I Prova Parziale di Probabilità e Statistica	Cognome:	
Laurea in Matematica	Nome:	
16 maggio 2011	Matricola:	

TEMA B

ESERCIZIO 1. Un gruppo di n persone, tra cui Elena e Marta, si dispongono casualmente in una fila.

- (a) Qual è la probabilità che Elena e Marta si trovino in posti consecutivi, cioè che una delle due preceda immediatamente l'altra nella fila?
- (b) Qual è la probabilità che nella fila vi siano esattamente k persone tra Elena e Marta (indipendentemente da quale delle due venga prima)?
- (c) Sia X il numero di persone della fila comprese tra Elena e Marta. Determinare il valor medio di X (ricordare le formule $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ e $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$, valide per ogni $n \geq 1$).

SOLUZIONE. Sia S_n il gruppo delle permutazioni di $\{1, 2, ..., n\}$, e P la probabilità uniforme su S_n . Non è restrittivo assumere che Elena e Marta corrispondano rispettivamente agli elementi 1 e 2 di $\{1, 2, ..., n\}$.

(a) Sia $A := A_1 \cup A_2$, dove

$$A_1 := \{ \sigma \in S_n : \sigma(1) = \sigma(2) + 1 \} \ A_2 := \{ \sigma \in S_n : \sigma(2) = \sigma(1) + 1 \}.$$

Ovviamente A_1 e A_2 sono disgiunti, e hanno la stessa cardinalità. Un elemento di A_1 è determinato dalle seguenti scelte successive:

- Scelgo il valore di $\sigma(1) \in \{1, 2, \dots, n-1\}$: n-1 scelte.
- Scelgo i valori di $\sigma(k)$ per $k \geq 3$: (n-2)! scelte.

Ne segue che

$$P(A) = \frac{2(n-1)!}{n!} = \frac{2}{n}.$$

(b) Sia $0 \le k \le n-1$. L'evento da considerare è $A^(k) := A^(k)_1 \cup A^(k)_2$, dove

$$A^{(k)}_1 := \{ \sigma \in S_n : \sigma(1) = \sigma(2) + k + 1 \} \ A^{(k)}_2 := \{ \sigma \in S_n : \sigma(2) = \sigma(1) + k + 1 \}.$$

Procedendo in modo analogo al punto precedente, un elemento di A_1 è determinato dalle seguenti scelte successive:

- Scelgo il valore di $\sigma(1) \in \{1, 2, \dots, n-k-1\}$: n-k-1 scelte.
- Scelgo i valori di $\sigma(k)$ per $k \geq 3$: (n-2)! scelte.

Quindi

$$P(A_k) = \frac{2(n-k-1)(n-2)!}{n!} = \frac{2(n-k-1)}{n(n-1)}.$$

(c) Notare che $P(X = k) = P(A_k)$. Dunque

$$E(X) = \sum_{k=0}^{n-2} k \frac{2(n-k-1)}{n(n-1)} = \frac{2}{n} \sum_{k=1}^{n-2} k - \frac{2}{n(n-1)} \sum_{k=1}^{n-2} k^2 = \dots = \frac{n-2}{3}.$$

ESERCIZIO 2. Una parete artificiale per l'arrampicata sportiva è composta da n settori di difficoltà crescente. Un *climber* ha probabilità p di superare il primo settore. Inoltre, se supera il k-1-mo settore, con $2 \le k \le n$, ha probabilità p/k di superare il settore successivo. (Ovviamente, se non ha superato il k-1-mo settore, non ha superato nemmeno il k-mo)

- (a) Si mostri, per induzione su k = 1, 2, ..., n, che la probabilità che il *climber* superi il k-mosettore è $\frac{p^k}{k!}$.
- (b) Qual è la probabilità che il *climber* sia caduto nel settore k-mo? (Cioè che abbia superato il settore k-1-mo ma non il k-mo)
- (c) Sapendo che il climber non ha superato l'intera parete, qual è la probabilità che sia caduto nel settore k-mo?

SOLUZIONE.

(a) Si consideri l'evento A_k = "il climber ha superato il k-mo settore. Sappiamo che $P(A_1) = p$, e $P(A_k|A_{k-1}) = \frac{p}{k}$. Ne segue che

$$P(A_k) = P(A_k \cap A_{k-1}) = P(A_k | A_{k-1}) P(A_{k-1}),$$

da cui, per ipotesi induttiva,

$$P(A_k) = \frac{p}{k} \frac{p^{k-1}}{(k-1)!} = \frac{p^k}{k!}.$$

(b) L'evento in questione è $B_k := A_k^c \cap A_{k-1}$. Perciò

$$P(B_k) = P(A_k^c | A_{k-1}) P(A_{k-1}) = (1 - \frac{p}{k}) \frac{p^{k-1}}{(k-1)!}.$$

(c) Si tratta di calcolare $P(B_k|A_n^c)$. Essendo $B_k \subseteq A_n^c$, abbiamo

$$P(B_k|A_n^c) = \frac{P(B_k)}{P(A_n^c)} = \frac{(1 - \frac{p}{k})\frac{p^{k-1}}{(k-1)!}}{1 - \frac{p^n}{n!}}.$$

ESERCIZIO 3. Una classe è costituita da 30 persone, tra cui Giacomo, Claudio e Nicola. Un insegnante divide in modo casuale la classe in tre gruppi di 10 persone.

- (a) Qual è la probabilità che Giacomo, Claudio e Nicola finiscano in tre gruppi distinti? (lasciare indicati i coefficienti binomiali)
- (b) * Supponiamo ora si risolvere il medesimo problema, ma in una classe composta da 3n individui, da dividere in tre gruppi di n individui. Sia p_n la probabilità che Giacomo, Claudio e Nicola finiscano in tre gruppi distinti. Determinare p_n e mostrare che

$$\lim_{n \to +\infty} p_n = \frac{2}{9}.$$

(Sugg.: usare la formula di Stirling: $n! \sim n^n e^{-n} \sqrt{2\pi n}$)

SOLUZIONE.

(a) Sia

$$\Omega := \{ (A_1, A_2, A_3) : A_i \subseteq \{1, 2, \dots, 30\}, |A_i| = 10, A_i \cap A_j = \emptyset \text{ per } i \neq j \},$$

e P la probabilità uniforme su Ω . Si noti che Ω è formato da terne ordinate di sottoinsiemi che formano una partizione. Non sarebbe affatto sbagliato considerare terne non ordinate. Non è restrittivo assumere che Giacomo, Claudio e Nicola corrispondano rispettivamente agli elementi 1, 2 e 3 di $\{1, 2, \ldots, 30\}$. Un elemento di Ω si determina con la seguente sequenza di scelte successive:

- Scelgo A_1 : $\binom{30}{10}$ scelte.
- Scelgo A_2 da $\{1,2,\ldots,30\}\setminus A_1$: $\binom{20}{10}$ scelte.

Ovviamente A_3 resta determinato. Quindi

$$|\Omega| = \binom{30}{10} \binom{20}{10}.$$

Sia B = "Giacomo, Claudio e Nicola finiscono in tre gruppi distinti". Un elemento di B si determina con la seguente sequenza di scelte successive:

- Scelgo 9 elementi per A_1 in $\{4, 5, \ldots, 30\}$: $\binom{27}{9}$ scelte.
- Scelgo 9 elementi per A_2 in $\{4,5,\ldots,30\}\setminus A_1\colon \binom{18}{9}$ scelte.
- \bullet Scelgo come disporre 1,2 e 3 nei tre posti vuoti: 3! = 6 scelte.

Dunque:

$$|B| = 6 \binom{27}{9} \binom{18}{9} \quad \Rightarrow \quad P(B) = \frac{6 \binom{27}{9} \binom{18}{9}}{\binom{30}{19} \binom{20}{19}}.$$

(b) L'argomento al punto precedente si ripete tale e quale per 3n elementi, e si ottiene

$$p_n = \frac{6\binom{3(n-1)}{n-1}\binom{2(n-1)}{n-1}}{\binom{3n}{n}\binom{2n}{n}}.$$

Sia $a_n := \binom{3n}{n}\binom{2n}{n}$, per cui $p_n = 6\frac{a_{n-1}}{a_n}$. Per la formula di Stirling

$$a_n = \frac{(3n)!}{n!(2n)!} \frac{(2n)!}{n!n!} = \frac{(3n)!}{(n!)^3} \sim \frac{(3n)(3n)e^{-3n}\sqrt{6\pi n}}{n^{3n}e^{-3n}(2\pi n)^{3/2}} = \sqrt{\frac{3}{4}} \frac{1}{n} 3^{3n}.$$

Perciò

$$p_n = 6\frac{a_{n-1}}{a_n} \sim \frac{6}{3^3} = \frac{2}{9}$$

In realtà è possibile giungere alla conclusione anche senza usare la formula di Stirling:

$$p_n = \frac{6\binom{3(n-1)}{n-1}\binom{2(n-1)}{n-1}}{\binom{3n}{n}\binom{2n}{n}} = 6\frac{(3n-3)!}{[(n-1)!]^3}\frac{(n!)^3}{(3n)!} = \frac{6n^3}{3n(3n-1)(3n-2)} \sim \frac{2}{9}.$$