Prova scritta di Probabilità e Statistica	Cognome:
Laurea in Matematica	Nome:
2 settembre 2011	Matricola:

ESERCIZIO 1. Sia $(X_i)_{i\geq 1}$ una successione di variabili aleatorie i.i.d. con distribuzione di Bernoulli di parametro $p\in(0,1)$. Sia $q\in(p,1)$.

(a) Utilizzando la disuguaglianza di Chebychev, si dimostri che per ogni $N \in \mathbb{N}$, ogni $t \geq 0$,

$$\mathbf{P}\left(\frac{1}{N}\sum_{i=1}^{N}X_{i}\geq q\right)\leq e^{-tNq}\left(\mathbf{E}\left[e^{tX_{1}}\right]\right)^{N}=\psi_{N}(t),$$

ove $\psi_N(t) \doteq e^{-tNq} (e^t p + (1-p))^N$.

(b) Poniamo $h(q,p) \doteq q \log(q/p) + (1-q) \log((1-q)/(1-p))$. Utilizzando la differenziabilità di $\psi_N(.)$, si calcoli il parametro $t = t_* \in [0,\infty)$ per il quale $\psi_N(t)$ sia minima. Si deduca che

$$\mathbf{P}\left(\frac{1}{N}\sum_{i=1}^{N}X_{i} \ge q\right) \le e^{-Nh(q,p)}.$$

SOLUZIONE. Abbiamo per ogni $N \in \mathbb{N}$, ogni $t \geq 0$,

$$\mathbf{P}\left(\frac{1}{N}\sum_{i=1}^{N}X_{i} \geq q\right) = \mathbf{P}\left(t\sum_{i=1}^{N}X_{i} \geq tNq\right)$$

$$= \mathbf{P}\left(e^{t\sum_{i=1}^{N}X_{i}} \geq e^{tNq}\right)$$

$$\leq e^{-tNq}\mathbf{E}\left[\prod_{i=1}^{N}e^{tX_{i}}\right]$$

$$= e^{-tNq}\left(\mathbf{E}\left[e^{tX_{1}}\right]\right)^{N}.$$

Siccome $X_1 \sim Be(p)$, si ha $\mathbf{E}\left[e^{tX_1}\right] = e^t p + (1-p)$.

Visto che $\psi_N(.)$ possiede derivate continue e t=0 non è la posizione di un minimo, otteniamo t_* come soluzione di $\frac{d}{dt}\psi_N(t)=0$. Infatti

$$\frac{d}{dt}\psi_{N}(t) = -Nqe^{-tNq} \left(e^{t}p + (1-p) \right)^{N} + Ne^{t}pe^{-tNq} \left(e^{t}p + (1-p) \right)^{N-1},$$

da cui $t_* = \log(q/p) - \log((1-q)/(1-p))$. Infine si vede che $\psi_N(t_*) = Nh(q,p)$.

ESERCIZIO 2. Sia X una variabile aleatoria assolutamente continua con densità

$$f_X(x) := \frac{1}{\pi(1+x^2)}.$$

- (a) Posto $Y := \log X^2$, determinare la distribuzione di Y.
- (b) Mostrare che $X \not\in L^1$ ma $Y \in L^1$.
- (c) Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione strettamente crescente e di classe \mathcal{C}^1 , e sia Z:=f(X). Si calcoli, in termini di f e della sua derivata f', la funzione di ripartizione F_Z di Z.
- (d) Si determini una funzione f, come al punto precedente, tale che $Z \sim U(0,1)$.

SOLUZIONE.

(a)

$$F_Y(y) = P(\log X^2 \le y) = P(X^2 \le e^y) = P(-e^{y/2} \le X \le e^{y/2}) = F_X(e^{y/2}) - F_X(-e^{y/2}).$$

Derivando

$$f_Y(y) = F_Y'(y) = \frac{1}{2}e^{y/2}f_X(e^{y/2}) + \frac{1}{2}e^{y/2}f_X(-e^{y/2}) = e^{y/2}\frac{1}{\pi(1+e^y)}.$$

(b)

$$E(|X|) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{|x|}{1+x^2} dx = +\infty,$$

dato che $\frac{|x|}{1+x^2}dx \sim \frac{1}{|x|}$ per $x \to \pm \infty$.

$$E(|Y|) = \int_{-\infty}^{\infty} |y|e^{y/2} \frac{1}{\pi(1+e^y)} dy < +\infty$$

visto che $e^{y/2} \frac{1}{\pi(1+e^y)} \sim e^{-|y|/2}$ per $y \to \pm \infty$.

(c) Poiché $f: \mathbb{R} \to f(\mathbb{R})$ è strettamente crescente, e quindi invertibile. Se $z \in f(\mathbb{R})$, si ha:

$$F_Z(z) = P(f(X) \le z) = P(X \le f^{-1}(z)) = F_X(f^{-1}(z)). \tag{1}$$

Essendo $f(\mathbb{R})$ un intervallo, $F_Z(z) = 1$ se z maggiora $f(\mathbb{R})$, e $F_Z(z) = 0$ se z minora $f(\mathbb{R})$.

(d) Una variabile $Z \sim U(0,1)$ è una variabile a valori in (0,1) tale che $F_Z(z) = z$ per $z \in (0,1)$. Vista la formula (1), si prende $f(x) = F_X(x) = \frac{1}{\pi}[\arctan(x) + \frac{\pi}{2}]$. **ESERCIZIO 3.** Si consideri l'insieme $\Omega := \{0,1\}^n \times \{0,1\}^n$, munito della probabilità uniforme P. Gli elementi di Ω sono dunque coppie (σ,τ) , dove $\sigma,\tau\in\{0,1\}^n$. Si consideri la variabile aleatoria $X:\Omega\to\mathbb{R}$ definita da

$$X(\sigma,\tau) := |\{i = 1, 2, \dots, n : \sigma(i) = \tau(i)\}|.$$

Si determini la distribuzione, la media e la varianza di X.

SOLUZIONE. Cominciamo col contare gli elementi dell'evento $\{X=k\}$, dove $k=0,1,\ldots,n$. Un elemento (σ,τ) di $\{X=k\}$ può essere scelto tramite il seguente schema di scelte successive:

- a) scelgo un generico τ : ho 2^n scelte possibili;
- b) scelgo k componenti in cui σ deve coincidere con τ : $\binom{n}{k}$ scelte possibili. Ovviamente questa scelta identifica σ univocamente.

Infine:

$$P(X = k) = \frac{2^n \binom{n}{k}}{2^{2n}} = \binom{n}{k} \frac{1}{2^n},$$

da cui segue che $X \sim B(n,1/2)$, e perciò E(X) = n/2 e Var(X) = n/4.

ESERCIZIO 4. Un gioco consiste nell'estrarre a caso due carte da un mazzo di carte da Poker (52 carte, 4 semi); si vince se nessuna delle carte estratte è di quadri.

- (a) Determinare la probabilità di successo in questo gioco.
- (b) Per $n \geq 1$, sia p_n la probabilità che in 2n ripetizioni del gioco il numero di successi sia almeno n. Determinare, approssimativamente, il valore p_{50} .
- (c) Determinare il minimo valore di n per cui $p_n \ge 1 10^{-4}$.

SOLUZIONE.

(a) Essendoci 39 carte non di quadri, la probabilità di successo è

$$\frac{\binom{39}{2}}{\binom{52}{2}} = \frac{19}{34}.$$

(b) Sia $X_i Be(19/34)$ la variabile che vale 1 se e solo se la prova *i*-esima è un successo. Usando l'approssimazione normale, trascurando la correzione di continuità,

$$p_n = P(\overline{X}_{2n} \ge 1/2) = P\left(\frac{\overline{X}_{2n} - \frac{19}{34}}{\sqrt{\frac{19}{34} \frac{15}{34}}} \sqrt{2n} \ge \frac{\frac{1}{2} - \frac{19}{34}}{\sqrt{\frac{19}{34} \frac{15}{34}}} \sqrt{2n}\right) \simeq \Phi\left(\frac{\frac{19}{34} - \frac{1}{2}}{\sqrt{\frac{19}{34} \frac{15}{34}}} \sqrt{2n}\right)$$

Per n = 50, si trova

$$p_{50} \simeq 0.8819$$

(c) Usando la formula al punto precedente, troviamo

$$p_n \ge 1 - 10^{-4} \iff \frac{\frac{19}{34} - \frac{1}{2}}{\sqrt{\frac{19}{34} \frac{15}{34}}} \sqrt{2n} \ge \Phi^{-1}(1 - 10^{-4}) \simeq 3.72$$

che fornisce $n \geq 493$.