
P-Congruences as Noninterference
for the π-Calculus

Silvia Crafa Sabina Rossi

Universita’ di Padova Universita’ Ca’ Foscari Venezia

Italy Italy

FMSE 06, Fairfax Virginia USA, 3 Nov. 2006

Noninterference

Input Output

Low

High

σ

Noninterference

information does not flow from high to low

if the high behavior has no effect on

what can be observed at low level.

INGREDIENTS:

◮ something to modify the high behaviour: attackers affecting
high components

◮ something that observes: contexts affecting low components

◮ something to compare behaviours: behavioral equivalence

1

Noninterference in π-calculus

◮ h().ℓ() | h〈〉 is insecure

2

Noninterference in π-calculus

◮ h().ℓ() | h〈〉 is insecure

◮ h〈n〉 | h〈m〉 | h(x).if x = n then ℓ1〈〉 else ℓ2〈〉

An attack can destroy the nondeterminism causing an interference.

3

Noninterference in π-calculus

◮ h().ℓ() | h〈〉 is insecure

◮ h〈n〉 | h〈m〉 | h(x).if x = n then ℓ1〈〉 else ℓ2〈〉

An attack can destroy the nondeterminism causing an interference.

◮ P = (νℓ) (ℓ1〈ℓ〉.ℓ〈〉.P
?) and Q = (νℓ) (h〈ℓ〉.ℓ〈〉.Q?)

The security of P/Q depends on that of P ?/Q? ??

P = (νℓ) ℓ1〈ℓ〉.ℓ〈〉.P
?

(νℓ)ℓ1〈ℓ〉

−−−−−→ ℓ〈〉.P ?
ℓ〈〉

−−→ P ?

Q = (νℓ) h〈ℓ〉.ℓ〈〉.Q?
(νℓ)h〈ℓ〉

−−−−−→ ℓ〈〉.Q?
ℓ〈〉

−−→ Q?

The low observer will be able to observe P ?, which must be secure.

However, it will not learn ℓ, hence it will never observe Q?

4

Noninterference in π-calculus

◮ h().ℓ() | h〈〉 is insecure

◮ h〈n〉 | h〈m〉 | h(x).if x = n then ℓ1〈〉 else ℓ2〈〉

An attack can destroy the nondeterminism causing an interference.

◮ P = (νℓ) (ℓ1〈ℓ〉.ℓ〈〉.P
?) and Q = (νℓ) (h〈ℓ〉.ℓ〈〉.Q?)

The security of P/Q depends on that of P ?/Q? ??

P = (νℓ) ℓ1〈ℓ〉.ℓ〈〉.P
?

(νℓ)ℓ1〈ℓ〉

−−−−−−→ ℓ〈〉.P ?
ℓ〈〉

−−→ P ?

Q = (νℓ) h〈ℓ〉.ℓ〈〉.Q?
(νℓ)h〈ℓ〉

−−−−−→ ℓ〈〉.Q?
ℓ〈〉

−−→ Q?

The low observer will be able to observe P ?, which must be secure.

However, it will not learn ℓ, hence it will never observe Q?

◮ (νh)(h | !h.(k | h) | k.ℓ) is it secure??

5

Noninterference in π-calculus

We provide a semantic characterization of noninterference

in terms of the process behavior.

◮ Our characterizations of secure processes admit effective proof

techniques (for finite state processes)

◮ Use a lightweight type system to avoid explicit flows: no safety

theorem.

◮ Our framework also consider a declassification mechanism.

6

π-calculus

Prefixes Processes

π ::= a〈b̃〉 output P ::= π.P prefix

| a(x̃:T̃) input | if a = b then P else P matching

| P | P parallel

Types | (νn : T)P restriction

T ::= δ[] | !P replication

| δ[T̃] | 0 inactive

(EMPTY TYPE)

⊢ δ[]

(CHANNEL TYPE)

⊢ Ti Λ(Ti) � δ

⊢ δ[T̃]

absence of
explicit flows�

7

High and Low Contexts

◮ P is a σ-low level source in Γ, denoted Γ ⊢σ P , if Γ ⊢ P and

∀m ∈ fn(P) it holds Λ(Γ(m)) � σ.

◮ P is a σ-high level source in Γ, denoted Γ ⊢σ P , if for all names a used

in P as a subject in an input or an output prefix, Λ(Γ(a)) 6� σ.

C[·Γ] ::= [·Γ] | (νn:T)C[·Γ] | C[·Γ] | P | P | C[·Γ]

C[·Γ] is a σ-low (resp. σ-high) context if it is a (Γ′/Γ)-context generated

by the grammar above where Λ(T) � σ (resp. Λ(T) 6� σ) and Γ′ ⊢σ P

(resp. Γ′ ⊢σ P).

(νh)(h〈ℓ〉 | [·Γ]) is a σ-high context whereas

(νh)(h〈ℓ〉 | h(x).x〈〉) | [·Γ] is a σ-low context.

8

Reduction barbed congruence Γ � P ∼= Q

The largest type-indexed relation over processes which is symmetric,

reduction closed:

if Γ � P RQ and P
τ

−→ P ′ then

∃Q′ such that Q =⇒ Q′ and Γ � P ′ RQ′,

barb preserving:

if Γ � P RQ and Γ � P ↓n then Γ � Q⇓n.

Where Γ � P ↓n means P
n〈m〉
−−−→ .

contextual:

if Γ � P R Q and Γ′ ⊢ C[·Γ] then

Γ′ � C[P] R C[Q] for all typed contexts C[·Γ].

It captures
the behaviour
of processes

9

σ-Reduction barbed congruence Γ � P ∼̇=σ Q

The largest type-indexed relation over processes which is symmetric,

reduction closed:

if Γ � P RQ and P
τ

−→ P ′ then

∃Q′ such that Q =⇒ Q′ and Γ � P ′ RQ′,

σ-barb preserving:

if Γ � P RQ and Γ � P ↓σ
n then Γ � Q⇓σ

n.

Γ � P ↓σ
n when P

n〈m〉
−−−→ with Λ(Γ(n)) � σ.

σ-contextual:

if Γ � P R Q and Γ′ ⊢ C[·Γ] then

Γ′ � C[P] R C[Q] for all σ-low contexts C[·Γ]

(interacting with the hole just thorugh σ-channels).

It captures the
σ-low behaviour

of processes

10

σ-reduction barbed P-congruence Γ � P ∼=σ Q

∼=
equates processes exhibiting

the same behaviour

?

∼̇=σ

equates processes exhibiting the same

σ-low behaviour

?

∼=σ

equates processes exhibiting the same

σ-low behaviour whatever is

the surrounding σ-high context

11

σ-reduction barbed P-congruence Γ � P ∼=σ Q

The largest type-indexed relation over processes which is symmetric,

◮ reduction closed, σ-barb preserving

◮ σ-P-contextual:
if P ∼=σ Q, then CL[C1

H [P]] ∼=σ CL[C2
H [Q]]

for all σ-low contexts CL and for all σ-high contexts C1
H , C2

H

It captures the σ-low
behaviour whatever is the

surrounding σ-high context

QP

?

12

σ-reduction barbed P-congruence Γ � P ∼=σ Q

The largest type-indexed relation over processes which is symmetric,

◮ reduction closed, σ-barb preserving

◮ σ-P-contextual:
if P ∼=σ Q, then CL[C1

H [P]] ∼=σ CL[C2
H [Q]]

for all σ-low contexts CL and for all σ-high contexts C1
H , C2

H

It captures the σ-low
behaviour whatever is the

surrounding σ-high context
=⇒ ?? P ∼=σ P ??

13

σ-reduction barbed P-congruence Γ � P ∼=σ Q

The largest type-indexed relation over processes which is symmetric,

◮ reduction closed, σ-barb preserving

◮ σ-P-contextual:
if P ∼=σ Q, then CL[C1

H [P]] ∼=σ CL[C2
H [Q]]

for all σ-low contexts CL and for all σ-high contexts C1
H , C2

H

It captures the σ-low
behaviour whatever is the

surrounding σ-high context
=⇒

P exhibits the same σ-low
behaviour whatever is the

surrounding σ-high context
when

P is interference-free

14

P-congruences as Noninterference

P ∈ NI(∼=σ)

iff

P ∼=σ P

iff

CL[C1
H [P]] ∼=σ CL[C2

H [P]]

for all σ-low contexts CL and for all σ-high contexts C1
H , C2

H

∼= 6⊆ ∼=σ (P1 = h().ℓ())

∼=σ 6⊆ ∼= (P2 = ℓ().h(), P3 = ℓ().k())

If P ∼=σ P then ∀Q s.t. P ∼= Q it holds Q ∼=σ Q ∼=σ P

15

Examples

For INSECURE processes, simply find distinguishing contexts.

Let be L � H and σ = L,

◮ P2 = h(x : T). if x = n then ℓ1〈〉 else ℓ2〈〉

(the level of n is irrelevant). Then P2 /∈ NI(∼=σ) since one can choose

C1
H = h〈n〉 | [], C2

H = CL = [] and observe that

P2 6∼=σ P2 | h〈n〉. where x can be nondeterministically substituted

either with n or m. An external attack can destroy the nondeterminism

causing an interference: let H = h(y).h(z).h〈n〉, then

Γ′
� P3 6∼=σ P3 | H . Hence P3 /∈ NI(∼=σ).

16

Examples

For INSECURE processes, simply find distinguishing contexts.

Let be L � H and σ = L,

◮ P2 = h(x : T). if x = n then ℓ1〈〉 else ℓ2〈〉

(the level of n is irrelevant). Then P2 /∈ NI(∼=σ) since one can choose

C1
H = h〈n〉 | [], C2

H = CL = [] and observe that

P2 6∼=σ P2 | h〈n〉.

◮ P3 = h〈n〉 | h〈m〉 | h(x). if x = n then ℓ1〈〉 else ℓ2〈〉,

where x can be nondeterministically substituted either with n or m. An

external attack can destroy the nondeterminism causing an interference:

let C1
H = h(y).h(z).h〈n〉 | [], C2

H = CL = [], then

P3 6∼=σ P3 | h(y).h(z).h〈n〉. Hence P3 /∈ NI(∼=σ).

16

P-congruences as Noninterference

P ∈ NI(∼=σ)

iff

P ∼=σ P

iff

CL[C1
H [P]] ∼=σ CL[C2

H [P]]

for all σ-low contexts CL and for all σ-high contexts C1
H , C2

H!? !?

17

Looking for a proof technique

Define a LTS of typed actions over configurations Γ ⊲ P (that means Γ ⊢ P)

Γ ⊲ P
α

−−→δ Γ′ ⊲ P ′

action of
level (at most) δ

I

(OUT)

Γ ⊢ n : δ1[T] δ1 � δ

Γ ⊲ n〈m〉.P
n〈m〉
−−→δ Γ ⊲ P

(IN)

Γ ⊢ n : δ1[T] Γ ⊢ m : T δ1 � δ

Γ ⊲ n(x:T).P
n(m)
−−→δ Γ ⊲ P{x := m}

18

A proof technique for ∼=σ

Γ, m : T ⊲ P
n(m)
−−→δ Γ′ ⊲ P ′

Γ ⊲ P
(νm:T)n(m)
−−−−−−−−→δ Γ′ ⊲ P ′

Γ, m:T ⊲ P
n〈m〉
−−→δ Γ′ ⊲ P ′ m 6= n

Γ ⊲ (νm:T)P
(νm:T)n〈m〉
−−−−−−−−→δ Γ′ ⊲ P ′

Γ ⊲ P
α

−−→δ Γ′ ⊲ P ′ bn(α) ∩ fn(Q) = ∅

Γ ⊲ P | Q
α

−−→δ Γ′ ⊲ P ′ | Q

P
τ

−−→ P ′

Γ ⊲ P
τ

−−→δ Γ ⊲ P ′

Γ, n:T ⊲ P
α

−−→δ Γ′, n:T ⊲ P ′ n /∈ fn(α) ∪ bn(α)

Γ ⊲ (νn:T)P
α

−−→δ Γ′ ⊲ (νn:T)P ′

Γ ⊲ P
α

−−→δ Γ′ ⊲ P ′

Γ⊲!P
α

−−→δ Γ′ ⊲ P ′ | !P

19

Noninterference through a PER model

Partial bisimilarity on σ-low actions:

it is the largest symmetric relation
.
≈σ s.t. whenever P

.
≈σ Q

◮ on observable (σ-low) actions it behaves as bisimilarity:

if P
α

−−→σ P ′, then ∃Q′ s.t. Q
α̂

==⇒σ Q′ with Q′ .
≈σ P ′.

◮ σ-high actions are simulated by internal transitions:

if Γ ⊲ P
α

−−→σ Γ′ ⊲ P ′ with α ∈ {(ν p̃:T̃) n〈m̃〉, (ν p̃:T̃) n(m̃)}

where p̃ : T̃ = p̃1:T̃1, p̃2:T̃2 such that Λ(T̃1) 6� σ, and Λ(T̃2) � σ,

then ∃ Q′ such that Γ ⊲ Q ⇒ Γ ⊲ Q′ with

Γ, p̃1:T̃1 � Q′ .
≈σ (ν p̃2:T̃2)P

′.

20

Noninterference through a PER model

Partial bisimilarity on σ-low actions:

it is the largest symmetric relation
.
≈σ s.t. whenever P

.
≈σ Q

◮ on observable (σ-low) actions it behaves as bisimilarity:

if P
α

−−→σ P ′, then ∃Q′ s.t. Q
α̂

==⇒σ Q′ with Q′ .
≈σ P ′.

◮ σ-high actions are simulated by internal transitions:

if Γ ⊲ P
α

−−→σ Γ′ ⊲ P ′ with α ∈ {(ν p̃:T̃) n〈m̃〉, (ν p̃:T̃) n(m̃)}

where p̃ : T̃ = p̃1:T̃1, p̃2:T̃2 such that Λ(T̃1) 6� σ, and Λ(T̃2) � σ,

then ∃ Q′ such that Γ ⊲ Q ⇒ Γ ⊲ Q′ with

Γ, p̃1:T̃1 � Q′ .
≈σ (ν p̃2:T̃2)P

′.

Q’

?

P’

QP

h τ

20

Noninterference through a PER model

Partial bisimilarity on σ-low actions:

it is the largest symmetric relation
.
≈σ s.t. whenever P

.
≈σ Q

◮ on observable (σ-low) actions it behaves as bisimilarity:

if P
α

−−→σ P ′, then ∃Q′ s.t. Q
α̂

==⇒σ Q′ with Q′ .
≈σ P ′.

◮ σ-high actions are simulated by internal transitions:

if Γ ⊲ P
α

−−→σ Γ′ ⊲ P ′ with α ∈ {(ν p̃:T̃) n〈m̃〉, (ν p̃:T̃) n(m̃)}

where p̃ : T̃ = p̃1:T̃1, p̃2:T̃2 such that Λ(T̃1) 6� σ, and Λ(T̃2) � σ,

then ∃ Q′ s. t. Γ ⊲ Q =⇒ Γ ⊲ Q′ with

Γ, p̃1:T̃1 � Q′ .
≈σ (ν p̃2:T̃2)P

′.

P1 = (νℓ)(h〈ℓ〉.ℓ〈〉.R) P2 = (νk)(h〈k〉.k〈〉.R)

20

Time for an assessment

P is secure

iff P ∈ NI(∼=σ) iff P
.
≈σ P

◮ almost independent of typing constraints

◮ compositionality results:

if P, Q ∈ NI(∼=σ) then

P | Q ∈ NI(∼=σ), !P ∈ NI(∼=σ), (νn)P ∈ NI(∼=σ)

NI(∼=σ) is a strong security property!!

... well suited in open networks

... but what about the expressivity and flexibility of secure systems?

21

Time for an assessment

P is secure

iff P ∈ NI(∼=σ) iff P
.
≈σ P

◮ almost independent of typing constraints

◮ compositionality results:

if P, Q ∈ NI(∼=σ) then

P | Q ∈ NI(∼=σ), !P ∈ NI(∼=σ), (νn)P ∈ NI(∼=σ)

NI(∼=σ) is a strong security property!!

... well suited in open networks

... but what about the expressivity and flexibility of secure systems?

21

Declassification

To increase the flexibility of the system, we add a declassification mechanism

that coerces the security level of (specific) expressions downwards.

By declassifying certain expressions, the programmer may intentionally

violate noninterference, but only in a controlled way.

Which expressions are downgraded?

22

Declassification

To increase the flexibility of the system, we add a declassification mechanism

that coerces the security level of (specific) expressions downwards.

By declassifying certain expressions, the programmer may intentionally

violate noninterference, but only in a controlled way.

Which expressions are downgraded?

◮ downgrade names, or values, as in imperative languages:

ℓ〈 dec(h) 〉.P or ℓ〈 dec(F (h1, ..., hk)) 〉.P

22

Declassification

To increase the flexibility of the system, we add a declassification mechanism

that coerces the security level of (specific) expressions downwards.

By declassifying certain expressions, the programmer may intentionally

violate noninterference, but only in a controlled way.

Which expressions are downgraded?

◮ downgrade names, or values, as in imperative languages:

ℓ〈 dec(h) 〉.P or ℓ〈 dec(F (h1, ..., hk)) 〉.P

◮ downgrade process actions:

dech(x).P and dech〈n〉.P stand for a declassified read/write

action over the channel h, which can still be used as a secret channel!

22

Declassifying actions: Dec π-calculus

◮ decδ n(x).P and decδ n〈m〉.P represent “escape hatches” for

information release: they allow info arising from these actions to

flow down up to level δ.

◮ Both users of the channel must agree to downgrade the

communication:

decδ n(x).P | decδ n〈m〉.Q −→ P{m/x} | Q

◮ Only programmers may enable the downgrading of secret

information to an observable level; no external entities can synch

on such declassified actions.

23

Controlled Information Release

The theory of P-congruences scales to the Dec π-calculus:

◮ ∼=dec

σ is the largest relation which is symmetric, reduction closed, σ-barb

preserving and σ-contextual, where σ-low and σ-high context cannot fire

declassified communications.

24

Controlled Information Release

The theory of P-congruences scales to the Dec π-calculus:

◮ ∼=dec

σ is the largest relation which is symmetric, reduction closed, σ-barb

preserving and σ-contextual, where σ-low and σ-high context cannot fire

declassified communications.

◮ The downgrading does not affect the level of typed actions, it only has an

impact on the admissible info flows: Γ ⊲ decLh〈m〉.P
decLh〈m〉
−−−−−→HΓ ⊲ P

24

Controlled Information Release

The theory of P-congruences scales to the Dec π-calculus:

◮ ∼=dec

σ is the largest relation which is symmetric, reduction closed, σ-barb

preserving and σ-contextual, where σ-low and σ-high context cannot fire

declassified communications.

◮ The downgrading does not affect the level of typed actions, it only has an

impact on the admissible info flows: Γ ⊲ decLh〈m〉.P
decLh〈m〉
−−−−−→HΓ ⊲ P

◮
.
≈

dec

σ scales to Dec π:

◮ σ-low actions must be precisely matched

◮ σ-high actions must be matched by τ -steps

◮ σ-high declassified actions need not to be matched by τ -steps since

they represent an explicitly allowed info flow.

◮ P ∈ NI(∼=dec

σ) iff P
.
≈

dec

σ P

24

Downgrading

◮ P = h | h.ℓ is obviously insecure, whereas P ′ = dec h | dec h.ℓ can

be shown to be a secure process such that Γ � P ′ ∼=σ ℓ. On the other

hand, P1 = k.(dec h | dec h.ℓ) is not secure since the observable

action ℓ depends on the firing of the high action k.

25

Downgrading

◮ P = h | h.ℓ is obviously insecure, whereas P ′ = dec h | dec h.ℓ can

be shown to be a secure process such that Γ � P ′ ∼=σ ℓ. On the other

hand, P1 = k.(dec h | dec h.ℓ) is not secure since the observable

action ℓ depends on the firing of the high action k.

◮ P = dec h. h. dec h | dec h. ℓ. h. dec h is secure :

a high channel can be used as a secure channel even after a

downgrading,

25

Downgrading

◮ P = h | h.ℓ is obviously insecure, whereas P ′ = dec h | dec h.ℓ can

be shown to be a secure process such that Γ � P ′ ∼=σ ℓ. On the other

hand, P1 = k.(dec h | dec h.ℓ) is not secure since the observable

action ℓ depends on the fire of the high action k.

◮ P = dec h. h. dec h | dec h. ℓ. h. dec h is secure :

a high channel can be used as a secure channel even after a

downgrading,

◮ P = h(x).if x = n then ℓ1〈〉 else ℓ2〈〉 | h〈n〉 | h〈m〉 is insecure ,

but by declassifying the communication on the channel h, we obtain

P ′ = dec h(x).if x=n then ℓ1〈〉 else ℓ2〈〉 | dec h〈n〉 | dec h〈m〉

which is secure .

25

Conclusions

◮ a rich and elegant theory of noninterference intrinsic of the

π-calculus, where types play a limited role

◮ a sound and complete characterization leading to efficient

verification techniques.

◮ we integrated the π-calculus with a downgrading mechanism that

allows a controlled information release which scales to

noninterference.

26

Decπ-calculus

Γ ⊢ a〈b̃〉.P Γ ⊢ a : δ1[T̃]

Γ ⊢ deca〈b̃〉.P
δ ≺ δ1

Γ ⊢ a(x̃ : T̃).P Γ ⊢ a : δ1[T̃]

Γ ⊢ deca(x̃ : T̃).P
δ ≺ δ1

decn〈m̃〉.P
decn〈m̃〉
−−−−−→ P decn(x̃:T̃).P

decn(m̃)
−−−−−→ P{x̃ := m̃}

P
(ν p̃:T̃) decn〈m̃〉
−−−−−−−−−−→ P ′ q 6= n q ∈ m̃

(νq:T)P
(νq:T)(ν p̃:T̃) decn〈m̃〉
−−−−−−−−−−−−−−−→ P ′

P
(ν p̃:T̃) decn〈m̃〉
−−−−−−−−−−→ P ′ Q

decn(m̃)
−−−−−→ Q′ p̃ ∩ fn(Q) = ∅

P | Q
τ

−−→ (νp̃ : T̃)(P ′ | Q′)

27

Γ ⊢ n : δ1[T̃]

Γ ⊲ decδ2n〈m̃〉.P
decδ2

n〈m̃〉

−−−−−−→δ Γ ⊲ P

δ1 � δ

Γ ⊢ n : δ1[T̃] Γ ⊢ m̃ : T̃

Γ ⊲ decδ2n(x̃:T̃).P
decδ2

n(m̃)

−−−−−−→δ Γ ⊲ P{x̃ := m̃}

δ1 � δ

Γ, q:T ⊲ P
(ν p̃:T̃) decδ1

n(m̃)

−−−−−−−−−−−→δ Γ′ ⊲ P ′ q 6= n, p̃ q ∈ m̃

Γ ⊲ P
(νq:T)(ν p̃:T̃) decδ1

n(m̃)

−−−−−−−−−−−−−−−→δ Γ′ ⊲ P ′

Γ, q:T ⊲ P
(ν p̃:T̃) decδ1

n〈m̃〉

−−−−−−−−−−−→δ Γ′ ⊲ P ′ q 6= n, p̃ q ∈ m̃

Γ ⊲ (νq:T)P
(νq:T)(ν p̃:T̃) decδ1

n〈m̃〉

−−−−−−−−−−−−−−−→δ Γ′ ⊲ P ′

28

π-calculus

n〈m〉.P
n〈m〉

−−−→ P n(x : T).P
n(m)

−−−→ P{x := m}

P
n〈m〉

−−−→ P ′ Q
n(m)

−−−→ Q′

P | Q
τ

−−→ P ′ | Q′

P
n〈m〉

−−−→ P ′ m 6= n

(νm:T)P
(νm:T) n〈m〉

−−−−−−−−→ P ′

P
(νm:T) n〈m〉

−−−−−−−−→ P ′ Q
n(m)

−−−→ Q′ m /∈ fn(Q)

P | Q
τ

−−→ (νm:T)(P ′ | Q′)

29

π-calculus

if n = n then P else Q
τ

−−→ P if n = m then P else Q
τ

−−→ Q

(PAR)

P
α

−−→ P ′ bn(α) ∩ fn(Q) = ∅

P | Q
α

−−→ P ′ | Q

(RES)

P
α

−−→ P ′ n /∈ fn(α) ∪ bn(α)

(νn:T)P
α

−−→ (νn:T)P ′

(REP-ACT)

P
α

−−→ P ′

!P
α

−−→ P ′ | !P

30

