ(X, 〈b(z), a(y)〉) =
{
τy=z if τa=b ∈ X
bad otherwise

fπ(X, 〈α, ∗〉) = fπ(X, 〈∗,α〉) =
{

hide if τa=b ∈ X & α = a(y), a(y)
α otherwise

fπ(X, 〈α,β〉) = bad otherwise

The function fπ encodes the πI-synchronisation model in that it only allows synchro-
nisations between input and output over the same channel, or over two channels whose
names have been identified by a previous communication. The actions over a channel
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a that has been the object of a previous synchronisation are relabelled as hide since,
according to internal mobility, a is a bound name.

The extra information carried by the τ -actions is only necessary in order to define
the relabelling, but it should later on be forgotten, as we do not distinguish τ -actions in
the LTS. Hence we apply a second relabelling er that simply erases the tags:

er(α) =
{
τ if α = τx=y

α otherwise

4.2 Definition of the Semantics

The semantics of the πI-calculus is then defined as follows by induction on processes,
where the parallel composition of event structure is defined by

E1‖πE2 = ((E1 × E2) [fπ][er]) \{bad, hide}

To deal with recursive definitions, we use an index k to denote the level of unfolding.
{|0 |}k = /0 {|∑i∈I πi.Pi |}k = ∑i∈I πi.{|Pi |}k

{|P | Q |}k = {|P |}k ‖π {|Q |}k {|(νa)P |}k = {|P |}k\{l ∈ L | a is the subject of l}

{|A〈ỹ | w〉 |}0 = /0 {|A〈ỹ | w〉 |}k+1 = {|PA{ỹ/x̃}{w/z}|}k

Recall that all operators on event structures are continuous with respect to the prefix
order. It is thus easy to show that, for any k, {| P |}k ≤ {| P |}k+1. We define {| P |} to be
the limit of the increasing chain ...{| P |}k ≤ {| P |}k+1 ≤ {| P |}k+2...:

{| P |} = supk∈N{| P |}k

Since all operators are continuous w.r.t. the prefix order we have the following result:

Theorem 1 (Compositionality). The semantics {| P |} is compositional, i.e.

– {| P | Q |} = {| P |} ‖π {| Q |},
– {|

∑
i∈I πi.Pi |} =

∑
i∈I πi.{| Pi |}, and

– {| (νa)P |}k = {| P |}\{l ∈ L | a is the subject of l}.

4.3 Examples

Example 3. As the first example, consider the process P = a(x).x(u) | a(z).z(v) dis-
cussed in the Introduction. We show in the following the two event structures E1, E2
associated to the basic threads, as well as the event structure corresponding to {| P |} =
E1 ‖π E2. Figure 1 shows two intermediate steps involved in the construction of {| P |},
according to the definition of the parallel composition operator.

E1 :

x(u)

a(x)

E2 :

z(v)

a(z)

E1 ‖π E2 :

x(u) τ z(v)

a(x) τ !"!"!""! "! "! "! a(z)
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Example 4. As the second example, consider Q = a(w) | P , where P is the process
above. In Q two different communications may take place along the channel a: either
the fresh name w is sent, and the resulting process is stuck, or the two threads in P can
synchronise as before establishing a private channel for a subsequent communication.
The behaviour of Q is illustrated by the following event structure which corresponds to
{| Q |} = E3 ‖π {| P |}, where E3 = {| a(w) |} is a simple event structure consisting of a
single event labeled by a(w).

x τ z

a(w) τ !"!"!""! "! "!
#$ %& '( )* +, -. !" /0 12 34 56 78 9:a(x) !"!"!" τ !"!"!" a(z)

Example 5. As a further example, let R = a(x).
(
x(y).y | x(y′).y′) | a(z).

(
z(w).

(w | w)
)

whose two threads correspond to the following two event structures:

E1 :

y y′

x(y)

!!!!!!
x(y′)

""""""

a(x)

E2 :

w

###### τ !"!"!"!""! "! "! "! w

$$$$$$

z(w)

a(z)

R allows a first communication on a that identifies x and z and triggers a further syn-
chronisation with one of the outputs over x belonging to E1. This second communication
identifies w with either y or y′, which can now compete with w for the third synchro-
nisation. The event structure corresponding to {| R |} = E1 ‖π E2 is the following.

τ

##
##

##
# τ τ τ

$$
$$

$$
$

τ !"!"!"!"!"!"!"!" τ

E1 !"!"!"!"!"!"!"!" τ

%%%%%%

&&&&&&
E2"! "! "! "! "! "! "! "!

Example 6. Consider the recursive process, seen in Example 1 in Section 2, A(x | z) =
x(z0).A〈z0 | z′〉 | x(z1).A〈z1 | z′′〉, where z′(n) = z(2n + 2) and z′′(n) = z(2n + 3).
In the following, we draw the first approximations of the semantics of P = A〈a | z〉:

{|P |}0 : {|P |}1 : {|P |}2 :

z0(z2) z0(z4) z1(z3) z1(z5)

a(z0) a(z1) a(z0)

!!!!!!

a(z1)

""""""

z2(z6) z2(z10) z4(z8) z4(z12) z3(z7) z3(z11) z5(z9) z5(z13)

{| P |}3 : z0(z2)

''''''

z0(z4)

((((((
z1(z3)

''''''

z1(z5)

((((((

a(z0)

)))))))))))

''''''

a(z1)

***********

((((((
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(x(u),z(v))

(∗,z(v)) (x(u),∗)

##
##

##
##

##
##

#
!"!" (x(u),z(v)) (∗,z(v))

$$
$$

$$
$$

$$
$$

$

"! "! (x(u),∗)

(x(u),∗) !"!" (x(u),a(z))

%%%%%%%

#$#$#$#$#$#$#$#$#$#$#$#$#$#$#$#$#$#$#$#$#$#$#$#$#$#$#$#$#$#$#$#$#$
(a(x),z(v))

%& %& %& %& %& %& %& %& %& %& %& %& %& %& %& %& %& %& %& %& %& %& %& %& %& %& %& %& %& %& %& %& %&

&&&&&&&
(∗,z(v))"! "!

(a(x),∗) (a(x),a(z)) !"!"!"!"!"!"!"!"!"!"!"!"!"!"!"!"!""! "! "! "! "! "! "! "! "! "! "! "! "! "! "! "! "! (∗,a(z))
Step 1. E1 ×E2

bad

(∗,z(v)) hide

''
''

''
''

''
''

!"!" τu=v hide

((
((

((
((

((
((

"! "! (x(u),∗)

x(u) !"!"!" bad

))
))

))
)

#$#$#$#$#$#$#$#$#$#$#$#$#$#$#$#$#$#$#$#$#$#$#$#$#$#$#$ bad

%& %& %& %& %& %& %& %& %& %& %& %& %& %& %& %& %& %& %& %& %& %& %& %& %& %& %&

**
**

**
* z(v)"! "! "!

a(x) τx=z !"!"!"!"!"!"!"!"!"!"!"!"!"!"!""! "! "! "! "! "! "! "! "! "! "! "! "! "! a(z)
Step 2. (E1 ×E2)[ fπ]

Fig. 1. Event structure corresponding to a(x).x(u) | a(z).z(v)

4.4 Properties of the Semantics

The operational correspondence is stated in terms of the labelled transition system de-
fined in Section 3.

Theorem 2 (Operational Adequacy). Suppose P
β

−−→ P ′ in the πI-calculus. Then

{| P |}
β

−−→ ∼= {| P ′ |}. Conversely, suppose {| P |}
β

−−→ E ′. Then there exists P ′ such

that P
β

−−→ P ′ and {| P ′ |} ∼= E ′.

The proof technique is similar to the one used in [21], but it takes into account the
generalised relabelling. As an easy corollary, we get that if two πI processes have iso-
morphic event structure semantics, their LTSs are isomorphic too. This clearly implies
soundness w.r.t. bisimilarity.

Theorem 3 (Soundness). If {| P |} ∼= {| Q |}, then P ∼ Q.

The converse of the soundness theorem (i.e. completeness) does not hold. In fact this
is always the case for event structure semantics (for instance the one in [22]), because
bisimilarity abstracts away from causal relations, which are instead apparent in the event
structures. As a counterexample, we have a.b+b.a ∼ a | b but {| a.b + b.a |} +∼= {| a | b |}.

Isomorphism of event structures is indeed a very fine equivalence, however it is, in a
sense behavioural, as it is strictly coarser than structural congruence.
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Proposition 2. If P ≡ Q then {| P |} ∼= {| Q |}

The converse of the previous proposition does not hold: {| (νa)a.P |} ∼= {|0 |} = ∅
but (νa)a.P +≡ 0. As a further counterexample, we have (νa)(a(x).x(u) | a(y).
y(v)) +≡ (νa, b)(a(x).b(u) | a(y).b(v)), but both processes correspond to the same
event structure containing only two events e1, e2 with e1 ≤ e2 and λ(e1) = λ(e2) = τ .

5 Asynchronous πI-Calculus

This section studies the asynchronous πI-calculus [4,15,17], whose syntax slightly dif-
fers from that in Section 2 in the treatment of the output.

Processes P, Q ::=
∑

i∈I ai(xi).Pi | a(x)P | P | Q | (νa)P | A〈x̃ | z〉

Definition A(x̃ | z) = PA

The new syntax of the bound output reflects the fact that there is a looser causal connec-
tion between the output and its continuation. A process a(x)P is different from a(x).P
in that it can activate the process P even if the name x has not been emitted yet along
the channel a. The operational semantics can be obtained from that of Section 2 by
removing the rule (OUT) and adding the following three rules:

(OUT)

a(x)P
a(x)
−−→ P

(ASYNC)

P
α

−−→ P′

a(x)P
α

−−→ a(x)P′
x /∈ fn(α)

(ASYNCH COMM)

P
a(y)
−−→ P′

a(x)P
τ

−−→ (νx)P′{x/y}

Relying on this LTS, the definition of strong bisimilarity for the asynchronous πI-
calculus is identical to that in Section 2.

5.1 Denotational Semantics

The event structure semantics of the asynchronous πI-calculus requires to encode the
output process a(x)P , introducing the following novel operator, called rooting.

Definition 7 (Rooting a[X ].E). Let E be an event structure labelled over L, let a be
a label and X ⊆ L be a set of labels. We define the rooting operation a[X ].E as the
event structure E ′ = 〈E′, ≤′,%′,λ′〉, where E′ = E . {e′} for some new event e′, ≤′

coincides with ≤ on E and for every e ∈ E such that λ(e) ∈ X we have e′ ≤′ e, the
conflict relation %′ coincides with %, that is e′ is in conflict with no event. Finally, λ′

coincides with λ on E and λ′(e′) = a.

The rooting operation adds to the event structure a new event, labeled by a, which is
put below the events with labels in X (and any event above them). This operation is
used to give the semantics of asynchronous bound output: given a process a(x)P , every
action performed by P that depends on x should be rooted with a(x). In addition to that,
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in order to model asynchrony, we need to also consider the possible synchronisations
between a(x) and P (for example, consider a(x)a(z).b.x, whose operational semantics
allows an initial synchronisation between a(x) and a(z).b.x).

The formal construction is then obtained as follows. Given a process a(x)P , every
action performed by P that has x as subject is rooted with a distinctive label ⊥. The
resulting structure is composed in parallel with a(x), so that (i) every “non-blocked”
action in P , (i.e. every action that does not depend on x) can synchronise with a(x),
and (ii) the actions rooted by ⊥ (i.e. those depending on x) become causally dependent
on the action a(x).

Such a composition is formalised the parallel composition operator ‖A
π built around

the generalised relabelling function fA
π : Pom(L′)×(L.{∗, ⊥}×L.{∗, ⊥}) −→ L′

that extends fπ with the following two clauses dealing with the new labels:

fA
π (X, 〈⊥, a(x)〉) = fA

π (X, 〈a(x), ⊥〉) = a(x)

fA
π (X, 〈⊥, ∗〉) = fA

π (X, 〈∗, ⊥〉) = bad

The denotational semantics of asynchronous πI-processes is then identical to that in
Section 4, with a new construction for the output:

{| a(x)P |}k = a(x) ‖A
π ⊥[X ].{| P |}k X = {α ∈ L | x is the subject of α}

Example 7. Let R be the process a(y)(a(x).b.y); its semantics is defined by the fol-
lowing event structure:

y

++
++

++
++

++
++

a(y) ‖A
π b =

a(x) ⊥

y

,,
,,

,,
,,

,,
,,

b b

τ !"!"!"
%& '( ;< )* +, -. !" /0 12 => 34 56

a(x) a(y)

First a new event labelled by ⊥ is added below any event whose label has y as subject.
In this case there is only one such event, labelled by y. Then the resulting event structure
is put in parallel with the single event labelled by a(y). This event can synchronise with
the ⊥ event or with the a(x) event. The first synchronisation simply substitutes the label
a(y) for ⊥. The second one behaves as a standard synchronisation.

Example 8. Consider the process P = a(y)(n(x) | y) | n(z)(a(w).w). The semantics
of P is the following event structure:

y

‖π

w
=

y τ w

a(y) n(x) n(z) a(w) n(x) !"!" τ !"!" n(z) a(y) !"!" τ !"!" a(w)

Note that the causality between the a(w) event and the w event is both object and
subject, and it is due to the prefix constructor. The causality between the a(y) event and
the y event is only object, and it is due to the rooting.
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5.2 Properties of the Semantics

As for the synchronous case, the semantics is adequate with respect to the labelled
transition system.

Theorem 4 (Operational Adequacy). Suppose P
β

−−→ P ′ in the πI-calculus. Then

{| P |}
β

−−→ ∼= {| P ′ |}. Conversely, suppose {| P |}
β

−−→ E ′. Then there exists P ′ such

that P
β

−−→ P ′ and {| P ′ |} ∼= E ′.

The proof is analogous to the synchronous case, with a case analysis for the rooting.

Theorem 5 (Soundness). If {| P |} ∼= {| Q |}, then P ∼ Q.

6 Related and Future Work

There are several causal models for the π-calculus, that use different techniques. There
exist semantics in terms of labelled transition systems, where the causal relations be-
tween transitions are represented by “proofs” which allow to distinguish different oc-
currences of the same transition [3,11]. In [7], a more abstract approach is followed,
which involves indexed transition systems. In [16], a semantics of the π-calculus in
terms of pomsets is given, following ideas from dataflow theory. The two papers [6,12]
present Petri nets semantics of the π-calculus.

A direct antecedent of this work presented a compositional, sound and adequate
event structure semantics for a restricted, typed variant of the π-calculus
[21]. This variant can embed the λ-calculus fully abstractly [1], but is strictly less ex-
pressive than the full π-calculus. The newly generated names of this subcalculus can
be statically determined when typing processes, therefore the semantics presented there
uses the original formulation of the parallel composition. The generalised relabelling,
the rooting, and the treatment of recursive definitions are developed first in the present
paper.

A recent work [5] provides an event structure semantics of the π-calculus. How-
ever this semantics does not correspond to the labelled transition semantics, but only to
the reduction semantics, i.e. only internal silent transitions are represented in the event
structure. For instance, in [5], the processes a(x) and 0 have both the same seman-
tics, the empty event structure. Consequently the semantics is neither compositional,
operationally adequate, nor an extension of Winskel’s semantics of CCS.

Recently Winskel [25] used event structures to give semantics to a kind of value
passing CCS. His recent work [24] extends the framework of [25] to a functor category
that can handle new name generation, but does not apply yet to the π-calculus.

The close relation between concurrent game semantics, linear logic and event struc-
ture semantics of the typed π-calculus has already been observed in [21,14,13]. In both
worlds, the types play an important role to restrict the amount of concurrency and non-
determinism. Based on the present work, it will be interesting to extend the relation to
the untyped, fully non-deterministic and concurrent framework.
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Our semantics captures the essential features of the causal dependencies created by
both synchronous and asynchronous name passing. For an extension of free name pass-
ing, we plan to use a technique analogous to the one developed for the asynchronous
πI-calculus. As observed in [3,11], the presence of free outputs allows subtle forms of
name dependences, as exemplified by (νb)(a〈b〉 | c〈b〉), where a restriction contributes
the object causality. A refinement of the rooting operator would be used for uniform
handling name causalities induced by both internal and external mobility.
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A Substitution of Sequences

Let A(x̃ | z) = PA be a recursive definition. The sequence z contains all bound names
of PA, and in particular the names of all sequences z′ that appear in PA. For each such
sequence, there exists an injective function f : N → N such that z′(n) = z(f(n)).
To obtain the process PA{w/z}, for each bound name of the form z(n) we substitute
w(n), and for each sequence z′ we substitute the sequence w′ defined as w′(n) =
w(f(n)).
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