P-Congruences as Noninterference for the π -Calculus

Silvia Crafa

Universita' di Padova

Italy

Sabina Rossi

Universita' Ca' Foscari Venezia

Italy

FMSE 06, Fairfax Virginia USA, 3 Nov. 2006

Noninterference

Noninterference

information does not flow from high to low if the high behavior has no effect on what can be observed at low level.

INGREDIENTS:

- something to modify the high behaviour: attackers affecting high components
- something that observes: contexts affecting low components
- something to compare behaviours:
- behavioral equivalence

Noninterference in π -calculus

Noninterference in π -calculus

- $\blacktriangleright \ h().\ell() \mid \overline{h} \langle \rangle \text{ is insecure}$
- $\blacktriangleright \ \overline{h}\langle n\rangle \ \mid \ \overline{h}\langle m\rangle \ \mid \ h(x). \text{if } x = n \text{ then } \overline{\ell_1}\langle\rangle \text{ else } \overline{\ell_2}\langle\rangle$

An attack can destroy the nondeterminism causing an interference.

 $\blacktriangleright \ h().\ell() \mid \overline{h} \langle \rangle \text{ is insecure}$

$$\blacktriangleright \ \overline{h}\langle n\rangle \ | \ \overline{h}\langle m\rangle \ | \ h(x). \text{if } x = n \text{ then } \overline{\ell_1}\langle\rangle \text{ else } \overline{\ell_2}\langle\rangle$$

An attack can destroy the nondeterminism causing an interference.

 $P = (\nu \ell) (\overline{\ell_1} \langle \ell \rangle . \overline{\ell} \langle \rangle . P^?) \text{ and } Q = (\nu \ell) (\overline{h} \langle \ell \rangle . \overline{\ell} \langle \rangle . Q^?)$ The security of P/Q depends on that of $P^?/Q^?$??

$$P = (\boldsymbol{\nu}\ell) \,\overline{\ell_1} \langle \ell \rangle . \overline{\ell} \langle \rangle . P^? \xrightarrow{(\boldsymbol{\nu}\ell)\overline{\ell_1} \langle \ell \rangle} \overline{\ell} \langle \rangle . P^? \xrightarrow{\overline{\ell} \langle \rangle} P^?$$

$$Q = (\boldsymbol{\nu}\ell) \,\overline{h} \langle \ell \rangle . \overline{\ell} \langle \rangle . Q^? \xrightarrow{(\boldsymbol{\nu}\ell)\overline{h} \langle \ell \rangle} \overline{\ell} \langle \rangle . Q^? \xrightarrow{\overline{\ell} \langle \rangle} Q^?$$

The **low** observer will be able to observe $P^?$, which must be secure. However, it will not learn ℓ , hence it will never observe $Q^?$

- $\blacktriangleright \ h().\ell() \mid \overline{h} \langle \rangle \text{ is insecure}$
- $\blacktriangleright \ \overline{h}\langle n\rangle \ | \ \overline{h}\langle m\rangle \ | \ h(x). \text{if } x = n \text{ then } \overline{\ell_1}\langle\rangle \text{ else } \overline{\ell_2}\langle\rangle$

An attack can destroy the nondeterminism causing an interference.

 $P = (\nu \ell) (\overline{\ell_1} \langle \ell \rangle . \overline{\ell} \langle \rangle . P^?) \text{ and } Q = (\nu \ell) (\overline{h} \langle \ell \rangle . \overline{\ell} \langle \rangle . Q^?)$ The security of P/Q depends on that of $P^?/Q^?$??

$$P = (\boldsymbol{\nu}\ell) \,\overline{\ell_1} \langle \ell \rangle . \overline{\ell} \langle \rangle . P^? \xrightarrow{(\boldsymbol{\nu}\ell)\overline{\ell_1} \langle \ell \rangle} \overline{\ell} \langle \rangle . P^? \xrightarrow{\overline{\ell} \langle \rangle} P^?$$

$$Q = (\boldsymbol{\nu}\ell) \,\overline{h} \langle \ell \rangle . \overline{\ell} \langle \rangle . Q^? \xrightarrow{(\boldsymbol{\nu}\ell)\overline{h} \langle \ell \rangle} \overline{\ell} \langle \rangle . Q^? \xrightarrow{\overline{\ell} \langle \rangle} Q^?$$

The low observer will be able to observe $P^?$, which must be secure. However, it will not learn ℓ , hence it will never observe $Q^?$

 $\blacktriangleright \ (\boldsymbol{\nu}h)(\overline{h} \mid !h.(\overline{k} \mid \overline{h}) \mid k.\overline{\ell}) \text{ is it secure??}$

Noninterference in π -calculus

We provide a semantic characterization of noninterference in terms of the process behavior.

- Our characterizations of secure processes admit effective proof techniques (for finite state processes)
- Use a lightweight type system to avoid explicit flows: no safety theorem.
- ► Our framework also consider a declassification mechanism.

$\pi\text{-calculus}$

	Processes		
output	P ::=	$\pi.P$	prefix
input		if a = b then P else P	matching
		$P \mid P$	parallel
		$(\boldsymbol{\nu}n:T)P$	restriction
		!P	replication
		0	inactive
(C⊦ ⊢ ′	HANNEL TYPE) $T_i \Lambda(T_i) = \sum_{i=1}^{n} \left[-\delta[\tilde{T}] \right]$	$\leq \delta$ \leftarrow absence explicit fl	e of ows
	output input (Cr	$\begin{array}{c c} Processes\\ \text{output} & P ::=\\ \text{input} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	Processes output $P ::= \pi.P$ input if $a = b$ then P else P $ P P$ $ P P$ $ (\nu n : T)P$ $!P$ 0 (CHANNEL TYPE) absence $\vdash T_i \ \Lambda(T_i) \preceq \delta$ explicit fill

- ► *P* is a σ -low level source in Γ , denoted $\Gamma \vdash_{\sigma} P$, if $\Gamma \vdash P$ and $\forall m \in \operatorname{fn}(P)$ it holds $\Lambda(\Gamma(m)) \preceq \sigma$.
- ► *P* is a σ -high level source in Γ , denoted $\Gamma \vdash^{\sigma} P$, if for all names *a* used in *P* as a subject in an input or an output prefix, $\Lambda(\Gamma(a)) \not\preceq \sigma$.

 $C[\cdot_{\Gamma}] ::= [\cdot_{\Gamma}] | (\boldsymbol{\nu}n:T)C[\cdot_{\Gamma}] | C[\cdot_{\Gamma}] | P | P | C[\cdot_{\Gamma}]$ $C[\cdot_{\Gamma}] \text{ is a } \sigma\text{-low (resp. } \sigma\text{-high) context if it is a } (\Gamma'/\Gamma)\text{-context generated}$ by the grammar above where $\Lambda(T) \preceq \sigma$ (resp. $\Lambda(T) \not\preceq \sigma$) and $\Gamma' \vdash_{\sigma} P$ (resp. $\Gamma' \vdash^{\sigma} P$).

 $(\boldsymbol{\nu}h)(\overline{h}\langle\ell\rangle \mid [\cdot_{\Gamma}])$ is a σ -high context whereas $(\boldsymbol{\nu}h)(\overline{h}\langle\ell\rangle \mid h(x).\overline{x}\langle\rangle) \mid [\cdot_{\Gamma}]$ is a σ -low context. Reduction barbed congruence $\Gamma \vDash P \cong Q$

The largest type-indexed relation over processes which is symmetric, *reduction closed:*

if $\Gamma \vDash P \mathcal{R} Q$ and $P \xrightarrow{\tau} P'$ then $\exists Q'$ such that $Q \Longrightarrow Q'$ and $\Gamma \vDash P' \mathcal{R} Q'$,

barb preserving:

if $\Gamma \vDash P \mathcal{R} Q$ and $\Gamma \vDash P \downarrow_n$ then $\Gamma \vDash Q \Downarrow_n$. Where $\Gamma \vDash P \downarrow_n$ means $P \xrightarrow{\overline{n} \langle m \rangle}$. It captures the behaviour of processes

contextual:

if $\Gamma \vDash P \mathcal{R} Q$ and $\Gamma' \succ C[\cdot_{\Gamma}]$ then $\Gamma' \vDash C[P] \mathcal{R} C[Q]$ for all typed contexts $C[\cdot_{\Gamma}]$. σ -Reduction barbed congruence $\Gamma \vDash P \cong_{\sigma} Q$

The largest type-indexed relation over processes which is symmetric, *reduction closed:*

if $\Gamma \vDash P \mathcal{R} Q$ and $P \xrightarrow{\tau} P'$ then $\exists Q'$ such that $Q \Longrightarrow Q'$ and $\Gamma \vDash P' \mathcal{R} Q'$,

 σ -barb preserving:

if $\Gamma \vDash P \mathcal{R} Q$ and $\Gamma \vDash P \downarrow_n^{\sigma}$ then $\Gamma \vDash Q \Downarrow_n^{\sigma}$. $\Gamma \vDash P \downarrow_n^{\sigma}$ when $P \xrightarrow{\overline{n} \langle m \rangle}$ with $\Lambda(\Gamma(n)) \preceq \sigma$. It captures the σ -low behaviour of processes

 σ -contextual:

if $\Gamma \vDash P \mathcal{R} Q$ and $\Gamma' \succ C[\cdot_{\Gamma}]$ then $\Gamma' \vDash C[P] \mathcal{R} C[Q]$ for all σ -low contexts $C[\cdot_{\Gamma}]$

(interacting with the hole just thorugh σ -channels).

$\sigma\text{-reduction}$ barbed P-congruence $\Gamma\vDash P\cong_{\sigma}Q$

$\sigma\text{-reduction barbed P-congruence } \Gamma \vDash P \cong_{\sigma} Q$

The largest type-indexed relation over processes which is symmetric,

- reduction closed, σ -barb preserving
- $\blacktriangleright \sigma$ -*P*-contextual:
 - if $P \cong_{\sigma} Q$, then $C_L[C_H^1[P]] \cong_{\sigma} C_L[C_H^2[Q]]$ for all σ -low contexts C_L and for all σ -high contexts C_H^1, C_H^2

It captures the σ -low behaviour whatever is the surrounding σ -high context

$\sigma\text{-reduction}$ barbed P-congruence $\Gamma\vDash P\cong_{\sigma}Q$

The largest type-indexed relation over processes which is symmetric,

- reduction closed, σ -barb preserving
- σ -P-contextual:

if $P \cong_{\sigma} Q$, then $C_L[C_H^1[P]] \cong_{\sigma} C_L[C_H^2[Q]]$ for all σ -low contexts C_L and for all σ -high contexts C_H^1, C_H^2

It captures the σ -low behaviour whatever is the surrounding σ -high context

$$\implies$$
 ?? $P \cong_{\sigma} P$??

$\sigma\text{-reduction}$ barbed P-congruence $\Gamma\vDash P\cong_{\sigma}Q$

The largest type-indexed relation over processes which is symmetric,

- reduction closed, σ -barb preserving
- \blacktriangleright σ -*P*-contextual:

if $P \cong_{\sigma} Q$, then $C_L[C_H^1[P]] \cong_{\sigma} C_L[C_H^2[Q]]$ for all σ -low contexts C_L and for all σ -high contexts C_H^1, C_H^2

It captures the σ -low behaviour whatever is the surrounding σ -high context

P exhibits the same σ -low behaviour whatever is the surrounding σ -high context when P is interference-free

P-congruences as Noninterference

 $P \in \mathcal{NI}(\cong_{\sigma})$ iff $P \cong_{\sigma} P$ iff $C_{L}[C_{H}^{1}[P]] \cong_{\sigma} C_{L}[C_{H}^{2}[P]]$

for all σ -low contexts C_L and for all σ -high contexts C_H^1, C_H^2

 $\cong \not\subseteq \cong_{\sigma} (P_1 = h().\ell())$ $\cong_{\sigma} \not\subseteq \cong (P_2 = \ell().h(), P_3 = \ell().k())$ If $P \cong_{\sigma} P$ then $\forall Q$ s.t. $P \cong Q$ it holds $Q \cong_{\sigma} Q \cong_{\sigma} P$ For **INSECURE** processes, simply find distinguishing contexts. Let be L \leq H and σ = L,

 $\blacktriangleright P_2 = h(x:T). \text{ if } x = n \text{ then } \overline{\ell_1} \langle \rangle \text{ else } \overline{\ell_2} \langle \rangle$

(the level of n is irrelevant). Then $P_2 \notin \mathcal{NI}(\cong_{\sigma})$ since one can choose $C_H^1 = \overline{h} \langle n \rangle \mid [], C_H^2 = C_L = []$ and observe that $P_2 \not\cong_{\sigma} P_2 \mid \overline{h} \langle n \rangle.$

For INSECURE processes, simply find distinguishing contexts. Let be L \leq H and σ = L,

 $\blacktriangleright P_2 = h(x:T). \text{ if } x = n \text{ then } \overline{\ell_1} \langle \rangle \text{ else } \overline{\ell_2} \langle \rangle$

(the level of n is irrelevant). Then $P_2 \notin \mathcal{NI}(\cong_{\sigma})$ since one can choose $C_H^1 = \overline{h} \langle n \rangle \mid [], C_H^2 = C_L = []$ and observe that $P_2 \not\cong_{\sigma} P_2 \mid \overline{h} \langle n \rangle.$

 $\blacktriangleright P_3 = \overline{h} \langle n \rangle \mid \overline{h} \langle m \rangle \mid h(x). \text{ if } x = n \text{ then } \overline{\ell_1} \langle \rangle \text{ else } \overline{\ell_2} \langle \rangle,$

where x can be nondeterministically substituted either with n or m. An external attack can destroy the nondeterminism causing an interference: let $C_H^1 = h(y).h(z).\overline{h}\langle n \rangle \mid [], C_H^2 = C_L = []$, then $P_3 \not\cong_{\sigma} P_3 \mid h(y).h(z).\overline{h}\langle n \rangle$. Hence $P_3 \notin \mathcal{NI}(\cong_{\sigma})$.

P-congruences as Noninterference

$$\begin{split} P \in \mathcal{NI}(\cong_{\sigma}) & \text{iff} \\ P \cong_{\sigma} P \\ & \text{iff} \\ C_L[C_H^1[P]] \cong_{\sigma} C_L[C_H^2[P]] \\ \text{for all } \sigma\text{-low contexts } C_L \text{ and for all } \sigma\text{-high contexts } C_H^1, C_H^2 \end{split}$$

Define a LTS of *typed actions* over configurations $\Gamma \triangleright P$ (that means $\Gamma \vdash P$)

(OUT)

$$\frac{\Gamma \vdash n : \delta_1[T] \quad \delta_1 \preceq \delta}{\Gamma \triangleright \overline{n} \langle m \rangle . P \xrightarrow{\overline{\mathbf{n}} \langle \mathbf{m} \rangle}{\longrightarrow_{\delta}} \Gamma \triangleright P}$$

(IN)

$$\Gamma \vdash n : \delta_1[T] \quad \Gamma \vdash m : T \quad \delta_1 \leq \delta$$

$$\overline{\Gamma \triangleright n(x:T)} \cdot P \xrightarrow{\mathbf{n}(\mathbf{m})} \Gamma \triangleright P\{x := m\}$$

A proof technique for \cong_{σ}

$$\frac{\Gamma, m: T \triangleright P \xrightarrow{n(m)} \Gamma' \triangleright P'}{\Gamma \triangleright P \xrightarrow{(\boldsymbol{\nu} \mathbf{m}: \mathbf{T}) \mathbf{n}(\mathbf{m})} \delta \Gamma' \triangleright P'} \qquad \qquad \frac{\Gamma, m: T \triangleright P \xrightarrow{\overline{n} \langle m \rangle} \Gamma' \triangleright P' \quad m \neq n}{\Gamma \triangleright (\boldsymbol{\nu} m: \mathbf{T}) P \xrightarrow{(\boldsymbol{\nu} \mathbf{m}: \mathbf{T}) \overline{\mathbf{n}} \langle \mathbf{m} \rangle} \delta \Gamma' \triangleright P'}$$

$$\frac{\Gamma \triangleright P \xrightarrow{\alpha} \delta \Gamma' \triangleright P' \operatorname{bn}(\alpha) \cap \operatorname{fn}(Q) = \emptyset}{\Gamma \triangleright P \mid Q \xrightarrow{\alpha} \delta \Gamma' \triangleright P' \mid Q} \qquad \qquad \frac{P \xrightarrow{\tau} P'}{\Gamma \triangleright P \xrightarrow{\tau} \delta \Gamma \triangleright P'}$$

$$\frac{\Gamma, n: T \triangleright P \xrightarrow{\alpha} \Gamma', n: T \triangleright P' \quad n \notin \operatorname{fn}(\alpha) \cup \operatorname{bn}(\alpha)}{\Gamma \triangleright (\boldsymbol{\nu} n: T) P \xrightarrow{\alpha} \delta \Gamma' \triangleright (\boldsymbol{\nu} n: T) P'} \qquad \frac{\Gamma \triangleright P \xrightarrow{\alpha} \delta \Gamma' \triangleright P'}{\Gamma \triangleright ! P \xrightarrow{\alpha} \delta \Gamma' \triangleright P' | ! P}$$

Noninterference through a PER model

Partial bisimilarity on σ -low actions:

it is the largest symmetric relation $\dot{\approx}_{\sigma}$ s.t. whenever $P \stackrel{.}{\approx}_{\sigma} Q$

• on observable (σ -low) actions it behaves as bisimilarity: if $P \xrightarrow{\alpha}_{\sigma} P'$, then $\exists Q'$ s.t. $Q \xrightarrow{\hat{\alpha}}_{\sigma} Q'$ with $Q' \stackrel{\cdot}{\approx}_{\sigma} P'$.

 \blacktriangleright σ -high actions are simulated by internal transitions:

Noninterference through a PER model

Partial bisimilarity on σ -low actions:

it is the largest symmetric relation $\dot{\approx}_{\sigma}$ s.t. whenever $P \stackrel{.}{\approx}_{\sigma} Q$

• on observable (σ -low) actions it behaves as bisimilarity: if $P \xrightarrow{\alpha}_{\sigma} P'$, then $\exists Q'$ s.t. $Q \xrightarrow{\hat{\alpha}}_{\sigma} Q'$ with $Q' \stackrel{\cdot}{\approx}_{\sigma} P'$.

 \blacktriangleright σ -high actions are simulated by internal transitions:

Noninterference through a PER model

Partial bisimilarity on σ -low actions:

it is the largest symmetric relation \dot{pprox}_{σ} s.t. whenever $P \stackrel{.}{pprox}_{\sigma} Q$

- on observable (σ -low) actions it behaves as bisimilarity: if $P \xrightarrow{\alpha}_{\sigma} P'$, then $\exists Q'$ s.t. $Q \xrightarrow{\hat{\alpha}}_{\sigma} Q'$ with $Q' \stackrel{\cdot}{\approx}_{\sigma} P'$.
- σ -high actions are simulated by internal transitions: if $\Gamma \triangleright P \xrightarrow{\alpha} \sigma \quad \Gamma' \triangleright P'$ with $\alpha \in \{(\boldsymbol{\nu} \tilde{p}: \tilde{T}) \; \overline{n} \langle \tilde{m} \rangle, (\boldsymbol{\nu} \tilde{p}: \tilde{T}) \; n(\tilde{m})\}$ where $\tilde{p}: \tilde{T} = \tilde{p}_1: \tilde{T}_1, \; \tilde{p}_2: \tilde{T}_2 \text{ such that } \Lambda(\tilde{T}_1) \not\preceq \sigma$, and $\Lambda(\tilde{T}_2) \preceq \sigma$, then $\exists \; Q' \text{ s. t. } \Gamma \triangleright Q \Longrightarrow \Gamma \triangleright Q'$ with $\Gamma, \tilde{p}_1: \tilde{T}_1 \vDash Q' \approx_{\sigma} (\boldsymbol{\nu} \tilde{p}_2: \tilde{T}_2) P'.$

 $P_1 = (\boldsymbol{\nu}\ell)(\overline{h}\langle\ell\rangle.\overline{\ell}\langle\rangle.R) \qquad P_2 = (\boldsymbol{\nu}k)(\overline{h}\langlek\rangle.\overline{k}\langle\rangle.R)$

Time for an assessment

P is secureiff $P \in \mathcal{NI}(\cong_{\sigma})$ iff $P \stackrel{.}{\approx}_{\sigma} P$

almost independent of typing constraints

• compositionality results: if $P, Q \in \mathcal{NI}(\cong_{\sigma})$ then $P \mid Q \in \mathcal{NI}(\cong_{\sigma}), \ !P \in \mathcal{NI}(\cong_{\sigma}), \ (\boldsymbol{\nu}n)P \in \mathcal{NI}(\cong_{\sigma})$

Time for an assessment

P is secureiff $P \in \mathcal{NI}(\cong_{\sigma})$ iff $P \stackrel{.}{\approx}_{\sigma} P$

almost independent of typing constraints

• compositionality results: if $P, Q \in \mathcal{NI}(\cong_{\sigma})$ then $P \mid Q \in \mathcal{NI}(\cong_{\sigma}), \ !P \in \mathcal{NI}(\cong_{\sigma}), \ (\boldsymbol{\nu}n)P \in \mathcal{NI}(\cong_{\sigma})$

 $\mathcal{NI}(\cong_{\sigma})$ is a strong security property!!

... well suited in open networks

... but what about the expressivity and flexibility of secure systems?

To increase the flexibility of the system, we add a declassification mechanism that coerces the security level of (specific) expressions downwards.

By declassifying certain expressions, the programmer may intentionally violate noninterference, but only in a controlled way.

Which expressions are downgraded?

To increase the flexibility of the system, we add a declassification mechanism that coerces the security level of (specific) expressions downwards.

By declassifying certain expressions, the programmer may intentionally violate noninterference, but only in a controlled way.

Which expressions are downgraded?

• downgrade names, or values, as in imperative languages: $\overline{\ell}\langle \operatorname{dec}(h) \rangle . P \text{ or } \overline{\ell}\langle \operatorname{dec}(F(h_1, ..., h_k)) \rangle . P$ To increase the flexibility of the system, we add a declassification mechanism that coerces the security level of (specific) expressions downwards.

By declassifying certain expressions, the programmer may intentionally violate noninterference, but only in a controlled way.

Which expressions are downgraded?

- downgrade names, or values, as in imperative languages: $\overline{\ell}\langle \operatorname{dec}(h) \rangle . P \text{ or } \overline{\ell}\langle \operatorname{dec}(F(h_1, ..., h_k)) \rangle . P$
- downgrade process actions:

dec h(x). P and $\overline{\text{dec }h}\langle n\rangle$. P stand for a declassified read/write action over the channel h, which can still be used as a secret channel!

Declassifying actions: Dec π -calculus

- dec $_{\delta} n(x)$. *P* and dec $_{\delta} n\langle m \rangle$. *P* represent "escape hatches" for information release: they allow info arising from these actions to flow down up to level δ .
- Both users of the channel must agree to downgrade the communication:

$$\operatorname{dec}_{\delta} n(x).P \mid \overline{\operatorname{dec}_{\delta} n} \langle m \rangle.Q \longrightarrow P\{m/x\} \mid Q$$

Only programmers may enable the downgrading of secret information to an observable level; no external entities can synch on such declassified actions.

Controlled Information Release

The theory of P-congruences scales to the Dec π -calculus:

► $\cong_{\sigma}^{\text{dec}}$ is the largest relation which is symmetric, reduction closed, σ -barb preserving and σ -contextual, where σ -low and σ -high context cannot fire declassified communications.

Controlled Information Release

The theory of P-congruences scales to the Dec π -calculus:

- ► $\cong_{\sigma}^{\text{dec}}$ is the largest relation which is symmetric, reduction closed, σ -barb preserving and σ -contextual, where σ -low and σ -high context cannot fire declassified communications.
- The downgrading does not affect the level of typed actions, it only has an impact on the admissible info flows: $\Gamma \triangleright \overline{\operatorname{dec}_{\mathsf{L}}h}\langle m \rangle . P \xrightarrow{\overline{\operatorname{dec}_{\mathsf{L}}h}\langle m \rangle}_{\mathsf{H}} \Gamma \triangleright P$

Controlled Information Release

The theory of P-congruences scales to the Dec π -calculus:

- ► $\cong_{\sigma}^{\text{dec}}$ is the largest relation which is symmetric, reduction closed, σ -barb preserving and σ -contextual, where σ -low and σ -high context cannot fire declassified communications.
- ► The downgrading does not affect the level of typed actions, it only has an impact on the admissible info flows: $\Gamma \triangleright \overline{\operatorname{dec}_L h} \langle m \rangle . P \xrightarrow{\overline{\operatorname{dec}_L h} \langle m \rangle}_{\operatorname{H}} \Gamma \triangleright P$
 - $\approx_{\sigma}^{\cdot \text{ dec}}$ scales to Dec π :
 - \blacktriangleright σ -low actions must be precisely matched
 - σ -high actions must be matched by τ -steps
 - σ -high *declassified* actions need not to be matched by τ -steps since they represent an explicitly allowed info flow.

$$\blacktriangleright P \in \mathcal{NI}(\cong^{\mathsf{dec}}_{\sigma}) \text{ iff } P \stackrel{\cdot}{\approx}^{\mathsf{dec}}_{\sigma} P$$

► $P = \overline{h} \mid h.\ell$ is obviously insecure, whereas $P' = \overline{\operatorname{dec} h} \mid \operatorname{dec} h.\ell$ can be shown to be a secure process such that $\Gamma \vDash P' \cong_{\sigma} \ell$. On the other hand, $P_1 = \overline{k}.(\overline{\operatorname{dec} h} \mid \operatorname{dec} h.\ell)$ is not secure since the observable action ℓ depends on the firing of the high action \overline{k} .

- ► $P = \overline{h} \mid h.\ell$ is obviously insecure, whereas $P' = \overline{\det h} \mid \det h.\ell$ can be shown to be a secure process such that $\Gamma \vDash P' \cong_{\sigma} \ell$. On the other hand, $P_1 = \overline{k}.(\overline{\det h} \mid \det h.\ell)$ is not secure since the observable action ℓ depends on the firing of the high action \overline{k} .
- $\blacktriangleright P = \overline{\operatorname{dec} h}. h. \overline{\operatorname{dec} h} | \operatorname{dec} h. \overline{\ell}. \overline{h}. \operatorname{dec} h \text{ is secure:}$

a high channel can be used as a secure channel even after a downgrading,

- ► $P = \overline{h} \mid h.\ell$ is obviously insecure, whereas $P' = \overline{\det h} \mid \det h.\ell$ can be shown to be a secure process such that $\Gamma \vDash P' \cong_{\sigma} \ell$. On the other hand, $P_1 = \overline{k}.(\overline{\det h} \mid \det h.\ell)$ is not secure since the observable action ℓ depends on the fire of the high action \overline{k} .
- ► P = dec h. h. dec h | dec h. l. h. dec h is secure: a high channel can be used as a secure channel even after a downgrading,
- P = h(x).if x = n then $\overline{\ell_1}\langle\rangle$ else $\overline{\ell_2}\langle\rangle | \overline{h}\langle n \rangle | \overline{h}\langle m \rangle$ is insecure, but by declassifying the communication on the channel h, we obtain $P' = \det h(x)$.if x = n then $\overline{\ell_1}\langle\rangle$ else $\overline{\ell_2}\langle\rangle | \overline{\det h}\langle n \rangle | \overline{\det h}\langle m \rangle$ which is secure.

Conclusions

- a rich and elegant theory of noninterference intrinsic of the π -calculus, where types play a limited role
- a sound and complete characterization leading to efficient verification techniques.
- we integrated the π-calculus with a downgrading mechanism that allows a controlled information release which scales to noninterference.

$\mathsf{Dec}\pi ext{-calculus}$

$$\frac{\Gamma \vdash \overline{a} \langle \tilde{b} \rangle. P \quad \Gamma \vdash a : \delta_1[\tilde{T}]}{\Gamma \vdash \overline{\mathsf{deca}} \langle \tilde{b} \rangle. P} \quad \delta \prec \delta_1 \quad \frac{\Gamma \vdash a(\tilde{x} : \tilde{T}). P \quad \Gamma \vdash a : \delta_1[\tilde{T}]}{\Gamma \vdash \mathsf{deca}(\tilde{x} : \tilde{T}). P} \quad \delta \prec \delta_1$$

$$\overline{\operatorname{\mathsf{dec}n}}\langle \tilde{m}\rangle.P \xrightarrow{\overline{\operatorname{\mathsf{dec}n}}\langle \tilde{m}\rangle} P \quad \operatorname{\mathsf{dec}n}(\tilde{x}:\tilde{T}).P \xrightarrow{\operatorname{\mathsf{dec}n}(\tilde{m})} P\{\tilde{x}:=\tilde{m}\}$$

$$\frac{P \xrightarrow{(\boldsymbol{\nu}\tilde{p}:\tilde{T}) \overline{\operatorname{decn}}\langle \tilde{m} \rangle}}{P' \quad q \neq n \quad q \in \tilde{m}} \xrightarrow{(\boldsymbol{\nu}q:T)(\boldsymbol{\nu}\tilde{p}:\tilde{T}) \overline{\operatorname{decn}}\langle \tilde{m} \rangle}}{(\boldsymbol{\nu}q:T)P \quad \xrightarrow{(\boldsymbol{\nu}q:T)(\boldsymbol{\nu}\tilde{p}:\tilde{T}) \overline{\operatorname{decn}}\langle \tilde{m} \rangle}} P'$$

$$\frac{P \xrightarrow{(\boldsymbol{\nu} \tilde{p}:\tilde{T}) \overline{\operatorname{decn}} \langle \tilde{m} \rangle}}{P \mid Q \xrightarrow{\tau} (\boldsymbol{\nu} \tilde{p}:\tilde{T})(P' \mid Q')} \tilde{P} \cap \operatorname{fn}(Q) = \emptyset$$

$$\frac{\Gamma \vdash n : \delta_1[\tilde{T}]}{\Gamma \triangleright \overline{\mathsf{dec}_{\delta_2} n} \langle \tilde{m} \rangle . P \xrightarrow{\overline{\mathsf{dec}_{\delta_2} n} \langle \tilde{m} \rangle}{\delta} \Gamma \triangleright P} \quad \delta_1 \preceq \delta$$

$$\frac{\Gamma \vdash n : \delta_1[\tilde{T}] \quad \Gamma \vdash \tilde{m} : \tilde{T}}{\Gamma \triangleright \operatorname{dec}_{\delta_2} n(\tilde{x}:\tilde{T}).P \xrightarrow{\operatorname{dec}_{\delta_2} n(\tilde{m})} \delta \quad \Gamma \triangleright P\{\tilde{x} := \tilde{m}\}} \quad \delta_1 \preceq \delta$$

$$\begin{array}{c} \underbrace{\Gamma, q: T \triangleright P} \xrightarrow{(\boldsymbol{\nu} \tilde{p}: \tilde{T}) \operatorname{dec}_{\delta_1} n(\tilde{m})}_{\boldsymbol{\delta} \quad \Gamma' \triangleright P' \quad q \neq n, \tilde{p} \quad q \in \tilde{m}} \\ \Gamma, q: T \triangleright P \xrightarrow{(\boldsymbol{\nu} q: T)(\boldsymbol{\nu} \tilde{p}: \tilde{T}) \operatorname{dec}_{\delta_1} n(\tilde{m})}_{\boldsymbol{\delta} \quad \Gamma' \triangleright P'} \end{array}$$

$$\frac{\Gamma, q: T \triangleright P \xrightarrow{(\boldsymbol{\nu} \tilde{p}: \tilde{T}) \overline{\operatorname{dec}_{\delta_{1}} n} \langle \tilde{m} \rangle}{\Gamma \circ (\boldsymbol{\nu} q: T) P} \xrightarrow{\delta} \Gamma' \triangleright P' \quad q \neq n, \tilde{p} \quad q \in \tilde{m}}{\Gamma \circ (\boldsymbol{\nu} q: T) P} \xrightarrow{(\boldsymbol{\nu} q: T) (\boldsymbol{\nu} \tilde{p}: \tilde{T}) \overline{\operatorname{dec}_{\delta_{1}} n} \langle \tilde{m} \rangle}{\delta} \quad \Gamma' \triangleright P'}$$

π -calculus

$$\overline{n}\langle m\rangle.P \xrightarrow{\overline{n}\langle m\rangle} P \qquad \qquad n(x:T).P \xrightarrow{n(m)} P\{x:=m\}$$

$$\frac{P \xrightarrow{(\boldsymbol{\nu} m:T) \,\overline{n} \langle m \rangle}}{P \mid Q \xrightarrow{\tau} (\boldsymbol{\nu} m:T)(P' \mid Q')} \stackrel{n(m)}{\longrightarrow} P' \quad Q \xrightarrow{n(m)} Q' \quad m \notin \mathrm{fn}(Q)$$

π -calculus

if
$$n = n$$
 then P else $Q \xrightarrow{\tau} P$ if $n = m$ then P else $Q \xrightarrow{\tau} Q$

(PAR)

$$\frac{P \stackrel{\alpha}{\longrightarrow} P' \operatorname{bn}(\alpha) \cap \operatorname{fn}(Q) = \emptyset}{P \mid Q \stackrel{\alpha}{\longrightarrow} P' \mid Q}$$

(RES)

$$\frac{P \xrightarrow{\alpha} P' \quad n \notin \operatorname{fn}(\alpha) \cup \operatorname{bn}(\alpha)}{(\boldsymbol{\nu}n:T)P \xrightarrow{\alpha} (\boldsymbol{\nu}n:T)P'} \qquad \qquad \begin{array}{c} (\operatorname{Rep-Act}) \\ P \xrightarrow{\alpha} P' \\ \hline P \xrightarrow{\alpha} P' \\ P \xrightarrow{\alpha} P' \mid P \end{array}$$