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Noninterference

Input Output

Low

High

σ

Noninterference

information does not flow from high to low

if the high behavior has no effect on

what can be observed at low level.

INGREDIENTS:

◮ something to modify the high behaviour: attackers affecting
high components

◮ something that observes: contexts affecting low components

◮ something to compare behaviours: behavioral equivalence
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Noninterference in π-calculus

◮ h().ℓ() | h〈〉 is insecure
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Noninterference in π-calculus

◮ h().ℓ() | h〈〉 is insecure

◮ h〈n〉 | h〈m〉 | h(x).if x = n then ℓ1〈〉 else ℓ2〈〉

An attack can destroy the nondeterminism causing an interference.
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Noninterference in π-calculus

◮ h().ℓ() | h〈〉 is insecure

◮ h〈n〉 | h〈m〉 | h(x).if x = n then ℓ1〈〉 else ℓ2〈〉

An attack can destroy the nondeterminism causing an interference.

◮ P = (νℓ) ( ℓ1〈ℓ〉.ℓ〈〉.P
?) and Q = (νℓ) ( h〈ℓ〉.ℓ〈〉.Q?)

The security of P/Q depends on that of P ?/Q? ??

P = (νℓ) ℓ1〈ℓ〉.ℓ〈〉.P
?

(νℓ)ℓ1〈ℓ〉

−−−−−→ ℓ〈〉.P ?
ℓ〈〉

−−→ P ?

Q = (νℓ) h〈ℓ〉.ℓ〈〉.Q?
(νℓ)h〈ℓ〉

−−−−−→ ℓ〈〉.Q?
ℓ〈〉

−−→ Q?

The low observer will be able to observe P ?, which must be secure.

However, it will not learn ℓ, hence it will never observe Q?
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Noninterference in π-calculus

◮ h().ℓ() | h〈〉 is insecure

◮ h〈n〉 | h〈m〉 | h(x).if x = n then ℓ1〈〉 else ℓ2〈〉

An attack can destroy the nondeterminism causing an interference.

◮ P = (νℓ) ( ℓ1〈ℓ〉.ℓ〈〉.P
?) and Q = (νℓ) ( h〈ℓ〉.ℓ〈〉.Q?)

The security of P/Q depends on that of P ?/Q? ??

P = (νℓ) ℓ1〈ℓ〉.ℓ〈〉.P
?

(νℓ)ℓ1〈ℓ〉

−−−−−−→ ℓ〈〉.P ?
ℓ〈〉

−−→ P ?

Q = (νℓ) h〈ℓ〉.ℓ〈〉.Q?
(νℓ)h〈ℓ〉

−−−−−→ ℓ〈〉.Q?
ℓ〈〉

−−→ Q?

The low observer will be able to observe P ?, which must be secure.

However, it will not learn ℓ, hence it will never observe Q?

◮ (νh)(h | !h.(k | h) | k.ℓ) is it secure??
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Noninterference in π-calculus

We provide a semantic characterization of noninterference

in terms of the process behavior.

◮ Our characterizations of secure processes admit effective proof

techniques (for finite state processes)

◮ Use a lightweight type system to avoid explicit flows: no safety

theorem.

◮ Our framework also consider a declassification mechanism.
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π-calculus

Prefixes Processes

π ::= a〈b̃〉 output P ::= π.P prefix

| a(x̃:T̃ ) input | if a = b then P else P matching

| P | P parallel

Types | (νn : T )P restriction

T ::= δ[ ] | !P replication

| δ[T̃ ] | 0 inactive

(EMPTY TYPE)

⊢ δ[ ]

(CHANNEL TYPE)

⊢ Ti Λ(Ti) � δ

⊢ δ[T̃ ]

absence of
explicit flows�
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High and Low Contexts

◮ P is a σ-low level source in Γ, denoted Γ ⊢σ P , if Γ ⊢ P and

∀m ∈ fn(P ) it holds Λ(Γ(m)) � σ.

◮ P is a σ-high level source in Γ, denoted Γ ⊢σ P , if for all names a used

in P as a subject in an input or an output prefix, Λ(Γ(a)) 6� σ.

C[·Γ] ::= [·Γ] | (νn:T )C[·Γ] | C[·Γ] | P | P | C[·Γ]

C[·Γ] is a σ-low (resp. σ-high ) context if it is a (Γ′/Γ)-context generated

by the grammar above where Λ(T ) � σ (resp. Λ(T ) 6� σ) and Γ′ ⊢σ P

(resp. Γ′ ⊢σ P ).

(νh)( h〈ℓ〉 | [·Γ] ) is a σ-high context whereas

(νh)( h〈ℓ〉 | h(x).x〈〉 ) | [·Γ] is a σ-low context.
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Reduction barbed congruence Γ � P ∼= Q

The largest type-indexed relation over processes which is symmetric,

reduction closed:

if Γ � P RQ and P
τ

−→ P ′ then

∃Q′ such that Q =⇒ Q′ and Γ � P ′ RQ′,

barb preserving:

if Γ � P RQ and Γ � P ↓n then Γ � Q⇓n.

Where Γ � P ↓n means P
n〈m〉
−−−→ .

contextual:

if Γ � P R Q and Γ′ ⊢ C[·Γ] then

Γ′ � C[P ] R C[Q] for all typed contexts C[·Γ].

It captures
the behaviour
of processes
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σ-Reduction barbed congruence Γ � P ∼̇=σ Q

The largest type-indexed relation over processes which is symmetric,

reduction closed:

if Γ � P RQ and P
τ

−→ P ′ then

∃Q′ such that Q =⇒ Q′ and Γ � P ′ RQ′,

σ-barb preserving:

if Γ � P RQ and Γ � P ↓σ
n then Γ � Q⇓σ

n.

Γ � P ↓σ
n when P

n〈m〉
−−−→ with Λ(Γ(n)) � σ.

σ-contextual:

if Γ � P R Q and Γ′ ⊢ C[·Γ] then

Γ′ � C[P ] R C[Q] for all σ-low contexts C[·Γ]

(interacting with the hole just thorugh σ-channels).

It captures the
σ-low behaviour

of processes

10



σ-reduction barbed P-congruence Γ � P ∼=σ Q

∼=
equates processes exhibiting

the same behaviour

?

∼̇=σ

equates processes exhibiting the same

σ-low behaviour

?

∼=σ

equates processes exhibiting the same

σ-low behaviour whatever is

the surrounding σ-high context
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σ-reduction barbed P-congruence Γ � P ∼=σ Q

The largest type-indexed relation over processes which is symmetric,

◮ reduction closed, σ-barb preserving

◮ σ-P-contextual:
if P ∼=σ Q, then CL[ C1

H [P ] ] ∼=σ CL[ C2
H [Q ] ]

for all σ-low contexts CL and for all σ-high contexts C1
H , C2

H

It captures the σ-low
behaviour whatever is the

surrounding σ-high context

QP

?
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σ-reduction barbed P-congruence Γ � P ∼=σ Q

The largest type-indexed relation over processes which is symmetric,

◮ reduction closed, σ-barb preserving

◮ σ-P-contextual:
if P ∼=σ Q, then CL[ C1

H [P ] ] ∼=σ CL[ C2
H [Q ] ]

for all σ-low contexts CL and for all σ-high contexts C1
H , C2

H

It captures the σ-low
behaviour whatever is the

surrounding σ-high context
=⇒ ?? P ∼=σ P ??
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σ-reduction barbed P-congruence Γ � P ∼=σ Q

The largest type-indexed relation over processes which is symmetric,

◮ reduction closed, σ-barb preserving

◮ σ-P-contextual:
if P ∼=σ Q, then CL[ C1

H [P ] ] ∼=σ CL[ C2
H [Q ] ]

for all σ-low contexts CL and for all σ-high contexts C1
H , C2

H

It captures the σ-low
behaviour whatever is the

surrounding σ-high context
=⇒

P exhibits the same σ-low
behaviour whatever is the

surrounding σ-high context
when

P is interference-free
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P-congruences as Noninterference

P ∈ NI(∼=σ)

iff

P ∼=σ P

iff

CL[ C1
H [P ] ] ∼=σ CL[ C2

H [P ] ]

for all σ-low contexts CL and for all σ-high contexts C1
H , C2

H

∼= 6⊆ ∼=σ (P1 = h().ℓ())

∼=σ 6⊆ ∼= (P2 = ℓ().h(), P3 = ℓ().k())

If P ∼=σ P then ∀Q s.t. P ∼= Q it holds Q ∼=σ Q ∼=σ P
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Examples

For INSECURE processes, simply find distinguishing contexts.

Let be L � H and σ = L,

◮ P2 = h(x : T ). if x = n then ℓ1〈〉 else ℓ2〈〉

(the level of n is irrelevant). Then P2 /∈ NI(∼=σ) since one can choose

C1
H = h〈n〉 | [ ], C2

H = CL = [ ] and observe that

P2 6∼=σ P2 | h〈n〉. where x can be nondeterministically substituted

either with n or m. An external attack can destroy the nondeterminism

causing an interference: let H = h(y).h(z).h〈n〉, then

Γ′
� P3 6∼=σ P3 | H . Hence P3 /∈ NI(∼=σ).
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Examples

For INSECURE processes, simply find distinguishing contexts.

Let be L � H and σ = L,

◮ P2 = h(x : T ). if x = n then ℓ1〈〉 else ℓ2〈〉

(the level of n is irrelevant). Then P2 /∈ NI(∼=σ) since one can choose

C1
H = h〈n〉 | [ ], C2

H = CL = [ ] and observe that

P2 6∼=σ P2 | h〈n〉.

◮ P3 = h〈n〉 | h〈m〉 | h(x). if x = n then ℓ1〈〉 else ℓ2〈〉,

where x can be nondeterministically substituted either with n or m. An

external attack can destroy the nondeterminism causing an interference:

let C1
H = h(y).h(z).h〈n〉 | [ ], C2

H = CL = [ ], then

P3 6∼=σ P3 | h(y).h(z).h〈n〉. Hence P3 /∈ NI(∼=σ).
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P-congruences as Noninterference

P ∈ NI(∼=σ)

iff

P ∼=σ P

iff

CL[ C1
H [P ] ] ∼=σ CL[ C2

H [P ] ]

for all σ-low contexts CL and for all σ-high contexts C1
H , C2

H!? !?
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Looking for a proof technique

Define a LTS of typed actions over configurations Γ ⊲ P (that means Γ ⊢ P )

Γ ⊲ P
α

−−→δ Γ′ ⊲ P ′

action of
level (at most) δ

I

(OUT)

Γ ⊢ n : δ1[T ] δ1 � δ

Γ ⊲ n〈m〉.P
n〈m〉
−−→δ Γ ⊲ P

(IN)

Γ ⊢ n : δ1[T ] Γ ⊢ m : T δ1 � δ

Γ ⊲ n(x:T ).P
n(m)
−−→δ Γ ⊲ P{x := m}
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A proof technique for ∼=σ

Γ, m : T ⊲ P
n(m)
−−→δ Γ′ ⊲ P ′

Γ ⊲ P
(νm:T)n(m)
−−−−−−−−→δ Γ′ ⊲ P ′

Γ, m:T ⊲ P
n〈m〉
−−→δ Γ′ ⊲ P ′ m 6= n

Γ ⊲ (νm:T )P
(νm:T)n〈m〉
−−−−−−−−→δ Γ′ ⊲ P ′

Γ ⊲ P
α

−−→δ Γ′ ⊲ P ′ bn(α) ∩ fn(Q) = ∅

Γ ⊲ P | Q
α

−−→δ Γ′ ⊲ P ′ | Q

P
τ

−−→ P ′

Γ ⊲ P
τ

−−→δ Γ ⊲ P ′

Γ, n:T ⊲ P
α

−−→δ Γ′, n:T ⊲ P ′ n /∈ fn(α) ∪ bn(α)

Γ ⊲ (νn:T )P
α

−−→δ Γ′ ⊲ (νn:T )P ′

Γ ⊲ P
α

−−→δ Γ′ ⊲ P ′

Γ⊲!P
α

−−→δ Γ′ ⊲ P ′ | !P
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Noninterference through a PER model

Partial bisimilarity on σ-low actions:

it is the largest symmetric relation
.
≈σ s.t. whenever P

.
≈σ Q

◮ on observable (σ-low) actions it behaves as bisimilarity:

if P
α

−−→σ P ′, then ∃Q′ s.t. Q
α̂

==⇒σ Q′ with Q′ .
≈σ P ′.

◮ σ-high actions are simulated by internal transitions:

if Γ ⊲ P
α

−−→σ Γ′ ⊲ P ′ with α ∈ {(ν p̃:T̃ ) n〈m̃〉, (ν p̃:T̃ ) n(m̃)}

where p̃ : T̃ = p̃1:T̃1, p̃2:T̃2 such that Λ(T̃1) 6� σ, and Λ(T̃2) � σ,

then ∃ Q′ such that Γ ⊲ Q ⇒ Γ ⊲ Q′ with

Γ, p̃1:T̃1 � Q′ .
≈σ (ν p̃2:T̃2)P

′.
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Noninterference through a PER model

Partial bisimilarity on σ-low actions:

it is the largest symmetric relation
.
≈σ s.t. whenever P

.
≈σ Q

◮ on observable (σ-low) actions it behaves as bisimilarity:

if P
α

−−→σ P ′, then ∃Q′ s.t. Q
α̂

==⇒σ Q′ with Q′ .
≈σ P ′.

◮ σ-high actions are simulated by internal transitions:

if Γ ⊲ P
α

−−→σ Γ′ ⊲ P ′ with α ∈ {(ν p̃:T̃ ) n〈m̃〉, (ν p̃:T̃ ) n(m̃)}

where p̃ : T̃ = p̃1:T̃1, p̃2:T̃2 such that Λ(T̃1) 6� σ, and Λ(T̃2) � σ,

then ∃ Q′ such that Γ ⊲ Q ⇒ Γ ⊲ Q′ with

Γ, p̃1:T̃1 � Q′ .
≈σ (ν p̃2:T̃2)P

′.

Q’

?

P’

QP

h τ
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Noninterference through a PER model

Partial bisimilarity on σ-low actions:

it is the largest symmetric relation
.
≈σ s.t. whenever P

.
≈σ Q

◮ on observable (σ-low) actions it behaves as bisimilarity:

if P
α

−−→σ P ′, then ∃Q′ s.t. Q
α̂

==⇒σ Q′ with Q′ .
≈σ P ′.

◮ σ-high actions are simulated by internal transitions:

if Γ ⊲ P
α

−−→σ Γ′ ⊲ P ′ with α ∈ {(ν p̃:T̃ ) n〈m̃〉, (ν p̃:T̃ ) n(m̃)}

where p̃ : T̃ = p̃1:T̃1, p̃2:T̃2 such that Λ(T̃1) 6� σ, and Λ(T̃2) � σ,

then ∃ Q′ s. t. Γ ⊲ Q =⇒ Γ ⊲ Q′ with

Γ, p̃1:T̃1 � Q′ .
≈σ (ν p̃2:T̃2)P

′.

P1 = (νℓ)(h〈ℓ〉.ℓ〈〉.R) P2 = (νk)(h〈k〉.k〈〉.R)
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Time for an assessment

P is secure

iff P ∈ NI(∼=σ) iff P
.
≈σ P

◮ almost independent of typing constraints

◮ compositionality results:

if P, Q ∈ NI(∼=σ) then

P | Q ∈ NI(∼=σ), !P ∈ NI(∼=σ), (νn)P ∈ NI(∼=σ)

NI(∼=σ) is a strong security property!!

... well suited in open networks

... but what about the expressivity and flexibility of secure systems?
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Declassification

To increase the flexibility of the system, we add a declassification mechanism

that coerces the security level of (specific) expressions downwards.

By declassifying certain expressions, the programmer may intentionally

violate noninterference, but only in a controlled way.

Which expressions are downgraded?
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Declassification

To increase the flexibility of the system, we add a declassification mechanism

that coerces the security level of (specific) expressions downwards.

By declassifying certain expressions, the programmer may intentionally

violate noninterference, but only in a controlled way.

Which expressions are downgraded?

◮ downgrade names, or values, as in imperative languages:

ℓ〈 dec(h) 〉.P or ℓ〈 dec(F (h1, ..., hk)) 〉.P
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Declassification

To increase the flexibility of the system, we add a declassification mechanism

that coerces the security level of (specific) expressions downwards.

By declassifying certain expressions, the programmer may intentionally

violate noninterference, but only in a controlled way.

Which expressions are downgraded?

◮ downgrade names, or values, as in imperative languages:

ℓ〈 dec(h) 〉.P or ℓ〈 dec(F (h1, ..., hk)) 〉.P

◮ downgrade process actions:

dech(x).P and dech〈n〉.P stand for a declassified read/write

action over the channel h, which can still be used as a secret channel!

22



Declassifying actions: Dec π-calculus

◮ decδ n(x).P and decδ n〈m〉.P represent “escape hatches” for

information release: they allow info arising from these actions to

flow down up to level δ.

◮ Both users of the channel must agree to downgrade the

communication:

decδ n(x).P | decδ n〈m〉.Q −→ P{m/x} | Q

◮ Only programmers may enable the downgrading of secret

information to an observable level; no external entities can synch

on such declassified actions.
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Controlled Information Release

The theory of P-congruences scales to the Dec π-calculus:

◮ ∼=dec

σ is the largest relation which is symmetric, reduction closed, σ-barb

preserving and σ-contextual, where σ-low and σ-high context cannot fire

declassified communications.
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◮ ∼=dec

σ is the largest relation which is symmetric, reduction closed, σ-barb

preserving and σ-contextual, where σ-low and σ-high context cannot fire

declassified communications.

◮ The downgrading does not affect the level of typed actions, it only has an

impact on the admissible info flows: Γ ⊲ decLh〈m〉.P
decLh〈m〉
−−−−−→HΓ ⊲ P
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Controlled Information Release

The theory of P-congruences scales to the Dec π-calculus:

◮ ∼=dec

σ is the largest relation which is symmetric, reduction closed, σ-barb

preserving and σ-contextual, where σ-low and σ-high context cannot fire

declassified communications.

◮ The downgrading does not affect the level of typed actions, it only has an

impact on the admissible info flows: Γ ⊲ decLh〈m〉.P
decLh〈m〉
−−−−−→HΓ ⊲ P

◮
.
≈

dec

σ scales to Dec π:

◮ σ-low actions must be precisely matched

◮ σ-high actions must be matched by τ -steps

◮ σ-high declassified actions need not to be matched by τ -steps since

they represent an explicitly allowed info flow.

◮ P ∈ NI(∼=dec

σ ) iff P
.
≈

dec

σ P

24



Downgrading

◮ P = h | h.ℓ is obviously insecure, whereas P ′ = dec h | dec h.ℓ can

be shown to be a secure process such that Γ � P ′ ∼=σ ℓ. On the other

hand, P1 = k.(dec h | dec h.ℓ) is not secure since the observable

action ℓ depends on the firing of the high action k.
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Downgrading

◮ P = h | h.ℓ is obviously insecure, whereas P ′ = dec h | dec h.ℓ can

be shown to be a secure process such that Γ � P ′ ∼=σ ℓ. On the other

hand, P1 = k.(dec h | dec h.ℓ) is not secure since the observable

action ℓ depends on the firing of the high action k.

◮ P = dec h. h. dec h | dec h. ℓ. h. dec h is secure :

a high channel can be used as a secure channel even after a

downgrading,
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Downgrading

◮ P = h | h.ℓ is obviously insecure, whereas P ′ = dec h | dec h.ℓ can

be shown to be a secure process such that Γ � P ′ ∼=σ ℓ. On the other

hand, P1 = k.(dec h | dec h.ℓ) is not secure since the observable

action ℓ depends on the fire of the high action k.

◮ P = dec h. h. dec h | dec h. ℓ. h. dec h is secure :

a high channel can be used as a secure channel even after a

downgrading,

◮ P = h(x).if x = n then ℓ1〈〉 else ℓ2〈〉 | h〈n〉 | h〈m〉 is insecure ,

but by declassifying the communication on the channel h, we obtain

P ′ = dec h(x).if x=n then ℓ1〈〉 else ℓ2〈〉 | dec h〈n〉 | dec h〈m〉

which is secure .
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Conclusions

◮ a rich and elegant theory of noninterference intrinsic of the

π-calculus, where types play a limited role

◮ a sound and complete characterization leading to efficient

verification techniques.

◮ we integrated the π-calculus with a downgrading mechanism that

allows a controlled information release which scales to

noninterference.
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Decπ-calculus

Γ ⊢ a〈b̃〉.P Γ ⊢ a : δ1[T̃ ]

Γ ⊢ deca〈b̃〉.P
δ ≺ δ1

Γ ⊢ a(x̃ : T̃ ).P Γ ⊢ a : δ1[T̃ ]

Γ ⊢ deca(x̃ : T̃ ).P
δ ≺ δ1

decn〈m̃〉.P
decn〈m̃〉
−−−−−→ P decn(x̃:T̃ ).P

decn(m̃)
−−−−−→ P{x̃ := m̃}

P
(ν p̃:T̃ ) decn〈m̃〉
−−−−−−−−−−→ P ′ q 6= n q ∈ m̃

(νq:T )P
(νq:T )(ν p̃:T̃ ) decn〈m̃〉
−−−−−−−−−−−−−−−→ P ′

P
(ν p̃:T̃ ) decn〈m̃〉
−−−−−−−−−−→ P ′ Q

decn(m̃)
−−−−−→ Q′ p̃ ∩ fn(Q) = ∅

P | Q
τ

−−→ (νp̃ : T̃ )(P ′ | Q′)
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Γ ⊢ n : δ1[T̃ ]

Γ ⊲ decδ2n〈m̃〉.P
decδ2

n〈m̃〉

−−−−−−→δ Γ ⊲ P

δ1 � δ

Γ ⊢ n : δ1[T̃ ] Γ ⊢ m̃ : T̃

Γ ⊲ decδ2n(x̃:T̃ ).P
decδ2

n(m̃)

−−−−−−→δ Γ ⊲ P{x̃ := m̃}

δ1 � δ

Γ, q:T ⊲ P
(ν p̃:T̃ ) decδ1

n(m̃)

−−−−−−−−−−−→δ Γ′ ⊲ P ′ q 6= n, p̃ q ∈ m̃

Γ ⊲ P
(νq:T )(ν p̃:T̃ ) decδ1

n(m̃)

−−−−−−−−−−−−−−−→δ Γ′ ⊲ P ′

Γ, q:T ⊲ P
(ν p̃:T̃ ) decδ1

n〈m̃〉

−−−−−−−−−−−→δ Γ′ ⊲ P ′ q 6= n, p̃ q ∈ m̃

Γ ⊲ (νq:T )P
(νq:T )(ν p̃:T̃ ) decδ1

n〈m̃〉

−−−−−−−−−−−−−−−→δ Γ′ ⊲ P ′
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π-calculus

n〈m〉.P
n〈m〉

−−−→ P n(x : T ).P
n(m)

−−−→ P{x := m}

P
n〈m〉

−−−→ P ′ Q
n(m)

−−−→ Q′

P | Q
τ

−−→ P ′ | Q′

P
n〈m〉

−−−→ P ′ m 6= n

(νm:T )P
(νm:T ) n〈m〉

−−−−−−−−→ P ′

P
(νm:T ) n〈m〉

−−−−−−−−→ P ′ Q
n(m)

−−−→ Q′ m /∈ fn(Q)

P | Q
τ

−−→ (νm:T )(P ′ | Q′)
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if n = n then P else Q
τ

−−→ P if n = m then P else Q
τ

−−→ Q

(PAR)

P
α

−−→ P ′ bn(α) ∩ fn(Q) = ∅

P | Q
α

−−→ P ′ | Q

(RES)

P
α

−−→ P ′ n /∈ fn(α) ∪ bn(α)

(νn:T )P
α

−−→ (νn:T )P ′

(REP-ACT)

P
α

−−→ P ′

!P
α

−−→ P ′ | !P
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