
Is Solidity solid enough?

Silvia Crafa1, Matteo Di Pirro1, and Elena Zucca2

1 University of Padova, Italy
2 DIBRIS, University of Genova, Italy

Abstract. We introduce Featherweight Solidity, a calculus formalizing
the core features of the Solidity language, thus providing a fundamental
step to reason about safety properties of smart contracts’ source code.
The formalization includes a static type system that represents the foun-
dation of the Solidity compiler. We show that it prevents some errors
whereas many others, such as accesses to a non existing function or state
variable, are only detected at runtime and cause interruption and rolling-
back of transactions. We then propose a refinement of the type system,
that is retro-compatible with original Solidity code and statically cap-
tures more errors, such as unsafe casts and unsafe call-back expressions.

Keywords: type soundness · operational semantics · smart contracts

1 Introduction

Smart contracts and their decentralized algorithmic validation are emerging as
a successful technology to implement agreements between mutually untrusted
parties without relying on a centralized third authority. They are currently used
in many critical domains such as infrastructural systems and financial applica-
tions, therefore it is of paramount importance to study their correctness and
safety properties. In this work we address this problem at the programming lan-
guage abstraction level, so to statically rule out harmful patterns appearing in
smart contracts code and support a safer programming discipline. More precisely,
we focus on Solidity, the most widely used programming language in Ethereum’s
ecosystem, and its type system, that is integrated in the language so to let the
compiler statically enforce basic safety properties of smart contracts.

Our first contribution is the formalization of the semantics of the core of the
Solidity language, that we call Featherweight Solidity (FS). The FS calculus
focuses on contract instantiation, typed interaction among deployed contracts
and money transfers. Even if important features like gas fees are omitted, the
calculus provides a rather compact and clean model of key aspects of smart con-
tract programming. Such a formalization indeed allows one to precisely define
the behavior of many Solidity programs, so to describe undesired behaviors and
to investigate on a way to prevent them. This is a fundamental step for the de-
velopment of many analysis techniques that take advantage of formal methods
to verify and to reason about the safety properties of smart contracts’ source
code, rather than acting at the level of EVM bytecode. Moreover, the formal-
ization style of FS intentionally highlights the connection between objects and

2 S. Crafa et al.

smart contracts, opening the way to adapt the rich (typed) theory of OOLs in
the context of Solidity.

As a second contribution, we study the type system of FS, in order to clar-
ify, precisely state and most importantly prove, Solidity’s claim to be a type-safe
language. In particular, we show that the Solidity static type system only pre-
vents stuck executions, but not runtime type errors, such as accesses to a non
existing function or state variable. That is, well-typed FS programs, hence also
compiled Solidity contracts, may reach specific exceptional states that cause the
current transaction to be interrupted and rolled-back, possibly leading to Ether
indefinitely locked into a contract’s balance. Reverting an unsafe transaction
guarantees the consistency of the blockchain, but the account that issued the
transaction is not reimbursed for the money it paid to the miner node. Thus, it
is of interest of anyone to issue a transaction only when there is a static guarantee
that such a transaction will not evolve to a revert.

The main reason for the weakness of Solidity’s type safety lies in the fact
that the code of contract functions can refer to contract instances only through
their public addresses, but the Solidity address type is essentially an untyped
pointer, which is notoriously a very flexible but subtle feature.

Our third contribution is then a proposal for a refinement of the type sys-
tem. We show that the enriched type system enjoys a more powerful soundness
property, so that the only possible runtime errors in FS remain those due to
a negative account balance. In particular, cast expressions or money transfers
that would lead to unsafe usage of contract members or calls to an undefined
fallback function are now ruled out at compile-time. Moreover, we show that
such a refinement can be actually made retro-compatible with original Solidity
code. Hence, it is possible for contracts written in the extended safer language
to interact with already deployed smart contracts.

The key idea is twofold: first, we refine the address type with type infor-
mation about the contract it refers to. Secondly, we enrich the functions’ signa-
tures so to allow functions to be called only by contracts whose address has an
expected (super-)type. This additional infomation is particularly useful within
contracts code to type check the implicit sender parameter, therefore, besides
statically preventing runtime errors, the refined compiler statically prevents un-
safe callback expressions, that are notoriously vulnerable Solidity programming
patterns. To take advantage of the full power of the refined typing, the major ef-
fort required to Solidity programmers is to explicitly express the type constraint
they require on contracts callers. However, this requirement actually supports a
safer programming discipline, and we put forward a number of convenient func-
tion modifiers, in line with Solidity language style, so to enhance the use of its
compiler as a convenient building tool.

A preliminary version of FS has been given in [7]. The formalization pre-
sented in this paper is cleaner and focused on key aspects; moreover, some subtle
Solidity aspects have been modeled in a closer way.

Is Solidity solid enough? 3

contract Bank {

mapping (address => uint) amounts;

function withdraw(uint n) {

require(amounts[msg.sender] >= n);

amounts[msg.sender] -= n;

msg.sender.transfer(n);

}

function deposit () payable {

amounts[msg.sender] += msg.value;

}

}

Fig. 1. A simple Bank contract in Solidity

2 Background

Ethereum [6] is a decentralized platform that runs programs called smart con-
tracts. Contract instances deployed on the Etherum blockchain are autonomous
agents reminiscent of class-based objects in distributed OOLs. They are iden-
tified by a unique public address, hold an amount of virtual coins called Ether
(balance), are given a persistent area in the blockchain where their state is stored,
and are associated with their immutable executable code. Besides contracts, the
blockchain also hosts Externally Owned Accounts (EOAs), that correspond to
human agents registered to the Ethereum platform. Analogously to smart con-
tracts, EOAs are identified by a unique address and hold an amount of Ether as
their balance, but they have no associated code. EOAs start programs by issuing
a transaction, which either deploys a new contract instance, or invokes a function
by sending a message to a contract stored at a given address. Typically, trans-
actions include input data for the invocation, the address of the sender EOA, an
amount of virtual money to be transferred to the contract as a sort of payment,
and a fee (gas) to reward the miner node that executes the transaction.

While EOA’s initial transactions are written using one of the many API
available in Ethereum ecosystem, smart contracts code is commonly written
using the Solidity programming language [2], and it is compiled into bytecode
running on the Ethereum Virtual Machine (EVM) [15]. As in OOLs, Solidity
contracts contain state variables and functions that, as objects methods, can
refer to the currently executing contract instance through the variable this.
Contract functions can send messages to other (or to the current) contracts,
possibly also specifying an amount of virtual money and the gas fee to be paid.
Therefore, besides this, in Solidity the contract functions have access to the
implicit variable msg, which stores various information about the current message
call, such as the address of the caller (msg.sender) and the amount of money
sent along with the call (msg.value).

As an example, Fig.1 shows a Solidity smart contract that implements a very
simple bank. The amounts state variable is a mapping that records the amounts
of money deposited by clients, either EOAs or smart contracts, indexed by their

4 S. Crafa et al.

Ethereum addresses. To withdraw money from a Bank instance b, the invocation
of the corresponding function should have the standard shape b.withdraw(n).
The function body first of all checks whether the caller’s bank account contains
enough money. If not, an exception (revert) is thrown by the runtime and the
current transaction is rolled-back, leaving the blockchain as if it had never run. If
the caller has enough money, an amount n of Wei (Ether’s smallest sub-currency)
is transferred from the balance of b to the balance of the caller by explicitly using
the transfer primitive. Whenever the caller is a contract, the EVM requires that
contract to contain a definition for the so-called fallback function, otherwise a
revert is thrown and the transaction is reverted. The typical purpose of such
function is either to track the reception of Ether or to refuse it by throwing an
exception. On the contrary, when the recipient of the transfer is an EOA, no
fallback function is needed.

The invocation of the deposit function, instead, can have the special shape
b.deposit.value(n)(), binding n to the implicit parameter msg.value. If not
specified, n is assumed to be 0. As a consequence, the amount n of money is
transferred from the balance of the caller (msg.sender) to the balance of the
Bank instance; in this case, no explicit invocation of transfer is needed. The
state variable amounts is updated accordingly. Analogously to the case above,
the caller must hold enough money in its balance. Moreover, the additional
value argument can only be specified for a function with the payable modifier,
meaning that it is allowed to receive Ether as part of the invocation, otherwise
a revert would be thrown at invocation time.

3 The Featherweight Solidity calculus

In this section we introduce Featherweight Solidity (FS), a calculus formaliz-
ing the core of the Solidity programming language. Many features are omitted,
like low level message calls (using the primitives send, call, delegatecall,

callcode), expressive value types like mappings and first-class function val-
ues, function modifiers and multiple inheritance. Furthermore, FS models single
transactions, thus it does not deal with the concepts of blocks, distributed block
validation, and roll-back of the changes to the blockchain caused by a reverted
transaction. We also do not model the concept of gas fees, which is a mechanism
Ethereum uses to make sure that every transaction eventually terminates and
to prevent denial of service attacks.

In such way, we can focus on key aspects of smart contract programming,
such as contract instantiation, interactions among deployed contracts and money
transfers, and provide a rather compact and clean model of such features. In
particular, the definition of FS is inspired by Featherweight Java (FJ) [10],
the reference calculus for Java-like languages, exploiting the similarities and
highlighting the differences between the notions of object and smart contract.
Therefore it opens the way to reuse and adapt the rich and well-known (typed)
theory of OOLs in the context of smart contracts.

Is Solidity solid enough? 5

CT ::= cds contract table
cd ::= contract C is D {sds fds} contract declaration
sd ::= T s; state variable decl.
fd ::= T f (T1 x1, . . . ,Tn xn){ return e; } function declaration
e ::= x | u | n | a | e.s | e.s=e ′ | {T x=e;e ′} | C (e) | revert[λ] expression

| e.f .value(ev).sender(es)(es)
| new C.value(ev).sender(es)(es)
| address(e) | balance(e) | e.transfer(ev).sender(es)

λ ::= neg | rte revert label
T ::= C | unit | uint | address type

Fig. 2. FS: syntax

Syntax and types Syntax and types are given in Fig.2. We assume sets of variables
x , y , contract names C , D , state variable names s, function names f , addresses
a. We assume three special variables this, msg.value, and msg.sender, a special
contract name Top, and a special function name fb, all explained below. We
adopt the convention that a metavariable which ends by s is implicitly defined
as a (possibly empty) sequence, for example cds is defined by cds ::= ε | cd cds,
where ε denotes the empty sequence.

A contract table is a sequence of contract declarations, consisting of contract
name, parent contract’s name, a sequence of state variable declarations and a
sequence of function declarations. We only model single inheritance and assume
a distinguished contract name Top with no state variables and function defini-
tions. A function declaration consists of a return type, a function name, a list of
typed parameters, and a body which is an expression. Since FS does not model
Solidity’s function modifiers, every function is implicitly marked payable and
external, that is, can receive Wei and can be invoked by EOAs’ transactions.
We assume a special function name fb, which models the fallback function, im-
plicitly invoked whenever money is transferred by means of a transfer call.
Therefore, if present in a contract definition, the function fb must be necessarily
declared as unit fb (){ return e; }. As in FJ, we assume for each contract
declaration a canonical constructor.

Expressions includes variables, the only constant u of type unit, natural
constants n of type uint, addresses, used to refer to EOAs and contracts al-
ready deployed in the blockchain, access and assignment to a state variable, and
block consisting of a local variable declaration and a body. We use e;e ′ as an
abbreviation for {T x=e;e ′} with x not free in e ′.

The expression e.f .value(ev).sender(es)(es) invokes the function f on the
contract instance denoted by e, specifying the address es of the contract instance
(or the EOA) that invoked the function, and the amount ev of Wei sent along
with the call. In the instantiation expression new C.value(ev).sender(es)(es),
the two additional arguments have an analogous meaning.

Assuming that e evaluates to a contract instance, address(e) returns its
address, while, assuming that e evaluates to an address, balance(e) returns
its current balance, and the cast expression C (e) returns the corresponding

6 S. Crafa et al.

contract Bank {

mapping (address => uint) amounts;

unit deposit () {

return this.amounts[msg.sender] += msg.value; u

}

unit withdraw(uint n) {

return if this.amounts[msg.sender] >= n

then this.amounts[msg.sender] -= n;

msg.sender.transfer(n); u

else revert

}

}

Fig. 3. A simple Bank contract in FS

contract instance. The expression e.transfer(ev).sender(es), assuming that
e evaluates to an address, transfers the amount of Wei denoted by ev from the
balance of es to its balance. Finally, the revert expression aborts the current
transaction. For the aims of our formalization, we add a label λ describing the
specific error (neg when a money transfer would make an account’s balance
negative, rte for a runtime type error), omitted when not significant.

For simplicity, FS expressions model both Solidity code, that is, smart con-
tracts code, and external code issuing the initial transactions. However, only the
latter requires an explicit sender argument in function calls, contract instantia-
tion and money transfer, whereas, in contracts code (that is, in function bodies
rather than at top level), the (implicit) sender is always the currently executing
contract instance. Formally, we assume that function calls occurring in function
bodies have shape e.f .value(ev).sender(address(this))(es), abbreviated
e.f .value(ev)(es), and analogously for constructor invocations and transfer.

The syntax of types includes contract names, the unit type, the type uint of
unsigned integers, and the type of addresses. In the definition of FS we privileged
uniformity, therefore a FS program is not an executable Solidity program, for in-
stance, Solidity has no unit type. However, the correspondence is very close. In
Fig.3 we show3 the FS code corresponding to the Solidity smart contract in Fig.1.
As an example, Bank(’0x84b’).deposit.value(500).sender(’0xu7e’)() de-
notes a transaction issued by the EOA with address ’0xu7e’ to interact with
an instance of the Bank contract stored at address ’0x84b’.

Operational semantics The top section of Fig.4 defines runtime expressions, con-
figurations, values and evaluation contexts. Runtime expressions include, besides
source-level constructs in Fig.2, contract references ιCD , where C ,D are contract
names. We write ιD as abbreviation for ιDD , and omit both when not relevant.
When a contract D is instantiated, a new reference ιD is created with its con-
tract’s name built in (as subscript). When a cast to type C occurs at runtime, no

3 In the examples, we use additional constructs, such as loops, booleans and key-value
mappings (for the standard formalization see [7]).

Is Solidity solid enough? 7

type check is performed by the EVM, but the execution proceeds by recording
the target type (as superscript) in the contract reference. That is, ιCD is a refer-
ence to an instance of contract D (for “dynamic type”) that has been cast (that
is, statically typed) to type C (for “cast type”). Note that a contract reference
keeps its dynamic type forever, whereas it can be used with different cast types.
Configurations, ranged over by c, are pairs 〈e, β〉, where e is the expression to
be evaluated and β the blockchain, that stores the global state of the system.
Formally, β is finite map from contract instances of shape 〈ι, a〉 to pairs 〈vs, n〉,
where n and vs are the contract’s balance and state, respectively, the latter being
the tuple of the current values of the state variables. Note that, while the refer-
ence records type information, the public address provides an “untyped” way to
access a contract instance. As in Ethereum,we assume a one-to-one correspon-
dence between references and addresses in the domain of β, so we can safely
use the notations β(ι) and β(a) as abbreviations for β(〈ι, a〉). Since Ethereum
blockchain records also EOAs addresses and balances, in order to let the map β
uniformly deal with both smart contracts and EOAs, we assume that each EOA
has a corresponding reference to an instance of a dummy contract EOContract

whose code only contains a fallback function fb with empty body (i.e., unit fb

{return u;}). Values are contract references and constants of the other types.
Evaluation contexts formalize standard left-to-right evaluation (for brevity we
do not explicitly list all cases).

The small-step reduction relation over configurations −→CT is parameter-
ized by a contract table, omitted to lighten the notation. The reduction rules
are collected in Fig.4, where we use the following notations, whose trivial formal
definition is omitted. Given a blockchain β: in β[ι.i=v], the value of the i-th
state variable of the contract instance ι has been replaced by v ; in β[〈ι, a〉←vs],
a new contract instance 〈ι, a〉 has been added with state vs and balance 0; in

β[a.v
n
 a ′.v], an amount of n Wei has been transferred from the balance of the

contract instance at address a to that at a ′. If β(〈ι, a〉) = 〈v1 . . . vn, n〉, then we
write β(ι).i to denote vi, for i ∈ 1..n, and we write β(a).v to denote n. The ex-
pression e[v/x] is obtained from e by replacing all occurrences of x by v . We write
e[v1 . . . vn/x1 . . . xn] for e[v1/x1] . . . [vn/xn]. The following auxiliary functions are
implicitly parameterized on the contract table: svar(C , s) and svartype(C , s) re-
turn the index and type, respectively, of the state variable s in C , if any; svars(C)
returns the sequence of all (inherited and directly declared) state variables of C ;
ftype(C , f) and fbody(C , f) return the function type, of shape 〈T ,T1 . . .Tn〉, and
the pair parameters-body, respectively, of the function f in C , if any, looked for
in C first, then in its parent contract. Finally, the subtyping relation C ≤ D
is the reflexive and transitive closure of the inheritance relation. Subtyping is
extended to function types as usual: 〈T ,T1 . . .Tn〉 ≤ 〈T ′,T ′

1 . . .T
′
n〉 if T ′

i ≤ Ti,
for i ∈ 1..n, and T ≤ T ′.

Reduction rules (ctx) and (ctx-revert) are straightforward. In rule (access) the
semantics is as expected, with an additional check that the state variable s exists
in both contracts C and D and that the type obtained at runtime is a subtype
of that statically computed from the cast type. Otherwise, a revert[rte] is

8 S. Crafa et al.

e ::= . . . | ιCD runtime expr.
c ::= 〈e, β〉 configuration

v ::= ιCD | u | n | a value
E ::= [] | E .s | E.s=e ′ | ι.s=E | {T x=E;e} . . . evaluation context

(ctx)

〈e, β〉 −→ 〈e ′, β′〉
〈E [e], β〉 −→ 〈E [e ′], β′〉 (ctx-revert) 〈E [revert[λ]], β〉 −→ 〈revert[λ], β〉

(access)
〈ιCD .s, β〉 −→ 〈β(ιD).i, β〉

svar(D , s) = i
svartype(D , s) ≤ svartype(C , s)

(access-rte)
〈ιCD .s, β〉 −→ 〈revert[rte], β〉

svartype(D , s) 6≤ svartype(C , s)

(assign)
〈ιCD.s=v , β〉 −→ 〈v , β[ιD .i=v]〉

svar(D , s) = i
svartype(C , s) ≤ svartype(D , s)

(assign-rte)
〈ιCD.s=v , β〉 −→ 〈revert[rte], β〉

svartype(C , s) 6≤ svartype(D , s)

(dec) 〈{T x=v;e}, β〉 −→ 〈e[v/x], β〉 (cast)

〈C (a), β〉 −→ 〈ιCD, β〉
〈ιD , a〉 ∈ dom(β)

(get-addr) 〈address(ι), β〉 −→ 〈a, β〉
〈ι, a〉 ∈ dom(β) (get-bal) 〈balance(a), β〉 −→ 〈n, β〉

β(a).v = n

(new)

〈new C.value(n).sender(as)(vs), β〉 −→ 〈ιC , β[〈ιC , a〉←vs][as.v
n
 a.v]〉

|vs| = |svars(C)|
〈ιC , a〉 6∈ dom(β)
β(as).v > n

(new-neg) 〈new C.value(n).sender(as)(vs), β〉 −→ 〈revert[neg], β〉
β(as).v < n

(invk)

〈ιCD.f .value(n).sender(as)(vs), β〉 −→
〈e[ιD/this][as/msg.s][n/msg.v][vs/xs], β[as.v

n
 a.v]〉

fbody(D , f) = 〈xs, e〉
ftype(D , f) ≤ ftype(C , f)
〈ιD , a〉 ∈ dom(β)
β(as).v > n

(invk-rte)
〈ιCD.f .value(n).sender(as)(vs), β〉 −→ 〈revert[rte], β〉

ftype(D , f) 6≤ ftype(C , f)

(invk-neg)
〈ιCD.f .value(n).sender(as)(vs), β〉 −→ 〈revert[neg], β〉

β(as).v < n

(transf)

〈a.transfer(n).sender(as), β〉 −→
〈e[ιC/this][as/msg.sender][n/msg.value], β[as.v

n
 a.v]〉

〈ιC , a〉 ∈ dom(β)
fbody(C , fb) = 〈ε, e〉
β(as).v > n

(transf-neg) 〈a.transfer(n).sender(as), β〉 −→ 〈revert[neg], β〉
β(as).v < n

(transf-fb) 〈a.transfer(n).sender(as), β〉 −→ 〈revert[rte], β〉
〈ιC , a〉 ∈ dom(β)
fbody(C , fb) undefined

Fig. 4. FS: operational semantics

Is Solidity solid enough? 9

raised, see rule (access-rte), whose side condition is intended to cover also the
case where s is not defined in both contracts. A symmetric check is performed in
rules (assign) and (assign-rte). Indeed, as mentioned above, in Solidity no runtime
checks are performed in a cast, but they are postponed when the reference is
actually used.4 This is modeled in rule (cast), where an address is converted to
the corresponding reference. The runtime effect is just to tag the reference with
the static type for future usage checks; in particular no subtyping constraint,
like D ≤ C , is enforced.

In rule (dec), local variable declarations have the standard substitution se-
mantics. Rules (get-addr) and (get-bal) are straightforward. In rule (new), a fresh
instance of C is added in the blockchain, with state and balance initialized to the
tuple of values and amount provided as arguments of the constructor invocation.
Furthermore, the balance of the contract instance at address as is decremented
of the same amount, provided that this would not make the balance negative,
otherwise a revert[neg] is raised, see rule (new-neg).

In rule (invk), the parameters and body of the function f defined in the con-
tract of the receiver are retrieved from the contract table, through the auxiliary
function fbody. Analogously to rules (access) and (assign), a check is performed
that the function f exists in both contracts C and D and the function type
obtained at runtime is a subtype of that statically computed from the cast type,
otherwise a revert[rte] is raised, see rule (invk-rte). The invocation is reduced to
the function body where this and formal parameters have been replaced by the
receiver and the arguments vs, as in standard FJ, and, moreover, msg.sender
and msg.value have been replaced by address as and amount n, respectively.
Finally, the balance of the contract instance at address as is decremented of the
same amount, provided that this would not make the balance negative, otherwise
a revert[neg] is raised, see rule (invk-neg).

While functions are invoked on contract references, the transfer construct
is used with addresses. In rule (transfer), an amount of n Wei is transferred from
the balance of the contract instance at address as to that at a, provided that this
would not make the sender balance negative, otherwise, a revert[neg] is raised,
see rule (transfer-neg). Moreover, the fallback function is implicitly invoked, if
any, otherwise a revert[rte] is raised, see rule (transfer-fb).

4 Type system

The typing judgment has shape Γ ; I;A ` e : T , where Γ is a finite map from
variables to types, I and A are sets of references and addresses, respectively. As
for the reduction relation, it is implicitly parameterized by a contract table.

Typing rules are given in Fig.5; they are mostly straightforward. Note that
rule (t-ref) assigns the static type of a contract reference by looking at its su-
perscript. According to the semantics of cast, rule (t-cast) just checks that the

4 The Solidity semantics is actually more involved, since in some cases an attempt is
made to convert values from the provided to the expected type. No documentation
about the precise behavior is available.

10 S. Crafa et al.

(t-var)
Γ ; I;A ` x : T

Γ (x) = T (t-unit)
Γ ; I;A ` u : unit

(t-nat)
Γ ; I;A ` n : uint

(t-addr)
Γ ; I;A ` a : address

a ∈ A (t-ref)
Γ ; I;A ` ιCD : C

ιD ∈ I

(t-access)

Γ ; I;A ` e : C

Γ ; I;A ` e.s : T
svartype(C , s) = T (t-cast)

Γ ; I;A ` e : address

Γ ; I;A ` C (e) : C

(t-assign)

Γ ; I;A ` e : C Γ ; I;A ` e ′ : T ′

Γ ; I;A ` e.s=e ′ : T

svartype(C , s) = T
T ′ ≤ T

(t-dec)

Γ ; I;A ` e : T Γ, x : T ; I;A ` e ′ : T ′

Γ ; I;A ` {T x=e;e ′} : T ′ (t-revert)
Γ ; I;A ` revert[λ] : T

(t-get-addr)

Γ ; I;A ` e : C

Γ ; I;A ` address(e) : address
(t-get-bal)

Γ ; I;A ` e : address

Γ ; I;A ` balance(e) : uint

(t-new)

Γ ; I;A ` ev : uint
Γ ; I;A ` es : address Γ ; I;A ` ei : T ′

i ∀i∈1..n

Γ ; I;A ` new C.value(ev).sender(es)(e1, . . . , en) : C

svars(C)=T1 s1 . . .Tn sn
T ′

i ≤ Ti ∀i∈1..n

(t-invk)

Γ ; I;A ` ev : uint Γ ; I;A ` e : C
Γ ; I;A ` es : address Γ ; I;A ` ei : T ′

i ∀i ∈ 1..n

Γ ; I;A ` e.f .value(ev).sender(es)(e1, . . . , en) : T

ftype(C , f)=〈T ,T1...Tn〉
T ′

i ≤ Ti ∀i∈1..n

(t-transfer)

Γ ; I;A ` e : address Γ ; I;A ` ev : uint Γ ; I;A ` es : address

Γ ; I;A ` e.transfer(ev).sender(es) : unit

(t-conf)

∅; I;A ` e : T I;A ` β
I;A ` 〈e, β〉 : T

Fig. 5. FS: typing rules for expressions and configurations

expression to be cast has type address without performing any additional type
check. The typing judgment is extended to configurations in rule (t-conf), requir-
ing that both the expression to be evaluated and the blockchain are well-typed
according to the same sets of addresses and contract references. Moreover, the
expression should contain no free variables. The judgment I;A ` β holds if:

a∈A iff a∈dom(β), ι∈I iff ι∈dom(β), and β(ιC)=〈v1, ..., vn, n〉 implies
svars(C)=T1 s1...Tn sn and, for all i ∈1..n, ∅; I;A ` vi : T ′

i with T ′
i ≤ Ti.

Finally, the judgment I;A ` CT means that the contract table is well-formed
w.r.t. existing contract references and addresses. We omit the complete formal
definition, reported in [7], since it is essentially as in FJ. Informally, it ensures
that all used contract names are declared, the inheritance relation is acyclic,
there is no state variable hiding, no function overloading and safe function over-
riding. Moreover, each function definition should be well-typed in the following
sense: if ftype(C , f) = 〈T ,T1 . . .Tn〉 and fbody(C , f)=〈x1...xn, e〉 then
this:C , msg.sender:address, msg.value:uint, x1:T1, .., xn:Tn ; ∅ ;A ` e : T ′with
T ′ ≤ T . Notice that the previous judgment assumes an empty set of references

Is Solidity solid enough? 11

since the code of contract functions can refer to contract instances and EOAs
only by means of (public) addresses.

We write −→? for the reflexive and transitive closure of −→ and c 6→ if there
is no c′ s.t. c −→ c′. In the theorem we implicitly assume that the underlying
class table is well-formed w.r.t. I and A.

Theorem 1 (Soundness). If I;A ` c : T , c −→? c′, and c′ 6→, where c′ =
〈e′, β′〉, then either e ′ is a value or e ′ = revert[λ] for some λ.

This soundness theorem states that the Solidity type system prevents stuck
execution, but not runtime type errors. This is quite dangerous and can lead to
Ether indefinitely locked into a contract or to unexpected runtime reverts.

For instance, consider a blockchain storing at address aB an instance of the
Bank contract in Fig.3, and at address aD an instance of a contract D that
does not define a fallback function. Assume that the contract at aD successfully
deposited 100 Wei in the bank, and now wants to withdraw part of them. The
function call Bank(aB).withdraw.value(0).sender(aD)(50) successfully com-
piles, but reduces to aD.transfer(50) that raises a revert[rte] exception since
aD refers to a contract that does not define a valid fallback fallback function.
Therefore, the withdrawal transaction aborts, causing loss of gas fee in the real
Ethereum scenario. Moreover, since deployed contract code cannot be updated,
the money already deposited by aD in the bank aB is indefinitely locked.

The whole problem lies in the way the address type is handled: neither
Solidity nor the EVM provides additional information on the contract stored
at that address. Solidity addresses represent an untyped way to access contract
instances, much as void * pointers in C. Such pointers allow extreme flexibility,
but they are really difficult to deal with, since programmers have to know what
they are doing and how to do so, in order to avoid subtle bugs.

5 Refined type system

This section refines the type system of FS in order to more safely access con-
tract instances through their address. Indeed, the resulting type system enjoys a
more powerful soundness property, that is, well-typed programs never reduce to
a revert[rte] exception. The key idea is to enrich the address type so to type
information about the contracts the addresses refer to. That is, address〈C 〉
is the type of the addresses of instances of the contract C . This richer type
is mostly useful when typing the implicit msg.sender variable, used in func-
tion bodies to refer to the address of the caller. Indeed, well-typed expressions
such as C (msg.sender).f .value(n)() or msg.sender.transfer(n) reduce to
a revert[rte] exception if msg.sender is bound to the address of a contract that
has not type C or has no fallback function. On the other hand, by enriching the
contract functions’ signatures with the address type of the implicit sender param-
eter, we can let the compiler check the safety of callbacks expressions similar to
the ones above, that are notoriously vulnerable Solidity programming patterns.

12 S. Crafa et al.

fd ::= T f <S>(T1 x1, . . . ,Tn xn){ return e; } function declaration
T ::= C | unit | uint | address〈C 〉 type

(t-addr)
Γ ; I;A ` a : address〈C 〉

A(a) = C

(t-get-addr)

Γ ; I;A ` e : C

Γ ; I;A ` address(e) : address〈C 〉 (t-cast)

Γ ; I;A ` e : address〈D〉
Γ ; I;A ` C (e) : C

D ≤ C

(t-new)

Γ ; I;A ` ev : uint
Γ ; I;A ` es : address〈S〉 Γ ; I;A ` ei : T ′

i ∀i ∈ 1..n

Γ ; I;A ` new C.value(ev).sender(es)(e1, . . . , en) : C

svars(C) = T1 s1...Tn sn
T ′

i ≤ Ti ∀i ∈ 1..n

(t-invk)

Γ ; I;A ` ev : uint Γ ; I;A ` e : C
Γ ; I;A ` es : address〈S ′〉 Γ ; I;A ` ei : T ′

i ∀i∈1..n

Γ ; I;A ` e.f .value(ev).sender(es)(e1, . . . , en) : T

ftype(C , f)=〈T ,S ,T1...Tn〉
S ′ ≤ S
T ′

i ≤ Ti ∀i ∈ 1..n

(t-transfer)

Γ ; I;A ` ev : uint
Γ ; I;A ` es : address〈S ′〉 Γ ; I;A ` e : address〈C 〉

Γ ; I;A ` e.transfer(ev).sender(es) : unit

ftype(C , fb)=〈unit,S , ε〉
S ′ ≤ S

Fig. 6. FS+: changes to syntax and typing rules

Formally, the refined calculus, called FS+, is obtained by applying the changes
in Fig.6 to the syntax of FS. In function declarations, the metavariable S (for
“sender”) ranges over contract names, and the meaning is that the function f
can be called only by contracts or EOAs whose address has (a subtype of) type
address〈S 〉. The subtyping relation is extended to address types in covariant
way, that is, address〈C 〉 ≤ address〈D〉 holds if C ≤ D .

The typing rules of FS+ are obtained by applying the changes in Fig.6.
Moreover, in the typing judgement, A is no longer a set, but a map from ad-
dresses to contract names. The judgment I;A ` β must additionally require
that if 〈ιC , a〉 ∈ dom(β) then A(a) = C . Finally, function types become
triples, 〈T ,S ,T1 . . .Tn〉 ≤ 〈T ′,S ′,T ′

1 . . .T
′
n〉 additionally requires S ′ ≤ S , and

the requirement on well-formedness of function bodies becomes the following: if
ftype(C , f) = 〈T ,S ,T1 . . .Tn〉 and fbody(C , f)=〈x1...xn, e〉 then
this:C , msg.sender:address〈S 〉, msg.value:uint, x1:T1, .., xn:Tn; ∅;A ` e : T ′

with T ′ ≤ T . The refined rule (t-cast) now statically checks that the expression
to be cast evaluates to the address of an instance of contract D which is a sub-
type of the target of the cast. In rules (t-invk) and (t-transfer), the additional side
condition requires the type of the sender es to be a subtype of the type S of
the expected caller of the function f and fb, respectively, as specified in their
refined signature.

The type system of FS+ enjoys a stronger soundness property: revert[rte]
errors are statically prevented, so the only possible runtime errors remain those
due to a negative account balance. In other terms, cast expressions or money

Is Solidity solid enough? 13

transfers that would lead to unsafe usage of contract members or calls to an
undefined fallback function are now ruled out at compile-time.

Theorem 2 (Soundness). If I;A ` c : T , c −→? c′, and c′ 6→, where c′ =
〈e ′, β′〉, then either e ′ is a value or e ′ = revert[neg].

By taking advantage of this more powerful typing, the Bank contract in Fig.3
can be refined into the following safer smart contract:

contract Bank {

mapping(address <Topfb> => uint) amounts;

unit deposit <Topfb >() {...}

unit withdraw <Topfb >(uint n) {...}

}

Function bodies do not change and are hence omitted. We assume a contract
Topfb which only contains a fb function with empty body and Top sender param-
eter. Address types used in the mapping to index the banks’ clients refer to such
contract name. This type is also used in the refined signature of the two contract
functions, so to (statically) ensure that their caller contract actually provides a
fallback function. Therefore, coming back to the example discussed in Section 4,
if aB : address〈Bank〉 and aD : address〈D〉 where the contract D has no fallback
function, the function call Bank(aB).withdraw.value(0).sender(aD)(50) does
not compile anymore, since the new rule (t-invk) requires D ≤ Topfb, which is
not true. The runtime error occurring when trying to tranfer money to aD is
then statically prevented. Similarly, the contract stored at aD cannot even call
the deposit function, thus preventing also the deposit of money that cannot be
withdrawn anymore.

The introduction of the type address〈C 〉 and the corresponding typing
rules, are of course incompatible with the legacy Solidity code, that would not
be accepted anymore by the new compiler. Nonetheless, a direct default map-
ping is easily definable by mapping each occurrence of the type address to
address〈Top〉 and by refining each function signature so to use Top as supertype
of the function’s sender. We shall also provide a flag (--notopcast) in the new
compiler to disable the refined rule (t-cast) when D = Topand use the standard
rule (t-cast) of Section 4. Indeed, the refined rule would rule out any cast having
address〈Top〉 as actual type of e, since for all type C, Top 6≤ C.Cleary, by using
such a default mapping, no additional guarantees can be statically checked on the
contracts code, however, retro-compatibility with the Solidity smart contracts
already deployed on the blockchain, whose code cannot be updated anymore, is
guaranteed.

To take advantage of the full power of the refined typing, the major effort
required to Solidity programmers is to annotate each function with the required
(super)type of the caller. We then put forward a couple of new convenient an-
notations, in line with the Solidity programming style, that provides a number
of modifiers to annotate functions, e.g., the payable marker in Fig.1. Since it
is often the case that type constraints refer to contracts that provide (at least)

14 S. Crafa et al.

a fallback function, the keyword payableaddress can be introduced as a syn-
tactic sugar for the type address〈Topfb〉, and the function marker payback can
be used to indicate that the function potentially sends Ether back to its caller.
Therefore, the Solidity Bank contract given in Fig.1 could be simply rewritten
into the following code, where function bodies are as in Fig.1:

contract Bank {

mapping (payableaddress => uint) private amounts;

function deposit () payable payback {...}

function withdraw () payback {...}

}

Instead, to enforce type-safe callbacks in functions code, programmers are re-
quired to explicitly express the type constraint they require on contracts callers.
However, this requirement actually supports a safer programming discipline.

6 Conclusions

We developed semantic foundations of smart contract programming, by formal-
izing the core of the Solidity language and type system. The FS calculus allows
one to precisely define the behavior of smart contract programs, thus it repre-
sents a fundamental step to develop automatic program analysis tools. The FS’s
type system clarifies the type soundness of the Solidity compiler, pointing out
its limitations. We then put forward a refined type discipline that statically cap-
tures a larger class of errors, such as unsafe casts, unsafe callbacks and money
transfers that cannot be accepted by contracts because they lack the fallback
function. We discussed how such extension impacts on the Solidity legacy code
so to actually provide a safer programming discipline that is retrocompatibile
with smart contracts already deployed on the blockchain. Finally, the FS calcu-
lus highlights the connection between objects and smart contracts, thus opening
the way to reuse the type theory of OOLs in the context of Solidity, and dually
to adapt the refined typing of FS+ to the case of distributed objects.

Related work A number of proposals have been developed to improve the secu-
rity and correctness of Ethereum smart contracts. A stream of works, e.g.,[9, 4,
8], addresses the problem at the bytecode level: the semantics of EVM bytecode
is formalized and smart contracts properties are verified by means of static anal-
ysis tools operating on the corresponding bytecode. Among the ones addressing
the problem at the programming language level, Zeus [11] translates Solidity
code into LLVM bytecode [12], leveraging abstract interpretation and symbolic
model checking analysis techniques. SmartCheck [14], instead, attempts to de-
tect vulnerabilities representing Solidity code as an XML tree, and then running
XPath queries on it. Contracts code is fully covered, but the use of XPath leads
to a higher rate of false positives. However, these tools are based on limited
formal foundations of the language they operate on, and they come into play
when a contract is fully defined. We rather think that by enhancing the So-
lidity compiler’s ability to statically rule out harmful code, we support a safer

Is Solidity solid enough? 15

programming discipline, where programmers can write smart contracts that are
(more) correct by construction. The work presented in [3] operates in this direc-
tion, and provides a preliminary compiler extension encoding Solidity code into
SMT formulas to check simple properties, such as the division by zero. Similarly,
the tool developed in [13] encodes a subset of Solidity into SMT formulas and
uses symbolic model checking to verify some properties about smart contracts
behaviour, including temporal ones.

The first attempt to formalize Solidity is presented in [5]. This work develops
a language-based approach for smart contracts verification using F* [1]. In brief,
a small subset of Solidity is translated into F*, whose type system is afterwards
used to detect vulnerable patterns, such as reentrancy. Even though the results
are encouraging, the subset of Solidity is too small (neither transfer or cast
expressions are considered), and an external language, F*, is used.

To the best of our knowledge, this paper, together with its preliminary version
[7], is the first work aiming at directly formalizing the semantics and the type
soundness of the Solidity source code, so to enhance the use of its compiler as a
convenient building tool.

References

1. F* programming language. https://www.fstar-lang.org/.
2. Solidity documentation. https://solidity.readthedocs.io/en/develop/index.html.

Release 0.4.25.
3. L. Alt and C. Reitwießner. Smt-based verification of solidity smart contracts. In

Leveraging Applications of Formal Methods, Verification and Validation. Industrial
Practice ISoLA, pages 376–388, 2018.

4. S. Amani, M. Bégel, M. Bortin, and M. Staples. Towards verifying Ethereum smart
contract bytecode in Isabelle/HOL. In Certified Programs and Proofs, pages 66–77.
ACM, 2018.

5. K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi, G. Gonthier,
N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote, N. Swamy, et al. Formal
verification of smart contracts: Short paper. In ACM Workshop on Programming
Languages and Analysis for Security, pages 91–96. ACM, 2016.

6. V. Buterin. A next-generation smart contract and decentralized application plat-
form (white paper). Technical report, 2014.

7. M. Di Pirro. How solid is Solidity? An in-dept study of Solidity’s type safety.
Master’s thesis, Università di Padova, Sept. 2018. http://tesi.cab.unipd.it/61297/.

8. I. Grishchenko, M. Maffei, and C. Schneidewind. A semantic framework for the
security analysis of Ethereum smart contracts. In Principles of Security and Trust,
pages 243–269. Springer, 2018.

9. E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth, B. M.
Moore, D. Park, Y. Zhang, A. Stefanescu, and G. Rosu. KEVM: A complete formal
semantics of the ethereum virtual machine. In Computer Security Foundations
Symposium, CSF, pages 204–217, 2018.

10. A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a minimal core
calculus for Java and GJ. ACM TOPLAS, 23(3):396–450, 2001.

11. S. Kalra, S. Goel, M. Dhawan, and S. Sharma. Zeus: Analyzing safety of smart
contracts. In Network and Distributed System Security Symposium, 2018.

16 S. Crafa et al.

12. C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In Code generation and optimization: feedback-directed
and runtime optimization, page 75. IEEE, 2004.

13. E. Shishkin. Debugging smart contract’s business logic using symbolic model-
checking. arXiv preprint arXiv:1812.00619, 2018.

14. S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko, and
Y. Alexandrov. Smartcheck: Static analysis of Ethereum smart contracts. In
Workshop on Emerging Trends in Software Engineering for Blockchain, pages 9–
16, 2018.

15. G. Wood. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper, 151:1–32, 2014.

