
Exercises - Set 2

Exercise 1 Let X = (Xt)t≥0 be a real valued stochastic process such that, for all ω ∈ Ω, the map
t 7→ Xt(ω) is right continuous and for every t > 0 the left limit

lim
s↑t

Xs(ω)

exists. Consider the set, for T > 0

{ω ∈ Ω : t 7→ Xt(ω) is continuous on [0, T ]}.

Show that it belongs to
FXT := σ(Xt : t ∈ [0, T ]).

Hint: Let fix T > 0 and define D := (Q ∩ [0, T ]) ∪ {T}. If f : [0, T ] → IR we denote by f|D its
restriction to D. Prove and use the following
Lemma. Let f : [0, T ] → IR be right continuous. Then f is uniformly continuous if and only if f|D
is uniformly continuous.

Solution. We prove the Lemma later. Since a function f : [0, T ]→ IR is continuous if and only if
it is uniformly continuous, we have:

{X is continuous in [0, T ]} = {X is unif. continuous in [0, T ]} = {X|D is unif. continuous in [0, T ]}

= {∀k ≥ 1 ∃n ≥ 1 such that for every s, t ∈ D with |s− t| ≤ 1

n
we have |Xt −Xs| ≤

1

k
}

=
⋂
k≥1

⋃
n≥1

⋂
s,t∈D:|s−t|≤ 1

n

{|Xt −Xs| ≤
1

k
}.

Noting that {|Xt−Xs| ≤ 1
k} ∈ σ(Xs, Xt) ⊆ FXT we conclude that {X is continuous in [0, T ]} ∈ FXT .

Proof of the Lemma. Since uniform continuity is preserved by restriction, it is enough to show that
if f|D is uniformly continuous then so it is f . Take ε > 0. We must show that there exists δ > 0
such that |t− s| ≤ δ implies |f(t)− f(s)| ≤ ε. By assumption, such δ exists for s, t ∈ D. Take now
0 ≤ s < t < T with t− s ≤ δ. Since D is dense, there are sequences sn, tn ∈ D, sn > s, tn > t, s.t.
sn ↓ s and tn ↓ t. By right continuity

|f(t)− f(s)| = lim
n→+∞

lim
m→+∞

|f(tm)− f(sn)| ≤ ε

since, for every fixed n, |tm − sn| < δ for m sufficiently large. The case in which t = T is dealt with
similarly, taking only the sequence sn.

NOTE: existence of left limit is not needed!

Exercise 2 (a) Let B = (B(1), B(2)) be a two-dimensional Brownian Motion. Define

β
(1)
t =

1√
2

(B
(1)
t +B

(2)
t β

(2)
t =

1√
2

(B
(1)
t −B

(2)
t .

Show that (β(1), β(2)) is a two-dimensional Brownian Motion.

(2) Generalize the argument above. Let B be a d-dimensional Brownian Motion, and let A be a
d× d matrix. Define

βt := ABt.

Show that β is a two-dimensional Brownian Motion if and only if A is orthogonal, i.e. AA∗ = I.

Solution. We only solve (2). First observe that β is Gaussian, since (βt1 , . . . , βtn) is a linear
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transformation of Bt1 , . . . , Btn . Moreover β is continuous since B is continuous, and E(βt) = 0.
Thus, β is a Brownian motion if and only if the covariance matrix of (βs, βt) equals min(t, s)I. But

Cov(β(i)
s , β

(j)
t ) = E[β(i)

s β
(j)
t ] =

d∑
h,k=1

AihAjkE[B
(h)
t B(k)

s ] = min(s, t)
∑
h

AihAjh.

This amounts to say that the covariance matrix of (βs, βt) is min(s, t)AA∗, from which the concluison
follows.

Exercise 3 We recall that a function f : I → IR, where I is an interval of IR, is called Hölder
continuous with exponent α > 0 in x ∈ I, if there exists C > 0 such that for every y ∈ I

|f(y)− f(x)| ≤ C|y − x|α.

Let now B be a Brownian motion, and assume α > 1
2 .

(a) Show that, for every n > 0,
lim
s↓0

P (|Bs| ≤ nsα) = 0.

(b) Let
H := {ω ∈ Ω : B(ω) is Hölder continuous in 0 with exponent α}.

Show that P (H) = 0.

Solution.

(a)

P (|Bs| ≤ nsα) = P
(
|N(0, 1)| ≤ nsα− 1

2

)
→ 0

as s ↓ 0.

(b) Let
Hn := {ω ∈ Ω : |Bt(ω)| ≤ ntα for all t ≥ 0}.

Then
H =

⋃
n

Hn,

so it is enough to show that P (Hn) = 0 for all n. But, for all s > 0

Hn ⊆ {|Bs| ≤ nsα},

and the conclusion follows from point (a).

Exercise 4 Let B be a Brownian motion for a filtration (Ft)t≥0. Define W0 = 0 and, for t > 0,

Wt = Bt −
∫ t

0

Bs
s
ds.

(a) Show that W is a.s. well defined, in the sense that the above integral is a.s. finite. (Hint: use
the Law of the Iterated Logarithm)

(b) Show that W is a Brownian motion.

(c) Assume the filtration is complete. Show that W is (Ft)-adapted, but it is not a Brownian
Motion for the filtration (Ft).

Solution.
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(a) By the law of the iterated logarithm and the fact that if X is a Brownian Motion also (tX1/t)t≥0
is a Brownian motion

lim sup
t→+∞

|Bt|√
t
√

2 log log t
= lim sup

t↓0

|Bt|√
t
√

2 log log(1/t)
= 1

almost surely. Thus there is an event A with P (A) = 1 such that for all ω ∈ A there exists
t(ω) such that for every t ≤ t(ω)

|Bt(ω)| ≤ 2
√
t
√

2 log log(1/t) ≤ C(ω)t1/3

for some constant C(ω). But then, for every t ≤ t(ω),

|Bt(ω)|
t

≤ C(ω)

t2/3
,

so that |Bt(ω)|
t is integrable in any interval of the form [0, T ].

(b) If we define

W
(N)
t = BbNtc/N ] −

1

N

bNtc∑
k=1

Bk/N

k/N
,

we have that for every t, W
(N)
t →Wt almost surely. Moreover, given times 0 ≤ t1 < t2 < tn the

vector (W
(N)
t1 , . . . ,W

(N)
tn ) is a linear transform of (B1/N , . . . , BbNtnc/N ]) and so it is Gaussian.

Thus also (Wt1 , . . . ,Wtn) is Gaussian, being a.s. limit of Gaussian vectors. Moreover the a.s.
continuity of W follows from its definition, as the fact that E(Wt) = 0. We only need to check
that E(WsWt) = min(s, t). For s ≤ t

E(WsWt) = E(BsBt)−
∫ t

0

E(BsBu)

u
du−

∫ s

0

E(BtBu)

u
du+

∫ s

0

du

∫ t

0

dv
E(BuBv)

uv

= s−
∫ s

0

ds−
∫ t

s

s

u
du−

∫ s

0

ds+

∫ s

0

du

[∫ t

s

u

uv
dv

]
+

∫ s

0

du

∫ s

0

dv
E(BuBv)

uv

= −s+

∫ s

0

du

∫ s

0

dv
E(BuBv)

uv
= −s+ 2

∫ s

0

du

∫ u

0

dv
E(BuBv)

uv

= −s+ 2

∫ s

0

du

∫ u

0

dv
1

u
dv = s.

(c) The approximated process W (N) is clearly adapted. So Wt is the a.s. limit of Ft-measurable
random variables. To conclude that it is Ft-measurable we actually need to assume that the
filtration is complete. If W were a (Ft) Brownian motion, then Wt−Ws would be independent
of Bs, that would imply E[(Wt −Ws)Bs] = 0. But

E[(Wt −Ws)Bs] = E[(Bt −Bs)Bs]−
∫ t

s

E(BsBu)

u
du = −(t− s) 6= 0.

Exercise 5 Let B be a Brownian motion, that we assume to have continuous trajectories for every
ω ∈ Ω. Let

An :=

{
sup

t∈[0,1/n]
Bt > 0

}
A =

⋂
n

An.

(a) Show that P (An) ≥ 1
2 .

(b) Show that P (A) = 1 (hint: use Blumenthal 0-1 Law)
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Solution.
Note that

P (An) ≥ P (B1/h > 0) =
1

2
.

The An’s form a decreasing family of events. Thus, since An ∈ FB1/n,

A =
⋂
n

An =
⋂
n≥N

An ∈ FB1/N

for every N , so A ∈ FB0+ . By the Blumenthal 0-1 Law P (A) ∈ {0, 1}. But being P (A) = limP (An) ≥
1
2 , necessarily P (A) = 1.

Exercise 6 Let B be a Brownian motion, and define

Ht := σ(Bs : s ≥ t) H = ∩t≥0Ht.

Show that if A ∈ H then P (A) ∈ {0, 1}.

Solution. Set Wt := tB1/t. We know that W is a Brownian motion. Note that

Ht = σ(Ws : s ≤ 1/t) = FW1/t,

which gives
H = FW0+ .

The conclusion follows from the Blumenthal 0-1 Law.

4


