II Appello di Probabilità e Statistica	Cognome:
Laurea in Matematica	Nome:
2 luglio 2009	Matricola:

ESERCIZIO 1. Per una certa specie africana di uccelli, i neonati hanno – indipendentemente l'uno dal l'altro – una probabilità di sopravvivere al primo mese pari a 1/7. Quelli che sopravvivono al primo mese hanno una probabilità pari a 1/3 di superare l'anno.

- (a) Qual è la probabilità che un neonato sopravviva al primo anno?
- (b) Se un neonato muore entro il primo anno, qual è la probabilità che sia sopravvissuto al primo mese?
- (c) Si determini approssimativamente il numero minimo n di neonati da monitorare affinché la probabilità che ne sopravvivano almeno 30 dopo un mese sia almeno 0.95.

ESERCIZIO 2. Al tavolo di un bistrot alcuni avventori giocano a dadi. Ciascun giocatore ha a disposizione un dado equilibrato a sei facce: se ottiene 5 oppure 6, lancia nuovamente il dado; la prima volta che ottiene 1, 2, 3 oppure 4, passa il turno al giocatore seguente. Il punteggio ottenuto da un giocatore in un turno è pari alla somma degli esiti dei lanci effettuati.

- (a) Si determini la probabilità che il turno di un giocatore duri n lanci, per $n \in \{1, 2, 3, \ldots\}$.
- (b) Se il turno di un giocatore dura due lanci, qual è la probabilità che il punteggio da lui ottenuto sia dispari?
- (c) Qual è la probabilità che un giocatore ottenga un punteggio pari a 5? E pari a 11?

ESERCIZIO 3. Sia $n \in \mathbb{N}$, $n \geq 3$ e indichiamo con S_n il gruppo delle permutazioni di $\{1,\ldots,n\}$, munito della probabilità P uniforme. Gli elementi di S_n saranno indicati con $\sigma = (\sigma(1),\ldots,\sigma(n))$. Introduciamo le variabili casuali scalari X,Y definite su S_n :

$$X(\sigma) := \sigma(1), \qquad Y(\sigma) := \sigma(2).$$

(a) Si mostri che, per ogni $i, j \in \{1, 2, \dots, n\}$, la densità congiunta di (X, Y) è data da

$$p_{X,Y}(i,j) = \begin{cases} \frac{1}{c_n} & \text{se } i \neq j \\ 0 & \text{se } i = j \end{cases},$$

dove c_n è un'opportuna costante che è richiesto di determinare.

(b) (*) Si determini la densità della variabile D := Y - X. [Sugg: basta calcolare $p_D(m)$ per m > 0, poiché per simmetria $p_D(-m) = p_D(m)$.]

Indichiamo ora con Z,W due variabili casuali scalari indipendenti, definite su un altro spazio di probabilità (Ω, \widetilde{P}) , ciascuna con distribuzione uniforme nell'insieme $\{1, \ldots, n\}$: in altri termini, $\widetilde{P}(Z=i)=\frac{1}{n}$, per ogni $i\in\{1,\ldots,n\}$, e analogamente per W.

- (c) Si calcoli $\widetilde{P}(Z \neq W)$.
- (d) Si mostri che, per ogni $i, j \in \{1, 2, ..., n\}$, si ha che $\widetilde{P}(Z = i, W = j \mid Z \neq W) = p_{X,Y}(i, j)$.

ESERCIZIO 4. Sia $X \sim U(0,1)$. Per $x \in \mathbb{R}$ poniamo g(x) := 4x(1-x) e definiamo Y := g(X).

- (a) Si determini la funzione di ripartizione di Y, si deduca che la variabile Y è assolutamente continua e se ne calcoli la densità.
- (b) Si calcoli Cov(X, Y).