Exercises - Set 2

Exercise 1 Let $X = (X_t)_{t \geq 0}$ be a real valued stochastic process such that, for all $\omega \in \Omega$, the map $t \mapsto X_t(\omega)$ is right continuous and for every t > 0 the left limit

$$\lim_{s \uparrow t} X_s(\omega)$$

exists. Consider the set, for T > 0

$$\{\omega \in \Omega : t \mapsto X_t(\omega) \text{ is continuous on } [0,T]\}.$$

Show that it belongs to

$$\mathcal{F}_T^X := \sigma(X_t : t \in [0, T]).$$

Hint: Let fix T > 0 and define $D := (\mathbb{Q} \cap [0,T]) \cup \{T\}$. If $f : [0,T] \to \mathbb{R}$ we denote by $f_{|D|}$ its restriction to D. Prove and use the following

Lemma. Let $f:[0,T]\to\mathbb{R}$ be right continuous. Then f is uniformly continuous if and only if $f|_D$ is uniformly continuous.

Solution. We prove the Lemma later. Since a function $f:[0,T] \to \mathbb{R}$ is continuous if and only if it is uniformly continuous, we have:

 $\{X \text{ is continuous in } [0,T]\} = \{X \text{ is unif. continuous in } [0,T]\} = \{X_{|D} \text{ is unif. continuous in } [0,T]\}$ $= \{\forall k \geq 1 \,\exists n \geq 1 \text{ such that for every } s,t \in D \text{ with } |s-t| \leq \frac{1}{n} \text{ we have } |X_t - X_s| \leq \frac{1}{k}\}$

$$= \bigcap_{k \ge 1} \bigcup_{n \ge 1} \bigcap_{s,t \in D: |s-t| \le \frac{1}{n}} \{ |X_t - X_s| \le \frac{1}{k} \}.$$

Noting that $\{|X_t - X_s| \leq \frac{1}{k}\} \in \sigma(X_s, X_t) \subseteq \mathcal{F}_T^X$ we conclude that $\{X \text{ is continuous in } [0, T]\} \in \mathcal{F}_T^X$. Proof of the Lemma. Since uniform continuity is preserved by restriction, it is enough to show that if $f_{|D}$ is uniformly continuous then so it is f. Take $\epsilon > 0$. We must show that there exists $\delta > 0$ such that $|t - s| \leq \delta$ implies $|f(t) - f(s)| \leq \epsilon$. By assumption, such δ exists for $s, t \in D$. Take now $0 \leq s < t < T$ with $t - s \leq \delta$. Since D is dense, there are sequences $s_n, t_n \in D$, $s_n > s$, $t_n > t$, s.t. $s_n \downarrow s$ and $t_n \downarrow t$. By right continuity

$$|f(t) - f(s)| = \lim_{n \to +\infty} \lim_{m \to +\infty} |f(t_m) - f(s_n)| \le \epsilon$$

since, for every fixed n, $|t_m - s_n| < \delta$ for m sufficiently large. The case in which t = T is dealt with similarly, taking only the sequence s_n .

NOTE: existence of left limit is not needed!

Exercise 2 (a) Let $B = (B^{(1)}, B^{(2)})$ be a two-dimensional Brownian Motion. Define

$$\beta_t^{(1)} = \frac{1}{\sqrt{2}} (B_t^{(1)} + B_t^{(2)} \quad \beta_t^{(2)} = \frac{1}{\sqrt{2}} (B_t^{(1)} - B_t^{(2)}).$$

Show that $(\beta^{(1)}, \beta^{(2)})$ is a two-dimensional Brownian Motion.

(2) Generalize the argument above. Let B be a d-dimensional Brownian Motion, and let A be a $d \times d$ matrix. Define

$$\beta_t := AB_t$$
.

Show that β is a two-dimensional Brownian Motion if and only if A is orthogonal, i.e. $AA^* = I$.

Solution. We only solve (2). First observe that β is Gaussian, since $(\beta_{t_1}, \dots, \beta_{t_n})$ is a linear

transformation of B_{t_1}, \ldots, B_{t_n} . Moreover β is continuous since B is continuous, and $E(\beta_t) = 0$. Thus, β is a Brownian motion if and only if the covariance matrix of (β_s, β_t) equals $\min(t, s)\mathbb{I}$. But

$$Cov(\beta_s^{(i)}, \beta_t^{(j)}) = E[\beta_s^{(i)} \beta_t^{(j)}] = \sum_{h,k=1}^d A_{ih} A_{jk} E[B_t^{(h)} B_s^{(k)}] = \min(s,t) \sum_h A_{ih} A_{jh}.$$

This amounts to say that the covariance matrix of (β_s, β_t) is $\min(s, t)AA^*$, from which the concluison follows.

Exercise 3 We recall that a function $f: I \to \mathbb{R}$, where I is an interval of \mathbb{R} , is called *Hölder continuous* with exponent $\alpha > 0$ in $x \in I$, if there exists C > 0 such that for every $y \in I$

$$|f(y) - f(x)| \le C|y - x|^{\alpha}.$$

Let now B be a Brownian motion, and assume $\alpha > \frac{1}{2}$.

(a) Show that, for every n > 0,

$$\lim_{s\downarrow 0} P(|B_s| \le ns^{\alpha}) = 0.$$

(b) Let

 $H := \{ \omega \in \Omega : B(\omega) \text{ is H\"older continuous in 0 with exponent } \alpha \}.$

Show that P(H) = 0.

Solution.

(a)

$$P(|B_s| \le ns^{\alpha}) = P\left(|N(0,1)| \le ns^{\alpha - \frac{1}{2}}\right) \to 0$$

as $s \downarrow 0$.

(b) Let

$$H_n := \{ \omega \in \Omega : |B_t(\omega)| \le nt^{\alpha} \text{ for all } t \ge 0 \}.$$

Then

$$H = \bigcup_{n} H_n,$$

so it is enough to show that $P(H_n) = 0$ for all n. But, for all s > 0

$$H_n \subseteq \{|B_s| \le ns^{\alpha}\},$$

and the conclusion follows from point (a).

Exercise 4 Let B be a Brownian motion for a filtration $(\mathcal{F}_t)_{t\geq 0}$. Define $W_0=0$ and, for t>0,

$$W_t = B_t - \int_0^t \frac{B_s}{s} ds.$$

- (a) Show that W is a.s. well defined, in the sense that the above integral is a.s. finite. (*Hint*: use the Law of the Iterated Logarithm)
- (b) Show that W is a Brownian motion.
- (c) Assume the filtration is complete. Show that W is (\mathcal{F}_t) -adapted, but it is *not* a Brownian Motion for the filtration (\mathcal{F}_t) .

Solution.

(a) By the law of the iterated logarithm and the fact that if X is a Brownian Motion also $(tX_{1/t})_{t\geq 0}$ is a Brownian motion

$$\limsup_{t \to +\infty} \frac{|B_t|}{\sqrt{t}\sqrt{2\log\log t}} = \limsup_{t \downarrow 0} \frac{|B_t|}{\sqrt{t}\sqrt{2\log\log(1/t)}} = 1$$

almost surely. Thus there is an event A with P(A)=1 such that for all $\omega\in A$ there exists $\bar{t}(\omega)$ such that for every $t\leq \bar{t}(\omega)$

$$|B_t(\omega)| \le 2\sqrt{t}\sqrt{2\log\log(1/t)} \le C(\omega)t^{1/3}$$

for some constant $C(\omega)$. But then, for every $t \leq \bar{t}(\omega)$,

$$\frac{|B_t(\omega)|}{t} \le \frac{C(\omega)}{t^{2/3}},$$

so that $\frac{|B_t(\omega)|}{t}$ is integrable in any interval of the form [0,T].

(b) If we define

$$W_t^{(N)} = B_{\lfloor Nt \rfloor/N \rfloor} - \frac{1}{N} \sum_{k=1}^{\lfloor Nt \rfloor} \frac{B_{k/N}}{k/N},$$

we have that for every $t, W_t^{(N)} \to W_t$ almost surely. Moreover, given times $0 \le t_1 < t_2 < t_n$ the vector $(W_{t_1}^{(N)}, \dots, W_{t_n}^{(N)})$ is a linear transform of $(B_{1/N}, \dots, B_{\lfloor Nt_n \rfloor/N \rfloor})$ and so it is Gaussian. Thus also $(W_{t_1}, \dots, W_{t_n})$ is Gaussian, being a.s. limit of Gaussian vectors. Moreover the a.s. continuity of W follows from its definition, as the fact that $E(W_t) = 0$. We only need to check that $E(W_sW_t) = \min(s,t)$. For $s \le t$

$$E(W_s W_t) = E(B_s B_t) - \int_0^t \frac{E(B_s B_u)}{u} du - \int_0^s \frac{E(B_t B_u)}{u} du + \int_0^s du \int_0^t dv \frac{E(B_u B_v)}{uv}$$

$$= s - \int_0^s ds - \int_s^t \frac{s}{u} du - \int_0^s ds + \int_0^s du \left[\int_s^t \frac{u}{uv} dv \right] + \int_0^s du \int_0^s dv \frac{E(B_u B_v)}{uv}$$

$$= -s + \int_0^s du \int_0^s dv \frac{E(B_u B_v)}{uv} = -s + 2 \int_0^s du \int_0^u dv \frac{E(B_u B_v)}{uv}$$

$$= -s + 2 \int_0^s du \int_0^u dv \frac{1}{u} dv = s.$$

(c) The approximated process $W^{(N)}$ is clearly adapted. So W_t is the a.s. limit of \mathcal{F}_t -measurable random variables. To conclude that it is \mathcal{F}_t -measurable we actually need to assume that the filtration is complete. If W were a (\mathcal{F}_t) Brownian motion, then $W_t - W_s$ would be independent of B_s , that would imply $E[(W_t - W_s)B_s] = 0$. But

$$E[(W_t - W_s)B_s] = E[(B_t - B_s)B_s] - \int_s^t \frac{E(B_s B_u)}{u} du = -(t - s) \neq 0.$$

Exercise 5 Let B be a Brownian motion, that we assume to have continuous trajectories for every $\omega \in \Omega$. Let

$$A_n := \left\{ \sup_{t \in [0, 1/n]} B_t > 0 \right\} \quad A = \bigcap_n A_n.$$

- (a) Show that $P(A_n) \geq \frac{1}{2}$.
- (b) Show that P(A) = 1 (hint: use Blumenthal 0-1 Law)

Solution.

Note that

$$P(A_n) \ge P(B_{1/h} > 0) = \frac{1}{2}.$$

The A_n 's form a decreasing family of events. Thus, since $A_n \in \mathcal{F}_{1/n}^B$,

$$A = \bigcap_{n} A_n = \bigcap_{n \ge N} A_n \in \mathcal{F}_{1/N}^B$$

for every N, so $A \in \mathcal{F}_{0^+}^B$. By the Blumenthal 0-1 Law $P(A) \in \{0,1\}$. But being $P(A) = \lim P(A_n) \ge \frac{1}{2}$, necessarily P(A) = 1.

Exercise 6 Let B be a Brownian motion, and define

$$\mathcal{H}_t := \sigma(B_s : s \ge t) \quad \mathcal{H} = \cap_{t \ge 0} \mathcal{H}_t.$$

Show that if $A \in \mathcal{H}$ then $P(A) \in \{0, 1\}$.

Solution. Set $W_t := tB_{1/t}$. We know that W is a Brownian motion. Note that

$$\mathcal{H}_t = \sigma(W_s : s \le 1/t) = \mathcal{F}_{1/t}^W,$$

which gives

$$\mathcal{H} = \mathcal{F}_{0+}^{W}$$
.

The conclusion follows from the Blumenthal 0-1 Law.