
Exercises - Set 3

Exercise 1 Let B be a Brownian Motion and St = sup{Bs : 0 ≤ s ≤ t} its running maximum.

(a) For a ≥ 0 and b ∈ IR compute
P (St ≥ a,Bt ≥ b).

(Hint: use the proof of the reflection principle).

(b) Show that the pair of real random variables (St, Bt) admits a joint density f(x, y), i.e for all
A ∈ B(IR2)

P ((St, Bt) ∈ A) =

∫
A

f(x, y)dxdy,

and compute f(x, y).

Soluzione.

(a) For b ≥ a
P (St ≥ a,Bt ≥ b) = P (Bt ≥ b) = P (N(0, 1) ≥ b/

√
t),

while for a < b and the reflection principle

P (St ≥ a,Bt ≥ b) = P (St ≥ a)− P (St ≥ a,Bt < b)

= P (St ≥ a)− P (St ≥ a,Bt > 2a− b) = 2P (Bt ≥ a)− P (Bt > 2a− b)).

(b) By the above computation, F (a, b) := P (St ≥ a,Bt ≥ b) is of class C2 except on the line a = b,
so

P (St ≥ a,Bt ≥ b) =

∫
[a,+∞)×[b,+∞)

∂2F

∂x∂y
(x, y)dxdy.

Since the rectangles [a,+∞)× [b,+∞) for a basis for B(IR2), it follows that

f(x, y) =
∂2F

∂x∂y
(x, y).

By point (a), we have

f(x, y) =

{
0 for x ≤ y or x ≤ 0

− ∂2

∂x∂yP (Bt > 2x− y) = 2
t
√
2πt

(2x− y) exp
[
− 1

2t (2x− y)2
]

otherwise.

Exercise 2 Let τ be a (Ft)t≥0 stopping time. Let σ be a random time such that σ(ω) ≥ τ(ω) for
all ω, and σ is Fτ -measurable. Show that σ is a stopping time.

Soluzione. Since σ is Fτ -measurable, then for every t, {σ ≤ t} ∈ Fτ . Thus

{σ ≤ t} = {σ ≤ t} ∩ {τ ≤ t} ∈ Ft.

Exercise 3 Recall the reflection principle: for a > 0

P (τa ≤ t) = P (|B1| ≥ a/
√
t).

(a) Show that for every a > 0, P (τa < +∞) = 1.

(b) ∗ Deduce that, with probability one, (without using the Law of Iterated Logarithm)

lim sup
t→+∞

Bt = +∞, lim inf
t→+∞

Bt = −∞
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Soluzione.

(a) Just observe that

P (τa = +∞) = lim
m
P (τa > n) = lim

n
P (|B1| ≤ a/

√
n) = 0.

(b) For n,m ≥ 1 define
τ (n)m := inf{t ≥ n : Bt ≥ m}.

We will show that τ
(n)
m < +∞ a.s.. This means that there exists Am,n ⊆ Ω with P (Am,n = 1)

such that τ
(n)
m (ω) < +∞ for every ω ∈ Am,n. Thus, setting

A :=
⋂
m,n

Am,n,

also P (A) = 1 and for ω ∈ A, B(ω) crosses the level m for arbitrarily large times, so

lim sup
t→+∞

Bt(ω) ≥ m.

Since this holds for every m, we have

lim sup
t→+∞

Bt(ω) = +∞.

The “liminf” case can be obtained by reflection. So we are left to prove that τ
(n)
m < +∞ a.s..

Define Wt := Bt+n −Bn. W is a BM, and it is independent of Bn. Moreover

τ (n)m − n := inf{t ≥ 0 : Wt ≥ m+Bn} =: τ.

So it is enough to show that P (τ < +∞) = 1. Note that τ is a measurable function of W and
Bn, i.e.

1{τ<+∞}) = f(W,Bn).

Since W and Bn are independent

P (τ < +∞) = E[E(f(W,Bn)|Bn)] = E[ϕ(Bn)]

with
ϕ(b) = E[f(W, b)] = P (inf{t ≥ 0 : Wt ≥ m+ b} < +∞) = 1

for each b, by what seen in (a). Thus the conclusion follows.

Exercise 4 Let B be a Brownian motion. Show that the following processes are martingales for
the filtration generated by the Brownian motion:

B3
t − 3tBt B4

t − 6tB2
t + 3t2

Soluzione. Recall that, if Z ∼ N(0, 1), E(Z3) = 0 and E(Z4) = 3. Observe that

E(B3
t |Fs) = E[(Bt −Bs)3|Fs) + E[−3BtB

2
s + 3B2

tBs +B3
s |Fs] = B3

s + 3(t− s)Bs

where we have used the facts that

E(Bt|Fs) = Bs, E(B2
t |Fs) = B2

s + t− s.

It follows immediately that
E(B3

t − 3tBt|Fs) = B3
s − 3sBs.
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Similarly

E(B4
t |Fs) = E[(Bt−Bs)4|Fs] +E[4BtB

3
s − 6B2

tB
2
s + 4B3

tBs−B4
s |Fs] = 3(t− s)2 + 6(t− s)B2

s +B4
s ,

where we have also used the above formula for E(B3
t |Fs). The fact that

E[B4
t − 6tB2

t + 3t2|Fs] = B4
s − 6sB2

s + 3s2

follows easily.

Exercise 5 Let B be a Brownian motion and τ := inf{t > 0 : Bt ∈ {−a, b}}, with a, b > 0. Define,
for γ ∈ IR,

Mt := eγBt−
1
2γ

2t.

(a) Show that M is a martingale.

(b) Show that E[Mτ ] = 1.
Hint: use the fact that Mτ = limnMτ∧n.

(c) Set α := E
(
e−

1
2γ

2τ1Bτ=−a

)
and β := E

(
e−

1
2γ

2τ1Bτ=b

)
. Show that αe−γa + βeγb = 1.

(d) Show that

E
(
e−

1
2γ

2τ
)

=
sinh(γa) + sinh(γb)

sinh(γ(a+ b))
.

Soluzione.

(a) Recalling that if X ∼ N(0, σ2) then

E[eγX ] = e
1
2γ

2σ2

,

we have

E[eγBt |Fs] = eγBsE[eγ(Bt−Bs)|Fs] = eγBsE[eγ(Bt−Bs)] = eγBse
1
2γ

2(t−s),

from which the conclusion easily follows.

(b) By the optional stopping theorem E(Mτ∧n) = 1 for all n. The conclusion follows observing
that Mτ∧n →Mτ a.s., |Mτ∧n| ≤ e|γ|(a+b) and dominated convergence.

(c) Just observe that
E(Mτ ) = αe−γa + βeγb.

(d) Note that changing γ in −γ, α and β remain unchanged, so we also have

αeγa + βe−γb = 1.

Together with the equation obtained in (c), we have a linear system for α and β, that has a
unique solution. Solving it and using the fact that

α+ β = E
(
e−

1
2γ

2τ
)

the conclusion follows.

Exercise 6 Consider the gambler’s ruin problem for an unfair game. It can be modeled as follows.
Let B be a Brownian motion, µ > 0 and

Xt := Bt − µt.

Moreover, let τ := inf{t > 0 : Xt ∈ {−a, b}}.
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(a) Show that X is a supermartingale.

(b) Show that
E
[
e2µXτ

]
= 1.

(Hint:: use the martingale M in Exercise 5 with γ = 2µ.)

(c) Let p := P (Xτ = −a). Show that

p =
1− e−2aµ

e2bµ − e−2aµ
.

(d) Prove that E[Bτ ] = 0. Using this compute E(τ).
Hint. By the Optional sampling Theorem, for every n, E(Bτ∧n) = 0. Note that

|Bτ∧n| ≤ |Xτ∧n|+ µτ ∧ n ≤ a+ b+ µτ.

Thus the conclusion follows if one can shoe that τ ∈ L1. This can be shown e.g. by showing
that

∫ +∞
0

P (τ > t)dt < +∞. To estimate P (τ > t):

P (τ > t) ≤ P (|Xt| ≤ a+ b) ≤ P (Bt ≥ µt− a− b)

and this can be estimated by standard bound on Gaussians.

Soluzione.

(a)
E(Xt|Fs) = Bs − µt ≤ Xs.

(b) and (c) By exercise 5,

Mt = e2µBt−2µ
2t = e2µXt

is a martingale. Since E(Mτ∧n) = 1, Mτ∧n → Mτ a.s. and |Mτ∧n| ≤ e2µ(a+b), we have
E(Mτ ) = 1 so

1 = E(Mτ ) = e−2µap+ e−µb[1− p]

from which one derives p.

(d) E[Bτ ] = 0 follows from the hint. Since Xτ = Bτ − µτ we have

E(τ) = − 1

µ
E(Xτ ),

and
E(Xτ ) = −ap+ b(1− p),

from which E(τ) can be computed.
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