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Abstract. Systems comprised by many interacting components may exhibit, in the thermody-
namic limit, time-periodic behavior in some macroscopic observable. When the microscopic dynam-
ics are described by irreducible, continuous-time Markov processes, this is a purely thermodynamic
phenomenon, since no periodicity is allowed at the microscopic level. The study of this phenomenon
is mainly motivated by its applications to neurosciences, more specifically to systems of interacting
neurons, but is occurs in many other contexts, including multi-agent systems in Economics. In this
work we suggest a mechanism producing rhythms that is related to strategic behavior of microscopic
units, and requires a game-theroretic approach.

1. INTRODUCTION

Recent years have seen a formidable effort in the attempt of explaining rigorously the emergence
of collective periodicity in noisy systems of interacting units. Given the impossibility of accounting
for the huge related literature, we only mention the inspiring work [9], and few available rigorous
results [10, 3, 2, 4]. In these works a key role in the emergence of periodicity is played by delay in
the information transmission ([10, 4]) and dissipation [3, 2].

In the present work we propose a totally different mechanism, in which microscopic units are
agents whose aim is to maximize an utility function. The state of each agent evolves as a controlled
Markov process; since each agent looks for the control maximizing his own utility, it is natural to
consider Nash equilibria for the resulting dynamic game. The recent theory of mean field games
has put forward a class of dynamic games for which the limit behavior, as the number of agents
increases to infinity, can be described in analytic terms [8, 6]. In this limit, the solution of the
dynamic game is given by a system of two coupled equations: one is the Hamilton-Jacobi-Bellman
equation for the value function, the second is the master equation for the optimal evolution of the
representative agent. The main aim of this work is to provide a stylized model for the behavior
of a network of conformist agents, for which the limit system admits a periodic and non-constant
solution. This rhythmic behavior emerges even in absence of external periodic signals, and it is
endogenously produced by the strategic behavior of agents. Periodic behavior in mean-field games
has been often predicted but, to our knowledge, proved in only one example, the rather celebrated
Mexican wave model (see [6]). It must be remarked that the Mexican wave model possesses a
continuous symmetry, which allows the appearance of traveling wave solution. The model we
propose below has a discrete (actually binary) space structure, so there is no continuous symmetry.

2. THE MICROSCOPIC MODEL

Consider a network of N interacting agents, each possessing a binary state σi(t) ∈ {−1, 1} at
time t ∈ R. We denote by Ft the σ-field generated by {σi(s) : s ≤ t, i = 1, . . . , N}. Every agent
can control his state by means of the control ui = (ui(t))t≥0, a progressively measurable process
whose effect on the dynamics is given by

P(σi(t+ h) = −σi(t)|Ft) = ui(t)h+ o(h). (1)
1
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In other words, ui(t) is the probability rate of flipping the state σi. Let

mN (t) :=
1

N

N∑
i=1

σi(t)

be the average state of the network at time t. The instantaneous reward of agent i at time t is
given by

Ri(t) := σi(t)mN (t)− 1

2µ(σi(t),mN (t))
u2i (t).

The two summands in the reward Ri are easy to interpret. The term σi(t)mN (t) favors imita-
tion: agents are conformist, they try to adapt to the majority. The term −µ

2u
2
i (t) is an energy

cost: a rapid change of the state would require high values for ui, which are costly. The factor
µ(σi(t),mN (t)), that we assume to be nonnegative, modulates the relevance of this cost term: large
values of µ allow high mobility to the agents, who can rapidly adapt to a change in the majority.
Conversely, small values of µ reduce the adaptive response of agents. We allow µ to depend on the
state of agent i and on the average state of the network.
Each agent i aims at maximizing the discounted utility

Ui := E
[∫ +∞

0
e−λtRi(t)dt

]
,

where λ > 0 is a discount factor.
A control u∗ = (u∗1, u

∗
2, . . . , u

∗
N ) is called a Nash equilibrium if for every i = 1, . . . , N , assuming

that all agents j 6= i use the control u∗j , we have Ui(u
∗
i ) ≥ Ui(ui) for every other control ui: in

equilibrium no agent has interest in changing his strategy. Note that this dynamic game is invariant
for permutation of agents, so it fall within the domain of mean-field games ([7, 8]).

3. THE MACROSCOPIC MODEL

The limit as N → +∞ of the dynamic game described above it is easy to obtain at a heuristic
level. One expects that the average state mN (t) obeys a Law of Large Numbers, so it converges to
a deterministic limit m(t). The representative agent aims at maximizing

J(u) := E
[∫ +∞

0
e−λt

(
σ(t)m(t)− 1

2µ(σ(t),m(t))
u2(t)

)
dt

]
. (2)

An equilibrium control u∗ must satisfy the following consistency relation: if we denote by σ∗(t) the
process produced by the control u∗, then

m(t) = E[σ∗(t)].

This problem is solved in two steps: first one writes the Dynamic Programming Equation corre-
sponding to the maximization problem for J(u) given m(t); then one imposes that m(t) is consistent
with the master equation for the optimal process σ∗(t). Denoting by V (σ, t) the value function
of the control problem of maximizing J(u), the Dynamic Programming Equation reads, defining
∇V (σ, t) := V (−s, t)− V (σ, t),

−λV (σ, t) +
µ(σ,m)

2

[
[∇V (σ, t)]+

]2
+
∂V

∂t
(σ, t) + σm(t) = 0, (3)

and yields the optimal (feedback) control

u∗ = µ(σ,m) [∇V (σ, t)]+ .
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Inserting u∗ in (1) one derives a differential equation for m(t). It is convenient to write µ(σ,m) in
the form µ(σ,m) = σa(m) + b(m), and set z(t) := ∇V (1, t). By (3) and (1) we obtain the following
system of coupled equations:{

ż(t) = b(m(t))
2 z(t)|z(t)|+ a(m(t))

2 z2(t) + λz(t) + 2m(t)
ṁ(t) = −(m(t)b(m(t)) + a(m(t)))|z(t)| − (m(t)a(m(t)) + b(m(t)))z(t)

(4)

We remark that the rigorous derivation of (4) as limit of the microscopic dynamic games does not
follow from standard results, and is the subject of present work. Rigorous convergence results have
been obtained recently for diffusion models (see [5, 1]).

Some remarks are needed concerning equation (4). It is relevant to note that equation (4) should
not be meant as an initial-value problem: only the initials m(0), i.e. the initial information on
agents’ proportion, is assigned. On the other hand the value function in this problem is necessarily
bounded, so only bounded solutions of (4) matter. Conversely, every bounded solution of (4)
determines an equilibrium u∗ for the control problem (2).

4. SPECIAL MODELS

In this section we consider two special models, for which we determine the bounded solutions of
(4).

4.1. The standard model: µ(σ,m) = µ = const. In this model the mobility is constant. Equa-
tion (4) takes the form: {

ż(t) = µ
2 z(t)|z(t)|+ λz(t) + 2m(t)

ṁ(t) = −µm(t)|z(t)| − µz(t) (5)

We are interested in finding bounded solutions to (5). Note that (z∗,m∗) = (0, 0) is always an
equilibrium.

Theorem 4.1. (a) Low mobility regime: µ ≤ λ2

8 . For every m(0) ∈ [−1, 1] equation (4) admits
a unique bounded solution. For m(0) 6= 0 complete consensus occurs: limt→+∞m(t) =
sign(m(0)) ∈ {−1, 1}.

(b) High mobility regime: µ > λ2

8 . For |m(0)| 6= 0 sufficiently small there is more than one
bounded solution to (4). All such solutions reach consensus (limt→+∞m(t) ∈ {±1}), but
exhibit a transient oscillatory regime, in which the orbits of the solutions spiral around (0, 0)
before reaching consensus.

Thus, in the high mobility regime, the equilibrium control may be not unique: there are equilib-
rium controls leading to transient oscillating behavior.
Proof of Theorem 4.1. We first observe that (4), besides the origin O, admits two other equilibria

P and Q, symmetric with respect to the origin: ±
(√

λ2+4µ−λ
µ ,−1

)
. Linear analysis shows that P

and Q are saddle points for all values of the parameters; the origin O is linearly unstable:

• for µ ≤ λ2

8 it is repellent, i.e. the eigenvalues of the linearized system are both negative
reals;

• for µ > λ2

8 is an unstable spiral, i.e. the eigenvalues of the linearized system have both
negative real part but nonzero imaginary part.

I order to perform a global analysis, we first consider the nullcline N given by the equation µ
2 z|z|+

λz + 2m = 0. Off the nullcline, solutions to (5) have trajectories that are locally graphs of a



4 PAOLO DAI PRA, ELENA SARTORI, AND MARCO TOLOTTI

function m = m(z). By implicit differentiation, assuming (z,m) ∈ [0,+∞) × [−1, 1], one checks
that m′′(z) > 0 if and only if ϕ−(z) < m < ϕ+(z), with

ϕ±(z) = −z
4

[
λ∓

√
λ2 − 8µ+ 6λµz + 4µ2z2

]
.

For (z,m) ∈ (−∞, 0) × [−1, 1], similar convexity conditions are obtained by reflection w.r.t. the
origin.

Consider the fixed point Q and its stable manifold Ms, i.e. the trajectory of a solution of (5)
converging to Q.

Low mobility regime: µ ≤ λ2

8 . In this case the graphs of ϕ+ and ϕ− meet at the origin (see Fig.
1). Moreover, tha graph of ϕ− meets the nullcline N at the equilibrium point Q. A linear analysis
at Q and the study of the direction of the vector field of (5) at the points of the graph of ϕ−

show thatMs is at the left of the graph of ϕ−. In particular Ms is concave, so it cannot intersect
the nullcline N , that can be intersected only vertically by a solution of (5). It follows that Ms is
within the area between N and the graph of ϕ−. Since the origin is stable for the time-reversal
of (5), necessarily Ms joins the origin with Q. Moreover, in the area between N and the graph
of ϕ−, it easily checked that dm

dz = ṁ
ż < 0, so it is the graph of a strictly decreasing function.

Thus, for every m0 ∈ (−1, 0), there is a unique point of Ms with m = m0, which is the starting
point of a solution of (5) converging to Q; in particular m(t) → −1 as t → +∞. It is actually
the only bounded solution starting from a point of the form (m0, z). This can be seen as follows.
The point (m0, z), with m0 < 0, cannot belong to the stable manifold of P , which is ite image of
Ms under reflection w.r.t the origin. Thus the solution starting from (m0, z) cannot converge to
any fixed point. Moreover, since the divergence of the vector field driving (5) is constantly equal
to λ > 0, then periodic orbits are not allowed. Thus, by the Theorem of Poicaré-Bendixon, the
solution starting from (m0, z) must be unbounded.

High mobility regime: µ > λ2

8 . In this case the graphs of ϕ+ and ϕ− do not reach the origin (see
Fig. 2). As in the low mobility regime, the stable manifold Ms, as departing from Q, forms a
concave curve between N and the graph of ϕ−. If we show that Ms gets arbitrarily close to the
origin then the previous linear analysis implies that it must spiral around the origin, in particular
it is not that graph of an injective function.

Thus we are left to show that Ms gets arbitrarily close to the origin. This amounts to show
that the solution (ẑ(t), m̂(t)) of the time-reversed system starting from a point in Ms close to Q,
converges to the origin as t → +∞. Due to the spiraling around the origin, (ẑ(t), m̂(t)) cannot
converge to the origin following the graph of a monotone function. Thus it must intersect first the
positive z-axis and then the positive m axis at some m∗ > 0. Suppose m∗ < 1. Note that Ms

intersects the m-axis horizontally, so, again by convexity, after having touched (0,m∗) it continues
downward. SinceMs, in the half-plane z < 0 cannot touch the stable manifold of P , it follows it is
trapped in a bounded region. Due to the absence of periodic orbits, necessarily (ẑ(t), m̂(t))→ (0, 0)
as t→ +∞.

Finally, we need to show that m∗ < 1. By continuity from the low mobility regime, this is

certainly true for µ− λ2

8 sufficiently small. If our claim is false, then there must be a value of µ for
which m∗ = m∗(µ) = 1. In this situation, Ms continuous horizontally up to P . It follows that the
union of Ms with the stable manifold of P form a closed curve, tangent to the vector field driving
(5); this is impossible by the Divergence Theorem.

�

4.2. Introducing crowding effects. Here we set µ(σ,m) := µ(1 + εσm), for some µ > 0 and
ε ∈ [0, 1]: changing state is more costly for an agent belonging to the minority. Equation (4)
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Figure 1. Low mobility regime

becomes: {
ż(t) = µ

2 z(t)|z(t)|+
µεm
2 z2(t) + λz(t) + 2m(t)

ṁ(t) = −(1 + ε)µm(t)|z(t)| − µ(1 + εm2(t))z(t)
(6)

For the following result we do not have a full proof yet. The numerical evidence appears solid,
however, and leads to a rather clear picture of the bifurcations.

Theorem 4.2. There exists µ̂, with λ2

8 < µ̂ < +∞ such that the following statements hold.

(a) Low mobility regime: µ ≤ λ2

8 . For every m(0) ∈ [−1, 1] equation (4) admits a unique
bounded solution. For m(0) 6= 0 complete consensus occurs: limt→+∞m(t) = sign(m(0)) ∈
{−1, 1}.

(b) Moderate mobility regime: λ2

8 < µ ≤ µ̂. For |m(0)| 6= 0 sufficiently small there is more than
one bounded solution to (4). All such solutions reach consensus (limt→+∞m(t) ∈ {±1}),
but, for |m(0)| small enough, they exhibit a transient oscillatory regime, in which the orbits
of the solutions spiral around (0, 0) before reaching consensus.

(c) High mobility regime: µ > µ̂. For every m(0) ∈ [−1, 1] equation (4) admits two bounded
solutions leading to consensus: limt→+∞m(t) ∈ {−1, 1}. Moreover (6) admits a unique
non-constant periodic orbit: thus, for |m(0)| sufficiently small, there are two periodic solu-
tions which differ for a time shift.

We remark that in the high mobility regime there is an equilibrium control leading to permanent
oscillatory behavior.
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Figure 2. High mobility regime

In order to illustrate the bifurcations stated in Theorem 4.2, we first observe that system (6) has
three equilibria: the origin O, whose linear properties are identical to those of the standard model
treated in the previous subsection, and the points P and Q with coordinates ±

(
− 2
λ , 1
)
. Both P

and Q are easily seen to be saddle points, for all values of the parameters. In Figures 3 and 4 we
plot the stable manifolds of P and Q: exactly as for the two phases of the standard model, these
manifolds are graphs of a monotone function in the low mobility regime (Fig. 3), while they spiral
around the origin in the moderate mobility regime (Fig. 4). What fails here is that the divergence
of the driving vector field is not of constant sign, so that limit cycles cannot be ruled out. Numerics
suggest that the m coordinate of the first intersection of the stable manifold of Q with the m-axis is
increasing in µ, and it equals 1 at some µ = µ̂. Then, the manifold continues horizontally to reach
P (Fig. 5). Thus, by symmetry, the two stable manifolds join to form a separatrix. By increasing
µ further, a periodic orbit bifurcates from the separatrix through a homoclinic bifurcation (Fig. 6).
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Figure 3. Stable manifolds in the low mobility regime
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Figure 4. Stable manifolds in the moderate mobility regime
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Figure 5. Separatrix at µ = µ̂



RHYTHMIC BEHAVIOR IN LARGE SCALE SYSTEMS: A MODEL RELATED TO MEAN-FIELD GAMES 9

-2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4

-1.2

-0.8

-0.4

0.4

0.8

1.2

P

Q

z

m

Figure 6. Stable manifolds and periodic orbit in the high mobility regime


