
Form Methods Syst Des
DOI 10.1007/s10703-012-0147-3

Bisimulation and simulation algorithms on probabilistic
transition systems by abstract interpretation

Silvia Crafa · Francesco Ranzato

© Springer Science+Business Media, LLC 2012

Abstract We show how bisimulation equivalence and simulation preorder on probabilis-
tic LTSs (PLTSs), namely the main behavioural relations on probabilistic nondeterministic
processes, can be characterized by abstract interpretation. Both bisimulation and simulation
can be obtained as completions of partitions and preorders, viewed as abstract domains,
w.r.t. a pair of concrete functions that encode a PLTS. This approach provides a general
framework for designing algorithms that compute bisimulation and simulation on PLTSs.
Notably, (i) we show that the standard bisimulation algorithm by Baier et al. (2000) can be
viewed as an instance of such a framework and (ii) we design a new efficient simulation
algorithm that improves the state of the art.

Keywords Probabilistic LTS · Probabilistic bisimulation equivalence · Probabilistic
simulation preorder · Abstract interpretation · Simulation algorithm

1 Introduction

Randomization phenomena in concurrent systems have been widely studied in probabilistic
extensions of process algebras like Markov chains and probabilistic labeled transition sys-
tems (PLTSs). Most standard tools for studying nonprobabilistic processes, like behavioural
equivalences, temporal logics and model checking, have been investigated for these prob-
abilistic models. In particular, bisimulation equivalence and simulation preorder relations,
namely the main behavioural relations between concurrent systems, have been extended and
studied in a probabilistic setting [6, 10, 16, 17].

Abstract interpretation [2, 3] is a well-known general theory for specifying the approx-
imation of formal semantics. Abstract domains play an essential role in any abstract inter-
pretation design, since they encode in an ordered structure how concrete semantic proper-
ties are approximated. A number of behavioural relations, including bisimulation, stuttering
bisimulation and simulation, have been characterized in abstract interpretation as complete

S. Crafa · F. Ranzato (�)
Dipartimento di Matematica, University of Padova, Padova, Italy
e-mail: ranzato@math.unipd.it

mailto:ranzato@math.unipd.it

Form Methods Syst Des

refinements, so-called forward complete shells, of abstract domains w.r.t. logical/temporal
operators of suitable modal logics [14]. One notable benefit of this approach is that it pro-
vides a general framework for designing basic algorithms that compute behavioral relations
as forward complete shells of abstract domains. As a remarkable example, this abstract
interpretation-based approach led to an efficient algorithm for computing the simulation pre-
order for nonprobabilistic processes [13, 15] that features the best time complexity among
the simulation algorithms.

In this paper we show how the abstract interpretation approach can be applied to prob-
abilistic LTSs in order (i) to characterize bisimulation equivalence and simulation preorder
as logical completions of abstract domains and (ii) to design bisimulation and simulation
algorithms.

Main results We consider probabilistic processes specified as PLTSs, a general model that
exhibits both non-deterministic choice (as in LTSs) and probabilistic choice (as in Markov
chains). In [14], bisimulation in LTSs has been characterized in terms of forward complete
shells of partitions w.r.t. the predecessor operator of LTSs. We show that this same idea
scales to the case of PLTSs by considering the probabilistic predecessor operator that de-
fines the transitions of a PLTS together with a probabilistic function that encodes the distri-
butions in the PLTS (this latter operator is somehow reminiscent of a probabilistic connec-
tive in Parma and Segala’s [12] modal logics for probabilistic bisimulation and simulation).
Bisimulation equivalence in PLTSs is thus characterized as a domain refinement through a
complete shell w.r.t. the above two operators. On the other hand, the simulation preorder in
PLTSs turns out to be the same complete shell of abstract domains w.r.t. the same two oper-
ators, but using different underlying abstract domains: for bisimulation, the complete shell
is computed in a space of abstractions that are state and distribution partitions, while for
simulation the same complete shell is instead computed over abstractions that are preorders
on states and distributions.

Complete shells of abstract domains may in general be obtained through a simple fix-
point computation. We show how such a basic procedure can be instantiated to obtain two
algorithms that iteratively compute bisimulation and simulation on PLTSs. Interestingly, the
standard procedure for computing bisimulations in PLTSs, namely Baier-Engelen-Majster’s
algorithm [1], can be actually viewed as an implementation of our complete shell procedure
that characterizes bisimulation. On the other hand, we show that the corresponding complete
shell for computing the simulation preorder yields a new efficient probabilistic simulation
algorithm that advances the state of the art: in fact, its time and space complexity bounds
improve on the best known simulation algorithm for PLTSs by Zhang et al. [20].

This is an extended and revised version of the conference paper [4].

2 Bisimulation and simulation in PLTSs

Given a set X, Distr(X) denotes the set of (stochastic) distributions on X, i.e., functions
d:X → [0,1] such that

∑
x∈X d(x) = 1. The support of a distribution d is defined by

supp(d) � {x ∈ X | d(x) > 0}; also, if S ⊆ X then d(S) �
∑

s∈S d(s). The Dirac distri-
bution on x ∈ X, denoted by δx , is the distribution that assigns probability 1 to x (and 0
otherwise).

A probabilistic LTS (PLTS) is a tuple S = 〈Σ,Act,→〉 where Σ is a set of states, Act is
a set of actions and → ⊆ Σ × Act ×Distr(Σ) is a transition relation, where (s, a, d) ∈ →
is also denoted by s

a−→ d . We denote by Distr � {d ∈ Distr(Σ) | ∃s ∈ Σ.∃a ∈ Act . s a→d}

Form Methods Syst Des

the set of target distributions in S . Given D ⊆ Distr, we write s
a→D when there exists

d ∈ D such that s
a→d . For any a ∈ Act, the predecessor and successor operators prea :

℘(Distr) → ℘(Σ) and posta : ℘(Σ) → ℘(Distr) are defined as usual by prea(D) � {s ∈
Σ | s

a→D} and posta(S) � {d ∈ Distr | ∃s ∈ S. s
a→d}. For any d ∈ Distr and s ∈ Σ , we

define in(d) � {a ∈ Act | prea({d}) �= ∅} and out(s) � {a ∈ Act | posta({s}) �= ∅}.
Bisimulation A partition of a set X is a set P ⊆ ℘(X) of nonempty subsets of X (called
blocks) that are disjoint and whose union gives X. Let Part(X) denote the set of parti-
tions of X. If P ∈ Part(X) and x ∈ X then P (x) denotes the unique block of P that con-
tains x. A partition P will be also viewed as a mapping P : ℘(X) → ℘(X) defined by
P (Y) �

⋃
y∈Y P (y). Any partition P ∈ Part(X) induces an equivalence relation (which can

be equivalently given as a partition) over distributions ≡P ∈ Part(Distr(X)) which is defined
as follows: for any d, e ∈ Distr(X), d ≡P e if for any B ∈ P , d(B) = e(B). In words, two
distributions are ≡P -equivalent whenever they give the same probability to the blocks of P .

Given a PLTS S = 〈Σ,Act,→〉, a partition P ∈ Part(Σ) is a bisimulation on S when
for all s, t ∈ Σ and d ∈ Distr, if P (s) = P (t) and s

a→d then there exists e ∈ Distr such
that t

a→e and d ≡P e. Bisimilarity Pbis ∈ Part(Σ) is defined as follows: for any s ∈ Σ ,
Pbis(s) �

⋃{P (s) | P is a bisimulation on S}. Pbis turns out to be the greatest bisimulation
on S which is also called the bisimulation partition on S .

Simulation A preorder on a set X is a reflexive and transitive relation R ⊆ X × X.
Let PreOrd(X) denote the set of preorders on X. If R ∈ PreOrd(X) and S ⊆ X then
R(S) � {x ∈ X | ∃s ∈ S. (s, x) ∈ R} denotes the image of S for R. Similarly to the case
of partitions, any preorder R ∈ PreOrd(X) induces a preorder ≤R on Distr(X) which is de-
fined as follows: for any d, e ∈ Distr(X), d ≤R e if for any S ⊆ X, d(S) ≤ e(R(S)); we will
sometimes use the equivalent definition d(R(S)) ≤ e(R(S)) ([19]). Such a definition of ≤R

can be equivalently stated in terms of so-called weight functions between distributions and
of maximum flows between networks. We briefly recall its equivalent formulation based
on the maximum flow problem since our simulation algorithm, as well as the simulation
algorithms by Baier et al. [1] and Zhang et al. [20], are based on this notion.

Let X � {x | x ∈ X}, where x are pairwise distinct new elements; ⊥ (the source) and
� (the sink) are a pair of new distinct elements not contained in X ∪ X. Let R ⊆ X ×
X and d, e ∈ Distr(X). The network N (d, e,R) is defined as follows: the set of nodes is
V � supp(d) ∪ supp(e) ∪ {⊥,�} while the set of edges E ⊆ V × V is defined by

E �
{
(x, y) | (x, y) ∈ R

} ∪ {
(⊥, x) | x ∈ supp(d)

} ∪ {
(y,�) | y ∈ supp(e)

}
.

The capacity function c : V × V → [0,1] is defined as follows: for all x ∈ supp(d),
c(⊥, x) � d(x); for all y ∈ supp(e), c(y,�) � e(y); for all the remaining edges (x, y) ∈ E,
c(x, y) � 1. It turns out that d ≤R e if and only if the maximum flow of the network
N (d, e,R) is 1 (see [1, 5, 19, 20]).

Given a PLTS S = 〈Σ,Act,→〉, a preorder R ∈ PreOrd(Σ) is a simulation on S when
for all s, t ∈ Σ and d ∈ Distr, if t ∈ R(s) and s

a→d then there exists e ∈ Distr such that t
a→e

and d ≤R e. The simulation preorder Rsim ∈ PreOrd(Σ) on S is defined as follows: for all
s ∈ Σ , Rsim(s) �

⋃{R(s) | R is a simulation on S}. It turns out that Rsim is the greatest
simulation preorder on S . The simulation partition Psim on S is the kernel of the simulation
preorder, i.e., for all s, t ∈ Σ , Psim(s) = Psim(t) iff s ∈ Rsim(t) and t ∈ Rsim(s).

Example 2.1 Consider the PLTS depicted in Fig. 1, where Σ = {s1, s2, s3, x1, . . . , x6, t ,
u,v,w}, Act = {a, b, c, d} and Distr = {d1, d2, d3, δt , δu, δv, δw}. We have that s2 simulates

Form Methods Syst Des

Fig. 1 A PLTS s1

d1

x1 x2

δt δu

0.5 0.5

a

b c

s2

d2

x3 x4

δt δv δu

0.5 0.5

a

b d c

s3

d3

x5 x6

δt δw

0.5 0.5

a

b d

s1 while s1 does not simulate s2 since starting from s2 a d-transition can be fired, whereas
starting from s1 this is not possible. Moreover, even if x3 simulates both x5 and x6, we have
that d3 �≤Rsim d2 since 1 = d3({x5, x6}) �≤ d2(Rsim({x5, x6})) = 0.5 since x4 /∈ Rsim({x5, x6}).
Therefore, s2 does not simulate s3.

3 Shells

3.1 Forward completeness

In standard abstract interpretation [2, 3], approximations of a concrete semantic domain
are encoded by abstract domains (or abstractions), that are specified by Galois insertions
(GIs for short) or, equivalently, by adjunctions. Concrete and abstract domains are defined
as complete lattices 〈C,≤C〉 and 〈A,≤A〉 where x ≤ y means that y approximates x both
concretely and abstractly. A GI of A into C is determined by a surjective abstraction map
α : C → A and an injective concretization map γ : A → C such that α(c) ≤A a ⇔ c ≤C

γ (a), and is denoted by (α,C,A,γ).

Lattices of abstract domains Recall that GIs of a common concrete domain C are pre-
ordered w.r.t. their relative precision: G1 = (α1,C,A1, γ1) � G2 = (α2,C,A2, γ2), i.e. A1 is
a refinement of A2 or, equivalently, A2 is a simplification of A1, if and only if for all c ∈ C,
γ1(α1(c)) ≤C γ2(α2(c)). Moreover, G1 and G2 are equivalent when G1 � G2 and G2 � G1.
We denote by Abs(C) the family of abstract domains of C up to the above equivalence. It
is well known ([3]) that 〈Abs(C),�〉 is a complete lattice. Given a family of abstract do-
mains X ⊆ Abs(C), their lub

⊔
X is therefore the most precise domain in Abs(C) which is

a simplification of any domain in X .

Forward complete abstractions Let f : C → D be some concrete semantic function de-
fined on a pair of concrete domains C and D, and let A ∈ Abs(C) and B ∈ Abs(D) be a
pair of abstractions. In the following, we will denote by �X→Y the pointwise ordering re-
lation between functions in X → Y . Given an abstract function f � : A → B , we have that
〈A,B,f �〉 is a sound abstract interpretation of f when f ◦ γA,C �A→D γB,D ◦ f �. Forward
completeness [3, 7] corresponds to the situation where the following diagram commutes:

C

A

D

B

γA,C γB,D

f

f �

that is f ◦ γA,C = γB,D ◦ f �, meaning that the abstract function f � is able to replicate the
behaviour of f on the abstract domains A and B with no loss of precision. If an abstract
interpretation 〈A,B,f �〉 is forward complete then it turns out that the abstract function f �

Form Methods Syst Des

indeed coincides with αD,B ◦ f ◦ γA,C , which is the best correct approximation of the con-
crete function f on the pair of abstractions 〈A,B〉. Hence, the notion of forward complete-
ness of an abstract interpretation 〈A,B,f �〉 does not depend on the choice of the abstract
function f � but only depends on the chosen abstract domains A and B . Accordingly, a pair
of abstract domains 〈A,B〉 ∈ Abs(C) × Abs(D) is called forward complete for f (or sim-
ply f -complete) iff f ◦ γA,C = γB,D ◦ (αD,B ◦ f ◦ γA,C). It is not difficult to prove that
this is equivalent to {f (γA,C(a)) | a ∈ A} ⊆ {γB,D(b) | b ∈ B}, i.e., f (γA,C(A)) ⊆ γB,D(B).
Hence the pair 〈A,B〉 is f -complete iff the image of f in D is contained in γB,D(B). If
F ⊆ C → D is a set of concrete functions then 〈A,B〉 is F -complete when 〈A,B〉 is f -
complete for all f ∈ F .

3.2 Shells of abstract domains

Given a set of semantic functions F ⊆ C → D and a pair of abstractions 〈A,B〉 ∈ Abs(C)×
Abs(D), the notion of forward complete shell [7] formalizes the problem of finding the
most abstract pair 〈A′,B ′〉 such that A′ � A,B ′ � B and 〈A′,B ′〉 is F -complete, which is
a particular case of abstraction refinement [8]. It turns out (see [7]) that any pair 〈A,B〉 can
be minimally refined to its forward F -complete shell:

ShellF
(〈A,B〉)

�
⊔{〈A′,B ′〉 ∈ Abs(C) × Abs(D) | 〈A′,B ′〉 � 〈A,B〉, 〈A′,B ′〉 is F -complete

}
.

Thus, ShellF (〈A,B〉) encodes the least refinement of a pair of abstractions 〈A,B〉 which is
needed in order to achieve forward completeness for F .

Let us now consider a further set of concrete semantic functions G ⊆ D → C that
operate in the opposite direction w.r.t. F , i.e., from D to C. Given A ∈ Abs(C) and
B ∈ Abs(D), it makes sense to consider both forward F -completeness of 〈A,B〉 and for-
ward G -completeness of the reversed pair 〈B,A〉. Thus, 〈A,B〉 is defined to be 〈F , G〉-
complete when 〈A,B〉 is F -complete and 〈B,A〉 is G -complete. Here again, any pair 〈A,B〉
can be minimally refined to its 〈F , G〉-complete shell:

Shell〈F ,G〉(〈A,B〉)
�

⊔{〈A′,B ′〉 ∈ Abs(C) × Abs(D) | 〈A′,B ′〉 � 〈A,B〉, 〈A′,B ′〉 is 〈F , G〉-complete
}
.

Such a combined shell Shell〈F ,G〉(〈A,B〉) can be obtained through the ShellAlgo() pro-
cedure described in Fig. 2. This procedure works by iteratively refining the abstractions A

and B separately until both 〈A,B〉 becomes F -complete and 〈B,A〉 becomes G -complete.
The ShellAlgo() procedure crucially relies on the Stabilize() function. In general, given a
set of functions H and a pair of abstractions 〈X,Y 〉, we have that Stabilize(H,X,Y) refines
the abstraction Y to Ystable �

⊔{Y ′ | Y ′ � Y, 〈X,Y ′〉 is H-complete}, so that 〈X,Ystable〉 be-
comes H-stable (i.e., H-complete). Notice that the parameter Y is an input-output parameter.
Hence, Stabilize(F ,A,B) minimally refines B to B ′ so that 〈A,B ′〉 is F -complete. Hence,
while the abstraction B is refined, the abstraction A is left unchanged. Moreover, if B is ac-
tually refined into B ′ � B , then the G -Stable flag is set to false so that ShellAlgo() proceeds
by G -stabilizing 〈B ′,A〉, i.e., by calling Stabilize(G,B ′,A). Thus, ShellAlgo(F , G,A,B)

begins by first checking whether 〈A,B〉 is F -complete and 〈B,A〉 is G -complete, and then
proceeds by iteratively refining the abstractions A and B separately, namely it refines B

w.r.t. F while A is kept fixed and then it refines A w.r.t. G while B is kept fixed. It turns out

Form Methods Syst Des

Fig. 2 Basic shell algorithm

that the ShellAlgo() procedure is a nontrivial gneralization of a basic forward completion
procedure [7], that corresponds to the case where A = B,C = D, F = G .

Theorem 3.1 ShellAlgo(F , G,A,B) = Shell〈F ,G〉(〈A,B〉).

Proof Firstly, we observe in general that if Ystable �
⊔{Y ′ ∈ Abs | Y ′ � Y, 〈X,Y ′〉 is H-

complete} then 〈X,Ystable〉 is forward H-complete. In fact, let 〈X,Yi〉i∈I be a family of
H-complete pairs with Yi � Y , then by definition of forward H-completeness we have
that for all i ∈ I and for all h ∈ H, h(γ (X)) ⊆ γ (Yi), hence h(γ (X)) ⊆ ⋂

i∈I γ (Yi),
that is h(γ (X)) ⊆ γ (

⊔
i∈I Yi); therefore, 〈X,

⊔
i∈I Yi〉 is H-complete. Secondly, the pro-

cedure ShellAlgo() always terminates because if 〈A,B〉 and 〈A′,B ′〉 are, respectively,
the current abstraction pairs at the beginning and at the end of a single iteration of the
while-loop, then either A′ � A or B ′ � B . Let 〈Aref,Bref〉 be the output abstraction pair
of ShellAlgo(F , G,A,B) and let 〈As,Bs〉 � Shell〈F ,G〉(〈A,B〉). Then, by the observa-
tion above, 〈Aref,Bref〉 is F -complete and 〈Bref,Aref〉 is G -complete, so that 〈Aref,Bref〉 �
〈As,Bs〉. Conversely, since 〈As,Bs〉 is F -complete and 〈Bs,As〉 is G -complete then we
have that ShellAlgo(F , G,As,Bs) = 〈As,Bs〉. Also, note that ShellAlgo() is monotone,
namely, if 〈A1,B1〉 � 〈A2,B2〉 then ShellAlgo(F , G,A1,B1) � ShellAlgo(F , G,A2,B2).
Thus, from 〈As,Bs〉 � 〈A,B〉, we derive that 〈As,Bs〉 = ShellAlgo(F , G,As,Bs) �
ShellAlgo(F , G,A,B) = 〈Aref,Bref〉. �

4 Bisimulation as a shell

Bisimulation is commonly computed by coarsest partition refinement algorithms [1, 11]
that iteratively refine a current partition until it becomes the bisimulation partition. Coarsest
partition refinements can be formalized as shells of partitions: given a property of partitions,
i.e., any subset of partitions P ⊆ Part(X), the P-shell of Q ∈ Part(X) corresponds to the
coarsest partition refinement of Q that satisfies P, when this exists. In this section we show
how bisimulation in PLTSs can be equivalently stated in terms of forward complete shells
of partitions w.r.t. suitable concrete semantic functions. We also show how the above basic
shell algorithm ShellAlgo() can be instantiated to compute bisimulations on PLTSs.

Form Methods Syst Des

4.1 Shells of partitions

Let us first recall that, given a finite set X, 〈Part(X),�,�,�〉 is a (finite) lattice where
P1 � P2 (i.e., P2 is coarser than P1 or P1 refines P2) iff ∀x ∈ X. P1(x) ⊆ P2(x), and its top
element is �Part(X) = {X}. By following the approach in [14], any partition P ∈ Part(X) can
be viewed as an abstraction of 〈℘(X),⊆〉, where any set S ⊆ X is approximated through
its minimal cover in the partition P . This is formalized by viewing P as the abstract do-
main closed(P) � {S ⊆ X | P (S) = S}, remind that P (S) �

⋃
s∈S P (s). In other terms,

S ∈ closed(P) iff S = ⋃
i∈I Bi for some blocks {Bi}i∈I ⊆ P . Note that ∅,X ∈ closed(P)

and that 〈closed(P),⊆,∪,∩〉 is a lattice. It turns out that 〈closed(P),⊆〉 is an abstraction
in 〈Abs(℘ (X)),⊆〉, where any set S ⊆ X is approximated through the blocks in P covering
S, namely by

⋃{B ∈ P | B ∩ S �= ∅} ∈ closed(P).
The above embedding of partitions as abstract domains allows us to define a notion of

forward completeness for partitions. Let f : ℘(X) → ℘(Y) be a concrete semantic function
that transforms subsets. Then, a pair of partitions 〈P,Q〉 ∈ Part(X) × Part(Y) is (forward)
f -complete when the pair of abstract domains 〈closed(P), closed(Q)〉 is forward complete
for f , that is, f (closed(P)) ⊆ closed(Q). In other terms, since U ∈ closed(P) iff U is a
union of blocks of P , i.e., U = P (U), we have that 〈P,Q〉 is f -complete when for any
union U of blocks of P , f (U) still is a union of blocks of Q. Accordingly, we will often
use the following equivalent definition.

Definition 4.1 (Forward completeness for partitions) The pair 〈P,Q〉 is f -complete when
for any S ⊆ X, y ∈ f (P (S)) and y ′ ∈ Q(y), it holds y ′ ∈ f (P (S)).

If we consider an additional function g : ℘(Y) → ℘(X) then 〈P,Q〉 is 〈f,g〉-complete
when 〈P,Q〉 is f -complete and 〈Q,P 〉 is g-complete. Analogously to forward complete
shells of generic abstract domains in Sect. 3, it is easy to see that forward complete shells of
partitions exist. Given F ⊆ ℘(X) → ℘(Y) and G ⊆ ℘(Y) → ℘(X), Shell〈F ,G〉(〈P,Q〉) is
the coarsest pair of partitions that (component-wise) refines the pair 〈P,Q〉 and is 〈F , G〉-
complete, namely

Shell〈F ,G〉
(〈P,Q〉)

� �
{〈P ′,Q′〉 ∈ Part(X) × Part(Y) | 〈P ′,Q′〉 � 〈P,Q〉, 〈P ′,Q′〉 is 〈F , G〉-complete

}
.

4.2 Bisimulation on PLTSs

Ranzato and Tapparo [14] have shown that bisimulation on a LTS L can be equivalently
defined in terms of forward complete shells of partitions w.r.t. the predecessor operator of L.
This same idea scales to the case of PLTSs taking into account that: (i) in a PLTS the target of
the transition relation is a set of distributions rather than a set of states, and (ii) bisimulation
on the set of states of a PLTS induces an equivalence over distributions that depends on the
probabilities that distributions assign to blocks of bisimilar states. Let S = 〈Σ,Act,→〉 be
a PLTS and consider the following two functions, where a ∈ Act and p ∈ [0,1]:

prea : ℘(Distr) → ℘(Σ), prea(D) � {s ∈ Σ | s
a→D}

probp : ℘(Σ) → ℘(Distr), probp(S) � {d ∈ Distr | d(S) ≥ p}
prea(D) is the a-predecessor function in the PLTS S for a set of distributions D while
probp(S) returns the distributions whose probability on the set S is greater than or equal

Form Methods Syst Des

to p. Notice that, rather than considering any p ∈ [0,1], we can restrict to the weights that
occur in the PLTS S , that is the subset W S � {p ∈ [0,1] | ∃S ⊆ Σ. ∃d ∈ Distr . d(S) = p},
which is a finite set as long as the PLTS S is finite. Let us define pre � {prea}a∈Act and
prob � {probp}p∈W S . It is worth noticing that this pair of sets of functions provides an
encoding of the PLTS S : pre encodes the transition relation → of S , while any distribution
d in S can be retrieved through functions in prob. For instance, the support of a distribution
d ∈ Distr is given by the minimal set of states S such that d ∈ prob1(S), while, for any
s ∈ Σ , d(s) = max {p ∈ W S | d ∈ probp({s})}.

In the following, the bisimulation problem is stated in terms of forward completeness of
pairs of abstract domains 〈P, P〉 ∈ Part(Σ) × Part(Distr) w.r.t. the concrete semantic func-
tions prob ⊆ ℘(Σ) → ℘(Distr) and pre ⊆ ℘(Distr) → ℘(Σ). We first give some useful
operational characterizations of pre and prob completeness.

Lemma 4.2 Let 〈P, P〉∈Part(Σ)×Part(Distr). Then, 〈P, P〉 is prob-complete

(i) if and only if for any pair of distributions d, e ∈ Distr, if e ∈ P(d) then d ≡P e;
(ii) if and only if for any block B ∈ P and any distribution d ∈ Distr, the set {e ∈

Distr | e(B) = d(B)} is a union of blocks of P .

Proof Let us prove (i). Assume that 〈P, P〉 is prob-complete. Hence, from Definition 4.1 we
have that for any p ∈ W S and for any block B ∈ P , if d ∈ probp(B) and P(d) = P(e) then
e ∈ probp(B). Consider therefore d, e ∈ Distr such that P(d) = P(e). For any B ∈ P , let
us define pB � d(B). Since d ∈ probpB

(B), we have that e ∈ probpB
(B), hence e(B) ≥

pB = d(B). Thus, for any B ∈ P , e(B) ≥ d(B). Thus, d(B) = 1 − ∑
C∈P,C �=B d(C) =∑

C∈P e(C) − ∑
C∈P,C �=B d(C) ≥ ∑

C∈P e(C) − ∑
C∈P,C �=B e(C) = e(B), hence d(B) =

e(B) for any B ∈ P , namely d ≡P e.
For the opposite direction, assume that if P(d) = P(e) then d ≡P e and let us show that

〈P, P〉 is prob-complete. Consider p ∈ W S , X ⊆ Σ , d ∈ probp(P (X)), e ∈ P(d) and let us
show that e ∈ probp(P (X)). We have that P (X) = ⋃

i∈I Bi for some set of blocks {Bi}i∈I ⊆
P . Hence, from d ≡P e, we obtain that d(

⋃
i Bi) = e(

⋃
i Bi), so that from d(

⋃
i Bi) ≥ p we

get e(
⋃

i Bi) ≥ p, namely e ∈ probp(P (X)).
Let now prove (ii). (⇒) Consider B ∈ P and d ∈ Distr. It is sufficient to prove that, for

any f, e ∈ Distr, if f (B) = d(B) and e ∈ P(f), then e(B) = d(B). Let be p � f (B) =
d(B), then f ∈ probp(P (B)). Hence, by hypothesis, P(f) ⊆ probp(P (B)), then e ∈
probp(P (B)), namely e(P (B)) = e(B) ≥ p. Let now Y � Σ � B so that Y = ⋃

C∈P,C �=B C.
We have that f (Y) = f (P (Y)) = 1 − p, so that f ∈ prob1−p(P (Y)). Hence, by hypothesis,
P(f) ⊆ prob1−p(P (Y)), then e ∈ prob1−p(P (Y)), namely e(P (Y)) = e(Y) ≥ 1 − p, from
which e(B) = 1 − e(Y) ≤ p. Hence, e(B) = p = d(B).

(⇐) Consider S ⊆ Σ and p ∈ W S and let us show that probp(P (S)) is a union of blocks
of P . That is, let be d, e ∈ Distr such that d(P (S)) ≥ p and P(d) = P(e), we show that
e(P (S)) ≥ p. Let P (S) = ⋃

i∈I Bi for some set of blocks {Bi}i∈I ⊆ P . By hypothesis, for
any i ∈ I , {h ∈ Distr | h(Bi) = d(Bi)} is a union of blocks of P , hence e(Bi) = d(Bi) for
any i ∈ I . Than e(P (S)) = ∑

i∈I e(Bi) = ∑
i∈I d(Bi) = d(P (S)) ≥ p. �

Lemma 4.3 Let 〈P, P〉 ∈ Part(Σ) × Part(Distr). Then, 〈P,P 〉 is pre-complete

(i) if and only if for any a ∈ Act, s
a→d and t ∈ P (s) imply t

a→ P(d);
(ii) if and only if for any block C ∈ P and for any incoming label a ∈ in(C), prea(C) is a

union of blocks of P .

Form Methods Syst Des

Proof Note that since any function prea is additive, 〈P,P 〉 is prea-complete if and only if
for any block C ∈ P and for any incoming label a ∈ in(C), we have that prea(C) is a union
of blocks of P , which is (ii). Moreover, again by additivity of the function prea , we have
that 〈P,P 〉 is prea-complete if and only if for any d ∈ Distr, prea(P(d)) is a union of blocks
in P , that is, if and only if for any d ∈ Distr, s ∈ Σ , if s

a→ P(d) and P (s) = P (t) then
t

a→ P(d), which is equivalent to (i). �

As a direct consequence of the first items of the two lemmas above, we have that a
partition P ∈ Part(Σ) is a bisimulation on S if and only if the pair of partitions 〈P,≡P 〉
is 〈prob,pre〉-complete. In turn, the coarsest bisimulation Pbis on S can be obtained as
a forward complete shell of partitions, starting form the top elements �Part(Σ) = {Σ} and
�Part(Distr) = {Distr}.

Corollary 4.4 Let S = 〈Σ,Act,→〉 be a PLTS.

(i) P ∈ Part(Σ) is a bisimulation on S if and only if 〈P,≡P 〉 is 〈prob,pre〉-complete.
(ii) Let 〈P, P〉 ∈ Part(Σ)× Part(Distr). If 〈P, P〉 is 〈prob,pre〉-complete then P is a bisim-

ulation on S and P � ≡P .

Theorem 4.5 〈Pbis,≡Pbis〉 = Shell〈prob,pre〉(�Part(Σ),�Part(Distr)).

Proof Let 〈P ∗, P ∗〉 = Shell〈prob,pre〉(�Part(Σ),�Part(Distr)). Since we have that 〈P ∗, P ∗〉 is
〈prob,pre〉-complete, by Corollary 4.4(ii), we have that P ∗ � Pbis and P ∗ � ≡P ∗ . Hence,
we also have that P ∗ � ≡Pbis . For the opposite direction, by Corollary 4.4(i), we have
that 〈Pbis,≡Pbis〉 is 〈prob,pre〉-complete, so that, by definition of shell, it turns out that
〈Pbis,≡Pbis〉 � 〈P ∗, P ∗〉, namely Pbis � P ∗ and ≡Pbis� P ∗. �

4.3 Bisimulation algorithm

By Theorem 4.5, Pbis can be computed as a partition shell by instantiating the basic shell
algorithm in Fig. 2 to F = {probp}p∈W S and G = {prea}a∈Act, and by viewing partitions in
Part(Σ) × Part(Distr) as abstract domains. This leads to a bisimulation algorithm as de-
scribed in Fig. 3, called PBis, that takes a PLTS S as input and initializes and stabilizes a
pair of state and distribution partitions 〈P, P〉 until it becomes 〈prob,pre〉-complete.

Stabilization is obtained by means of two auxiliary functions preStablize() and probSta-
bilize(), that implement respectively Lemma 4.3 and Lemma 4.2. In particular, the function
call preStabilize(〈P,P 〉) refines the state partition P into P ′ so that 〈P,P ′〉 is pre-complete.
According to Lemma 4.3, in order to get pre-completeness it is sufficient to minimally re-
fine P so that for any block of distributions C ∈ P , and for any incoming label a ∈ in(C),
prea(C) is a union of blocks of P . If prea(C) is not a union of blocks of P then prea(C) ⊆ Σ

is called a splitter of P , and we denote by Split(P,prea(C)) the partition obtained from
P by replacing each block B ∈ P with the sets B ∩ prea(C) and B � prea(C), as far as
they are nonempty. Notice that when some prea(C) is already a union of blocks of P we
have that Split(P,prea(C)) = P , i.e., we also allow no splitting. Hence, preStabilize() re-
fines P by iteratively splitting P w.r.t. prea(C), for all C ∈ P and a ∈ in(C). On the other
hand, the function call probStabilize(〈P, P〉) refines the current distribution partition P into
P ′ so that 〈P, P ′〉 is prob-complete. According to Lemma 4.2, 〈P, P〉 is prob-complete
when for any block B ∈ P and any distribution d ∈ Distr, {e ∈ Distr | e(B) = d(B)} is a

Form Methods Syst Des

Fig. 3 Bisimulation algorithm PBis

union of blocks of P . Thus, probStabilize() iteratively splits the distribution partition P w.r.t.
{e ∈ Distr | e(B) = d(B)}, for all B ∈ P and d ∈ Distr.

The initialization phase is carried out by the Initialize() function. The two current par-
titions P and P are initialized with the top elements �Part(Σ) and �Part(Distr), i.e., {Σ} and
{Distr}. Moreover, in order to initialize the two Boolean flags probStable and preStable, Ini-
tialize() first calls preStabilize() and then calls probStabilize(). Therefore, the initial value
of probStable is true, while that of preStable is either true or false depending on whether the
prob-stabilization has invalidated the previous pre-stabilization or not.

Theorem 4.6 For a finite PLTS S , PBis(S) terminates and is correct, i.e., if 〈P, P〉 is the
output of PBis(S) then P = Pbis and P = ≡Pbis .

Proof A consequence of Theorems 3.1 and 4.5. �

A strong basis for the implementation of the PBis algorithm is provided by the Baier-
Engelen-Majster’s two-phased partitioning algorithm [1], which is the standard procedure
for computing the bisimulation Pbis. Interestingly, this can be essentially viewed as an im-
plementation of the above PBis algorithm, since the two phases of Baier et al.’s algorithm
(see [1, Fig. 9]) coincide with our preStabilize() and probStabilize() functions. The only
remarkable difference is that instead of using a single partition over all the distributions in
Distr, Baier et al.’s algorithm maintains a so-called step partition, namely, a family of parti-
tions {Ma}a∈Act such that, for any a ∈ Act, Ma is a partition of the distributions in posta(Σ),
i.e., the distributions that have an incoming edge labeled with a. We do not give here a full
account of the implementation of PBis, we rather show how it works on a concrete example.

Form Methods Syst Des

Example 4.7 Let us illustrate how the algorithm PBis works on the PLTS in Fig. 1, where
Σ = {s1, s2, s3, x1, . . . , .x6, t, u, v,w} and Distr = {d1, d2, d3, δt , δu, δv, δw}. The call to the
Initialize() procedure first sets P = {Σ} and P = {Distr}. Then the procedure preStabilize()
is called and four splitting operations give the following sequence of results:

Split
(
P,prea

({Distr})) ⇒ P = {{s1, s2, s3}, {x1, . . . , .x6, t, u, v,w}}

Split
(
P,preb

({Distr})) ⇒ P = {{s1, s2, s3}, {x1, x3, x5}, {x2, x4, x6, t, u, v,w}}

Split
(
P,prec

({Distr})) ⇒ P = {{s1, s2, s3}, {x1, x3, x5}, {x2, x4}, {x6, t, u, v,w}}

Split
(
P,pred

({Distr})) ⇒ P = {{s1, s2, s3}, {x1, x5}, {x3}, {x2, x4}, {x6}, {t, u, v,w}}

Therefore, at the end of the procedure the state partition P contains six blocks: B1 =
{s1, s2, s3},B2 = {x1, x5},B3 = {x3},B4 = {x2, x4},B5 = {x6},B6 = {t, u, v,w}. Then the
procedure probStabilize() is called and a number of splitting operations are performed. We
show in the following only the splitting operations that actually modify the partition P :

Split
(

P,
{
e | e(B2) = d1(B2)

}) ⇒ P = {{d1, d3}, {d2, δt , δu, δv, δw}}

Split
(

P,
{
e | e(B3) = d1(B3)

}) ⇒ P = {{d1, d3}, {d2}, {δt , δu, δv, δw}}

Split
(

P,
{
e | e(B4) = d1(B4)

}) ⇒ P = {{d1}, {d3}, {d2}, {δt , δu, δv, δw}}

Thus, at the end of the procedure the distribution partition P contains four blocks:
D1 = {d1},D2 = {d2},D3 = {d3},D4 = {δt , δu, δv, δw}. The main loop of PBis begins with
preStable set to false and probStable set to true, and a call to preStabilize() refines P through
the following two splitting operations:

Split
(
P,prea(D1)

) ⇒ P = {{s1}, {s2, s3},B2,B3,B4,B5,B6

}

Split
(
P,prea(D2)

) ⇒ P = {{s1}, {s2}, {s3},B2,B3,B4,B5,B6

}

A final vacuous call to probStabilize() terminates the computation. Hence, bisimilar-
ity is given by the following partition: P = {{s1}, {s2}, {s3}, {x1, x5}, {x3}, {x2, x4}, {x6},
{t, u, v,w}}. In particular, initial states are not bisimilar, while all the final states are bisim-
ilar. Moreover, states x1 and x5 as well as x2 and x4 are bisimilar since they have a single
output transition with the same label and the same target distribution.

5 Simulation as a shell

Let us focus on simulation preorders in PLTSs. We show that the simulation preorder is a
complete shell of abstract domains w.r.t. the same operators prob and pre considered above
for bisimulation equivalence, whereas the key difference lies in the underlying abstract do-
mains that in this case are preorders, rather than partitions, viewed as abstractions.

5.1 Shells of preorders

Recall that, given any finite set X, 〈PreOrd(X),⊆,∪t ,∩〉 is a lattice, where R1 ∪t R2 is the
transitive closure of R1 ∪R2 and the top element is �PreOrd(X) � X ×X. Analogously to par-
titions, any preorder R ∈ PreOrd(X) can be viewed as an abstraction of 〈℘(X),⊆〉, where
any set S ⊆ X is approximated by its R-closure R(S). Formally, a preorder R ∈ PreOrd(X)

Form Methods Syst Des

can be viewed as the abstract domain closed(R) � {S ⊆ X | R(S) = S}. Observe that
S ∈ closed(R) iff S = ⋃

i∈I R(xi) for some set {xi}i∈I ⊆ X and that 〈closed(R),⊆,∪,∩〉
is a lattice (note that ∅,X ∈ closed(R)). It turns out that closed(R) ∈ 〈Abs(℘ (X)),⊆〉: this
means that any set S ⊆ X is approximated by its R-closure, namely by R(S) ∈ closed(R).

Given a pair of sets of functions 〈F , G〉 ⊆ (℘ (X) → ℘(Y)) × (℘ (Y) → ℘(X)), a pair
of preorders 〈R,S〉 ∈ PreOrd(X) × PreOrd(Y) is (forward) 〈F , G〉-complete when for any
f ∈ F and g ∈ G , if 〈U,V 〉 ∈ closed(R) × closed(S) then 〈f (U), g(V)〉 ∈ closed(S) ×
closed(R).

Definition 5.1 (Forward completeness for preorders) The pair 〈R,S〉 is f -complete when
for any Z ⊆ X, y ∈ f (R(Z)) and y ′ ∈ S(y), it holds y ′ ∈ f (R(Z)).

Forward complete shells of preorders are therefore defined as follows: Shell〈F ,G〉(〈R,S〉)
is the largest pair of preorders 〈R′, S ′〉 ⊆ 〈R,S〉 which is 〈F , G〉-complete.

5.2 Simulation on PLTSs

Similarly to the case of bisimulation, simulation can be equivalently expressed in terms of
forward completeness w.r.t. prob = {probp}p∈W S and pre = {prea}a∈Act.

Lemma 5.2 Consider a pair 〈R, R〉 ∈ PreOrd(Σ) × PreOrd(Distr).

(i) 〈R, R〉 is prob-complete if and only if e ∈ R(d) implies d ≤R e;
(ii) 〈R,R〉 is pre-complete if and only if for any a ∈ Act, t ∈ R(s) and s

a→d imply that
there exists e such that t

a→e and e ∈ R(d).

Proof Let us prove (i), that is, 〈R, R〉 is prob-complete iff R ⊆ ≤R . Recall (see [19]) that
d ≤R e iff for any Z ⊆ Σ , d(R(Z)) ≤ e(R(Z)).

(⇒) Assume that e ∈ R(d). For any Z ⊆ Σ , let us define pZ � d(R(Z)) so that
d ∈ probpZ

(R(Z)). Thus, by prob-completeness, e ∈ probpZ
(R(Z)), namely e(R(Z)) ≥

d(R(Z)). Since this holds for any Z ⊆ Σ , we have that d ≤R e.
(⇐) Consider Z ⊆ Σ , p ∈ W S , d ∈ probp(R(Z)), e ∈ R(d) and let us show that

e ∈ probp(R(Z)). By hypothesis, d ≤R e, so that e(R(Z)) ≥ d(R(Z)) ≥ p, that is, e ∈
probp(R(Z)).

Let us turn to (ii). Note that since any function prea is additive, 〈R,R〉 is prea-complete
if and only if for any d ∈ Distr, prea(R(d)) ∈ closed(R), that is, if and only if for any
d ∈ Distr, if s

a→ R(d) and t ∈ R(s) then t ∈ prea(R(d)), which is equivalent to (ii). �

Thus, a preorder R ∈ PreOrd(Σ) is a simulation on S if and only if the pair 〈R,≤R〉
is 〈prob,pre〉-complete. In turn, the greatest simulation preorder Rsim can be obtained as a
preorder shell.

Corollary 5.3 Let S = 〈Σ,Act,→〉 be a PLTS.

(i) R ∈ PreOrd(Σ) is a simulation on S if and only if 〈R,≤R〉 is 〈prob,pre〉-complete.
(ii) Let 〈R, R〉 ∈ PreOrd(Σ) × PreOrd(Distr). If 〈R, R〉 is 〈prob,pre〉-complete, then R is

a simulation on S and R ⊆ ≤R .

Theorem 5.4 〈Rsim,≡Rsim〉 = Shell〈prob,pre〉(�PreOrd(Σ),�PreOrd(Distr)).

Proof Analogous to the proof of Theorem 4.5. �

Form Methods Syst Des

Fig. 4 PSim algorithm

Fig. 5 High-level definition of Initialize() function

6 A new efficient simulation algorithm on PLTSs

We show how a new efficient algorithm for computing simulations in PLTSs, called
PSim, can be derived by instantiating the basic shell algorithm to F = {probp}p∈W S and
G = {prea}a∈Act , and by viewing preorders in PreOrd(Σ) and PreOrd(Distr) as abstract
domains. Similarly to the case of bisimulation, PSim, which is described in Fig. 4, takes
a PLTS S as input and initializes and stabilizes a pair of state and distribution preorders
〈R, R〉 ∈ PreOrd(Σ) × PreOrd(Distr) until it becomes 〈prob,pre〉-complete.

The stabilization functions, which are given in Fig. 6, refine the preorders according to
Lemma 5.2, that is

– the function preStabilize() makes the pair 〈R,R〉 pre-complete by refining the state pre-
order R as long as there exists a transition s

a→d such that R(s) �⊆ prea(R(d));

Form Methods Syst Des

Fig. 6 Stabilization functions

– the function probStabilize() makes the pair 〈R, R〉 prob-complete by iteratively refining
the distribution preorder R as long as there exist d, e ∈ Distr such that e ∈ R(d) and
d �≤R e.

The design of these functions allows us to refine the preorders R and R by following
an efficient incremental approach. In particular, preStabilize() refines the preorder R by
mimicking the incremental approach of Henzinger et al. [9] simulation algorithm for non-
probabilistic LTSs. On the other hand, the function probStabilize() resorts to the incremental
approach of Zhang et al. [20] simulation algorithm, and stabilizes the distribution preorder
R by computing sequences of maximum flow problems. More precisely, given a pair of dis-
tributions (d, e), successive calls to probStabilize() might repeatedly check whether d ≤R e

where R is the current (new) state preorder. This amounts to repeatedly check whether the
maximum flow over the net N (d, e,R) remains 1 with the current (new) preorder R. Zhang
et al. [20] observe that the networks for a given pair (d, e) across successive iterations of
their algorithm are very similar, since they differ only by deletion of some edges due to the
refinement of R. Therefore, in order to incrementally deal with this sequence of tests, Zhang
et al.’s algorithm stores after each iteration the current network N (d, e,R) together with its
maximum flow information, so that at the next iteration, instead of computing the maximum
flow of the full new network, one can exploit a so-called preflow algorithm which is initial-
ized with the previous maximum flow function. We do not discuss the details of the preflow
algorithm by Zhang et al. [20], since it can be used here as a black box that incrementally
solves the sequence of maximum flow problems that arise for similar networks.

PSim relies on a number of global data structures, whose initialization is provided by
the Initialize() function, which is described in Fig. 5 at high-level and fully implemented
in Fig. 7. The two preorders R ⊆ Σ × Σ and R ⊆ Distr×Distr are stored as Boolean
matrices and are initialized in such a way that they are coarser than, respectively, Rsim and

Form Methods Syst Des

Fig. 7 Implementation of Initialize() function

≤Rsim . In particular, the initial preorder R is coarser than Rsim since if s
a→d and t

a
� then

t /∈ Rsim(s). Moreover, line 4 of Fig. 5 initializes R so that R = ≤R : this is done by calling
the function Init_SMF(d, e,R) which in turn calls the preflow algorithm to check whether
d ≤R e, and in case this is true, stores the network N (d, e,R) in order to reuse it in later calls
to probStabilize(). The additional data structures used by PSim come from the incremental
refinement methods used in [9] and [20]. Actually, as in [9], for any distribution e and for

Form Methods Syst Des

any incoming action a ∈ in(e), we store and maintain a set

Removea(e) �
{
s ∈ Σ | s

a→ , s
a
� R(e)

}

that is used to prune the relation R to get pre-completeness (lines 5–7 of preStabilize()). The
{Count(s, a, e)}e∈Distr,a∈in(e),s∈prea(Distr) table records in any entry Count(s, a, e) the number
of a-transitions from state s to a distribution in R(e), so that it can be used to efficiently
refill the remove sets (line 10 of probStabilize()), since it allows to test whether s

a
� R(e) in

O(1) by checking whether Count(s, a, e) is equal to 0. Moreover, in order to get an efficient
refinement also for the distribution preorder R, likewise to Zhang et al.’s algorithm, for any
pair of states (x, y) we compute and store a set

Listener(x, y) �
{
(d, e) ∈ Distr×Distr | x ∈ supp(d) ∧ y ∈ supp(e)

}

that contains all the pairs of distributions (d, e) such that the network N (d, e,R) could con-
tain the edge (x, y), i.e., Listener(x, y) records the networks that are affected when the pair
of states (x, y) is removed from the preorder R. Indeed, these sets are used in probStabi-
lize() to recognize the pairs (d, e) that have been affected by the refinement of R due to the
previous call of preStabilize() (lines 2–3 of probStabilize()).

At the end of initialization, the probStable flag is set to true (due to the initialization of R
as ≤R), whereas the preStable flag is set to false if a nonempty remove set exists. The main
loop of PSim then repeatedly calls the stabilization functions until the pair 〈R, R〉 becomes
〈prob,pre〉-complete. More precisely, a call to preStabilize(): (i) refines the relation R in
such a way that if t

a→e then R(t) is pruned to R(t) � Removea(e), (ii) empties all the
Remove sets and collects all the pairs removed from R into the set Deleted, and (iii) sets the
probStable flag to false when R has changed. On the other hand, a call to probStabilize()
exploits the sets Deleted and Listener to determine all the networks N (d, e,R) that may
have been affected by the refinement of R due to preStabilize(). For any pair (t,w) that has
been removed from R, the call SMF(d, e, (t,w)) at line 4 removes the edge (t,w) from the
network for (d, e) and calls the preflow algorithm to check whether it still has a maximum
flow equals to 1. Then, if this is not the case, e is removed from R(d). Notice that such a
pruning may induce an update of some Removeb(d) set, which in turn triggers a further call
of preStabilize() by setting the preStable flag to false.

Example 6.1 Let us illustrate how the algorithm PSim works on the PLTS in Fig. 1, where
Σ = {s1, s2, s3, x1, . . . , .x6, t, u, v,w} and Distr = {d1, d2, d3, δt , δu, δv, δw}. The call to Ini-
tialize() yields the following preorders and remove sets:

R(x1) = R(x5) = {x1, x3, x5} R(s1) = R(s2) = R(s3) = {s1, s2, s3}
R(x2) = R(x4) = {x2, x4} R(t) = R(u) = R(v) = R(w) = Σ

R(x3) = {x3} R(x6) = {x6, x3}
R(d1) = {d1, d2} R(d2) = {d2}
R(d3) = {d3} R(δt) = R(δu) = R(δv) = R(δw) = Distr

Removea(d1) = {s3} Removea(d2) = {s1, s3}
Removea(d3) = {s1, s2} Removeb(δt) = Removec(δu) = ∅

Removed(δv) = Removed(δw) = ∅

The main loop of PSim begins with preStable set to false and probStable set to true, and a call
to preStabilize() refines R of s1, s2 and s3 to: R(s1) = {s1, s2},R(s2) = {s2},R(s3) = {s3}.

Form Methods Syst Des

A final vacuous call to probStabilize() terminates the computation. Hence, Rsim is as follows:

Rsim(s1) = {s1, s2} Rsim(s2) = {s2}
Rsim(s3) = {s3} Rsim(x1) = Rsim(x5) = {x1, x3, x5}
Rsim(x3) = {x3} Rsim(x2) = Rsim(x4) = {x2, x4}
Rsim(x6) = {x6, x3} Rsim(t) = Rsim(u) = Rsim(v) = Rsim(w) = Σ

In particular, we have that s2 simulates s1 while s1 does not simulate s2, and s2 does not
simulate s3.

6.1 Correctness

The correctness of PSim comes as a consequence of Theorems 3.1 and 5.4 and the fact that
the procedures in Fig. 6 correctly stabilize the preorders R and R.

Lemma 6.2 (Correctness of preStabilize()) Let 〈R, R〉 ∈ PreOrd(Σ) × PreOrd(Distr) and
〈R′, R′〉 be the pair of preorders at the exit of a call to preStabilize(〈R,R〉). Then, R′ = R
and R′ ⊆ R is such that for any s, t ∈ Σ , d ∈ Distr, a ∈ Act, if s

a→d and t ∈ R′(s) then
t

a→ R(d), i.e., 〈R′,R′〉 is pre-complete.

Proof preStabilize(〈R,R〉) does not modify the distribution preorder R, hence R′ = R.
Consider s, t ∈ Σ , d ∈ Distr and a ∈ Act with s

a→d and t ∈ R′(s). Since R′ is a refinement
of the initial state preorder R, we have that a ∈ out(t), so that there exists a distribution
e such that t

a→e. Moreover, e ∈ R(d), otherwise t would belong to Removea(d), which
instead is empty, because at the exit of preStabilize(〈R,R〉) every remove set is empty. By
Lemma 5.2, 〈R′,R′〉 is therefore pre-complete. �

Lemma 6.3 (Correctness of probStabilize()) Let 〈R, R〉 ∈ PreOrd(Σ)× PreOrd(Distr) and
〈R′, R′〉 be the pair of preorders at the exit of a call to probStabilize(〈R, R〉), where R =
≤R∪Deleted. Then R′ = R and R′ ⊆ R is such that for any d, e ∈ Distr, if e ∈ R′(d), then
d ≤R e, i.e., 〈R′, R′〉 is prob-complete.

Proof probStabilize(〈R, R〉) does not modify the state preorder R, hence R′ = R. Con-
sider e ∈ R′(d), so that e ∈ R(d). By hypothesis, we have that the maximal flow in the
network N (d, e,R ∪ Deleted) is 1. If Deleted∩ (supp(d)× supp(e)) = ∅, then N (d, e,R ∪
Deleted) = N (d, e,R), and therefore d ≤R e. Otherwise, the fact that e ∈ R′(d) means
that probStabilize() has (repeatedly) checked (at line 4) that N (d, e,R) remained 1, so that
d ≤R e. Thus, by Lemma 5.2, 〈R′, R′〉 is prob-complete. �

Theorem 6.4 (Correctness of PSim) Let S be a finite PLTS. Then, PSim(S) always termi-
nates with output 〈Rsim,≤Rsim〉.

Proof The fact that PSim terminates on a finite input PLTS depends on the fact that at each
iteration probStabilize() and/or preStabilize() refine R and/or R. The correctness of the
output comes from Theorems 3.1 and 5.4 together with the above Lemmata 6.2 and 6.3. �

6.2 Complexity

Given a PLTS S = 〈Σ,Act,→〉, the complexity bounds of PSim(S) are given in terms of
the following sizes:

Form Methods Syst Des

– |Distr| = |⋃a∈Act posta(Σ)| is the number of distinct distributions appearing as target of
some transition in S .

– Let us define

p �
∑

d∈Distr

∣
∣supp(d)

∣
∣ and m �

∑

s∈Σ

∑

a∈out(s)

∑

d∈posta(s)

(∣
∣supp(d)

∣
∣ + 1

)

where the size m has been defined in [20, Sect. 2]. Thus, p represents the full size of
Distr = post(Σ), being the number of states that appear in the support of some distribution
in Distr. On the other hand, m represents the number of transitions in the PLTS S , that
is, the number of transitions “from states to states”, where a “state transition” (s, t) is
taken into account when s

a→d and t ∈ supp(d). Notice that p ≤ |Σ ||Distr| and m ≤
|Σ ||Act||Distr|. The key point to remark here is that p ≤ m, since the number of “states”
of S are always less than or equal to the number of “state transitions” in S . As an example,
in the PLTS of Fig. 1, we have that p = 10 = Σi=1,2,3|supp(di)| + supp(δt) + supp(δu) +
supp(δv) + supp(δw), while m = 23 = supp(d1) + 1 + supp(d2) + 1 + supp(d3) + 1 +
supp(δt) + 1 + supp(δu) + 1 + supp(δt) + 1 + supp(δv) + 1 + supp(δu) + 1 + supp(δt) +
1 + supp(δw) + 1.

Lemma 6.5 (Complexity of SMF) All the calls to SMF(d, e, . . .) relative to a pair of distri-
butions d, e, including the first call Init_SMF(d, e,R), overall take O(| supp(d)|| supp(e)|2)
time.

Proof See [20, Lemma 4.4]. �

Theorem 6.6 (Complexity of PSim) Let S be a finite PLTS. PSim(S) runs in O(|Σ |(p2 +
|Σ |) + |→|(|Σ | + |Distr|))-time and O(p2 + |Σ |2 + |→|(|Σ | + |Distr|))-space.

Proof Let us first discuss how we represent the input PLTS S . Let s1, . . . , sn be a fixed
enumeration of the states in Σ , let a1, . . . , ak be a fixed enumeration of the labels in Act and
let d1, . . . , dm be a fixed enumeration of the distributions in Distr = ⋃

a∈Act posta(Σ). We
assume that any distribution d ∈ Distr is represented as a record with two components:

– an array [prea1
, . . . ,preak

], where the (possibly empty) i-th entry preai
is a pointer to the

list of states s such that s
ai→d .

– a list of pairs (s1, d(s1)), . . . , (sr , d(sr)) that enumerates the states in the support of d

together with their (non-zero) probability.

Time Complexity. The time complexities of the functions called by PSim are as follows,
where the cost of Initialize() refers to the implementation given in Fig. 7.

Initialize() takes O(p2 + |Σ |2 + |→|(|Σ | + |Distr|)) time, as detailed below:

– The initialization of the in(·) sets takes O(|Distr||Act|) time since, given a distribution d ,
the test prea(d) �= ∅ is done in O(1) since it is sufficient to test if the a-component of the
array stored in the distribution d is non-null.

– Initialization of R and R: lines 5–12 takes O(|Σ ||Act| + |→| + |Σ ||→|) time. while the
cost of the calls to Init_SMF() will be considered together with the global cost of all the
calls to the function SMF() in probStabilize().

– Initialization of the Count table: the cost of lines 14–21 is O(|Distr||→|) since, as dis-
cussed above, the test prea(e) �= ∅ takes constant time.

– Initializing the Remove sets (lines 22–26) takes O(|Σ ||→|) time.

Form Methods Syst Des

– Initializing the stability flags (lines 27–29) takes O(|→|) time.
– Initialization of the Listener sets: line 30 takes O(|Σ |2), while the cost of lines 31–32 is∑

d∈Distr

∑
e∈Distr | supp(d)|| supp(e)| ≤ p2.

All the calls to preStabilize() globally cost O(|Σ ||→| + |Σ |2) time, similarly to what hap-
pens in Henzinger et al.’s simulation algorithm [9]:

– line 4: given a pair (e, a), the overall cost of this line is in O(|prea(Distr)|) since
Removea(e) ⊆ prea(Distr) and when the same pair appears as pivot of different it-
erations, say i and j , the sets Removei

a(e) and Removej
a(e) relative to the different

iterations i and i are disjoint. Hence, it turns out that the overall cost of line 4 is∑
e∈Distr

∑
a∈in(e) |prea(Distr)|, which is in O(|Σ ||→|).

– Since the sets Removei
a(e) and Removej

a(e) relative to two different iterations i and j

are disjoint, we have that any transition t
a→e in line 5 is traversed at most |⋃i{w | w ∈

Removei
a(e)}| times, namely, at most |{w | a ∈ out(w)}| times. Hence, the overall cost of

lines 5–6-and the test at line 7 is
∑

w∈Σ

∑
a∈out(w) | a→| and therefore is in O(|Σ ||→|).

– The body of the if statement at line 7 globally takes |Σ |2 time since the pairs (t,w) such
that the if-test is positive are globally pairwise disjoint.

The cost of all the calls to probStabilize() is in O(p2|Σ | + |Distr||→|) time, as detailed
below:

– Let us first consider the cost of all the calls to SMF() and Init_SMF(). By Lemma 6.5, for
all the pairs (d, e), with d, e ∈ Distr, the cost of all the calls to SMF() and Init_SMF() is∑

d∈Distr

∑
e∈Distr |supp(d)||supp(e)|2, which is in O(p2|Σ |) since for any distribution e it

holds that |supp(e)| ≤ |Σ |.
– The same pair (d, e) may appear in at most |supp(d)||supp(e)| different Listener sets.

The set of pairs (t,w) ∈ Deleted are pairwise disjoint throughout all the calls to probSta-
bilize(), thus the overall cost of lines 2–3 is

∑
d∈Distr

∑
e∈Distr |supp(d)||supp(e)| = p2.

– To estimate the overall cost of lines 5–10 of probStabilize(), observe that the test at line 4
is positive at most once for every pair d, e, because after a positive test e is removed from
R(d) and never put back. Hence, the overall cost of lines 5–10 is

∑
d∈Distr

∑
e∈Distr (1 +∑

b∈in(e)∩in(d) |preb(e)|), which is in O(|Distr||→|).
Finally, notice that the test of the main while loop of PSim is performed |Σ |2 times since

the relation R can be refined at most |Σ |2 times. Thus, summing up, it turns out that the
time complexity of PSim is in O(|Σ |(p2 + |Σ |) + |→|(|Σ | + |Distr|)).

Space Complexity. PSim relies on the following data structures:

– the Boolean table {mark(a, x)}a∈Act,x∈Σ that takes O(|Act||Σ |) space;
– the in lists of labels, that take O(|Distr||Act|) space;
– the networks N (d, e,R) that are updated at each iteration. According to [20], the space

needed to store these networks is
∑

d∈Distr

∑
e∈Distr | supp(d)|| supp(e)| ≤ p2;

– the two Boolean matrixes {R(s, t)}s,t∈Σ and {R(d, e)}d,e∈Distr that take, respectively,
O(|Σ |2) and O(|Distr|2) space.

– the integer table {Count(s, a, e)}e∈Distr, a∈in(e), s∈prea(Distr) and the lists of states
{Removea(e)}e∈Distr,a∈in(e) take, respectively, O(|Distr||→|) and O(|Σ ||→|) space;

– the sets {Listener(x, y)}x,y∈Σ take p2 space because, as above, the same pair (d, e) may
appear in at most | supp(d)|| supp(e)| different Listener sets;

– the set of deleted arcs in Deleted takes O(|Σ |2) space.

Thus, the overall space complexity of PSim is in O(p2 + |Σ |2 + |→|(|Σ | + |Distr|)). �

Form Methods Syst Des

Notice that |Σ |, |→|, |Distr| ≤ m and recall that p ≤ m. Hence, |Σ |(p2 + |Σ |) ≤ |Σ |m2

and |→|(|Σ | + |Distr|) ≤ 2m2. As a consequence, PSim turns out to be at least as effi-
cient than the most efficient probabilistic simulation algorithm in literature, that is Zhang
et al.’s algorithm [20], that runs in O(|Σ |m2)-time. This also holds for space complexity,
since Zhang et al.’s algorithm [20] has a O(m2) space bound, while for PSim we have that
p2 + |Σ |2 + |→|(|Σ | + |Distr|) ≤ 4m2. Our reduction from the size m to p, that is from
the size of the “state transitions” to the size of the “state” space, basically depends on the
fact that in Zhang et al.’s algorithm the same test d �≤R e is repeated for every pair of states
(si, ti) such that si ∈ prea(d), ti ∈ prea(e), whereas in PSim once the test d �≤R e has been
performed, every state ti is removed from R(si). Let us observe that when the input PLTS S
degenerates to a LTS, a call to the function SMF() can be executed in constant time, so that
PSim runs in O(|Σ ||→| + |Σ |2)-time, essentially reducing to Henzinger et al.’s nonproba-
bilistic simulation algorithm [9]. It is also worth observing that Zhang et al.’s algorithm relies
on a positive strategy that at each iteration i computes the pairs (si, ti) such that ti ∈ Ri(si),
whereas PSim follows a dual, negative, strategy that removes from Ri the pairs (si, ti) such
that ti �∈ Ri(si).

7 Future work

We have shown how abstract interpretation can be fruitfully applied in the context of behav-
ioral relations between probabilistic processes. We focused here on bisimulation/simulation
relations on PLTSs and we proved how efficient algorithms that compute these behavioral
relations can be systematically derived. As future work, we plan to investigate how this
abstract interpretation approach can be adapted to characterize the weak variants of bisim-
ulation/simulation and the so-called probabilistic bisimulations/simulations on PLTSs [16].
We also plan to apply a coarsest partition refinement approach to design a “symbolic” ver-
sion of our PSim simulation algorithm. Analogously to the symbolic algorithm by Ranzato
and Tapparo [13, 15] for nonprobabilistic simulation, the basic idea is to symbolically rep-
resent the relations R on states and R on distributions through partitions (of states and
distributions) and corresponding relations between blocks of these relations. It is worth not-
ing that this partition refinement approach has been already applied by Zhang [18] to design
a space-efficient simulation algorithm for PLTSs.

Acknowledgements We are grateful to D.N. Jansen for his valuable comments, especially on the imple-
mentation of the algorithm. This work was partially supported by the University of Padova under the projects
“AVIAMO” and “BECOM”.

References

1. Baier C, Engelen B, Majster-Cederbaum M (2000) Deciding bisimilarity and similarity for probabilistic
processes. J Comput Syst Sci 60:187–231

2. Cousot P, Cousot R (1977) Abstract interpretation: a unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In: Proc 4th ACM POPL, pp 238–252

3. Cousot P, Cousot R (1979) Systematic design of program analysis frameworks. In: Proc 6th ACM POPL,
pp 269–282

4. Crafa S, Ranzato F (2011) Probabilistic bisimulation and simulation algorithms by abstract interpreta-
tion. In: Proc ICALP’11. Springer LNCS, vol 6756, pp 295–306

5. Desharnais J (1999) Labelled Markov processes. PhD thesis, McGill Univ
6. Desharnais J, Edalat A, Panangaden P (2002) Bisimulation for labelled Markov processes. Inf Comput

179:163–193

Form Methods Syst Des

7. Giacobazzi R, Quintarelli E (2001) Incompleteness, counterexamples and refinements in abstract model
checking. In: Proc 8th SAS. Springer LNCS, vol 2126, pp 356–373

8. Giacobazzi R, Ranzato F (1997) Refining and compressing abstract domains. In: Proc 24th ICALP.
Springer LNCS, vol 1256, pp 771–781

9. Henzinger MR, Henzinger TA, Kopke PW (1995) Computing simulations on finite and infinite graphs.
In: Proc 36th FOCS, pp 453–462

10. Larsen KG, Skou A (1991) Bisimulation through probabilistic testing. Inf Comput 94(1):1–28
11. Paige R, Tarjan RE (1987) Three partition refinement algorithms. SIAM J Comput 16(6):973–989
12. Parma A, Segala R (2007) Logical characterizations of bisimulations for discrete probabilistic systems.

In: Proc FOSSACS’07. Springer LNCS, vol 4423, pp 287–301
13. Ranzato F, Tapparo F (2007) A new efficient simulation equivalence algorithm. In: Proc IEEE LICS’07,

pp 171–180
14. Ranzato F, Tapparo F (2007) Generalized strong preservation by abstract interpretation. J Log Comput

17(1):157–197
15. Ranzato F, Tapparo F (2010) An efficient simulation algorithm based on abstract interpretation. Inf Com-

put 208(1):1–22
16. Segala R, Lynch N (1995) Probabilistic simulations for probabilistic processes. Nord J Comput 2(2):250–

273
17. van Glabbeek RJ, Smolka S, Steffen B, Tofts C (1990) Reactive, generative and stratified models for

probabilistic processes. In: Proc IEEE LICS’90, pp 130–141
18. Zhang L (2008) A space-efficient probabilistic simulation algorithm. In: Proc CONCUR’08. Springer

LNCS, vol 5201, pp 248–263
19. Zhang L (2009) Decision algorithms for probabilistic simulations. PhD thesis, Univ des Saarlandes
20. Zhang L, Hermanns H, Eisenbrand F, Jansen DN (2008) Flow faster: efficient decision algorithms for

probabilistic simulations. Log Methods Comput Sci 4(4)

	Bisimulation and simulation algorithms on probabilistic transition systems by abstract interpretation
	Abstract
	Introduction
	Main results

	Bisimulation and simulation in PLTSs
	Bisimulation
	Simulation

	Shells
	Forward completeness
	Lattices of abstract domains
	Forward complete abstractions

	Shells of abstract domains

	Bisimulation as a shell
	Shells of partitions
	Bisimulation on PLTSs
	Bisimulation algorithm

	Simulation as a shell
	Shells of preorders
	Simulation on PLTSs

	A new efficient simulation algorithm on PLTSs
	Correctness
	Complexity

	Future work
	Acknowledgements
	References

