
On-line Appendix to the Paper
“MOBIDIS: A Pervasive Architecture for Emergency Management”

Fabio D’Aprano Massimiliano de Leoni Fabio De Rosa Massimo Mecella

Università di Roma “La Sapienza”
Dipartimento di Informatica e Sistemistica - DIS (sede decentrata di Latina)

{deleoni,derosa,mecella}@dis.uniroma1.it

This appendix includes some additional details
about the pervasive architecture and experimental re-
sults of the paper “MOBIDIS: A Pervasive Architec-
ture for Emergency Management”, Proc. of 4th In-
ternational Workshop on the Distributed and Mobile
Collaboration (DMC 2006).1

1. Introduction

We decided to emulate real settings in order to test
our pervasive architecture. Emulation is different from
simulation: a realistic environment is built up by em-
ulator computers. Thus devices are real and aren’t
aware about the presence of emulator they behave and
communicate as they were really deployed in a wide
area. The software installed on devices (PDAs and
laptops) is developed for real scenarios and does func-
tion in emulated settings without modifications in its
program code.

As a matter of fact, each device is connected to an
emulator server. The server holds a realistic scenario
containing obstacles, buildings, walls, ruins and many
other objects that can stay in areas affected by disas-
ters. Emulator adds also in that map some nodes rep-
resenting team members forming the manet: each vir-
tual node corresponds to one real device connected to
the emulator. When the software on device sends mes-
sages to another real one, such messages are actually
sent to emulator that plays gateway rules. If nodes are
in radio-range, according to the emulated scenario, em-
ulator forwards messages to destination. Conversely if
they are not directly connected, messages are dropped.

Indeed, the nodes in emulated area can move to-
wards a destination (a tower, a street, etc) and their

1Università di Roma “La Sapienza”
Technical report 04-2006

movements are not done casually but according to spe-
cific models.

We adopted the network simulator NS-2 [1] extended
by Magdeburg patch for wireless emulation [2] for de-
veloping emulation server. NS-2 is born for batch em-
ulation: the moments when events are raised, are de-
cided before emulation starts. Movements are the typ-
ical events. The specification for a node to move to-
wards a given destination has to be set up at design-
time of the emulation.

Batch emulation, anyway, doesn’t fit our needs.
Events can not be determined at design-time in our ap-
proach. For example, if a given node in a given moment
has to move towards a destination, depends on work-
flow scheduling and task assignment. Scheduling and
task assignments depend on how the process carries on
at run-time (as in real situations). So we wrote new
event scheduler in NS-2, able to handle events which
were not predicted before emulation started. The event
scheduler is a module used by NS-2 that manages
events such as network nodes movements, messages dis-
patching, etc. according to a given time plan.

Moreover, as NS-2 does not support any integra-
tion with external software, we wrote a TCL2 TCP/IP
server. This server enables an external client software
to be able to interact with NS-2 on standard socket. In
this way, the client software can set positions of emu-
lated nodes. Also, it can invoke at run-time some com-
mands in order to instruct NS-2 to move the virtual
node in the emulated scenario or to get node positions.

The Figure 1 summarizes how real devices are con-
nected to the emulator server and how they are mapped
to nodes in the emulated area, to get extremely realis-
tic experiments. For technical reasons, each real device
has to be connected to NS-2 through a different wire-

2TCL is the scripting language which NS-2 uses to configure
emulations and simulations.



Figure 1. The hardware connection of the physical devices in experimental settings.

less or wired card of the emulator server.
As soon as possible, we will publicly release our mod-

ified NS-2 version under open source license.

2. Experimental Architecture

The TCP/IP server implemented as TCL Script in
NS-2 is general and low-level. Indeed, it offers only very
simple commands, such as getPosition(idNode),
setDestination(idNode,x,y,speed) or
setPosition(idNode,x,y) where idNode is a in-
teger number and (x,y) represents the coordinates
of the destination (in the relative coordinates of
the emulated environment). We have implemented
in Java, on top, another server in Figure 2 named
Octopus Server, able to handle obstacles and generic
objects and by them, to let nodes to move according to
more complicated models, such as Voronoi [3].3. The
Octopus Server’s services are exposed both as a Java
interface and TCP/IP server. The first one is used by
the Graphic User Interface we implemented for a more
friendly interaction with the Octopus Server; the latter
one is used by actors. Figure 4 shows a screenshot
of the Octopus GUI, during emulation. The position
of nodes is the real one in such an emulation; blue
arcs connect each pair of node in radio-range. Gray

3Indeed, the Voronoi paths are decomposed as sequence of
setDestination(xi,yi) where xi,yi are the coordinates of vertices
of segments forming those paths.

rectangles and lines represent, respectively, obstacles
and Voronoi’s paths. The former ones are put at
design-time, the latter ones are directly computed
before emulation starts.

The NSI lies at the bottom of the Coordinator and
the generic devices (see Figure 2). NSI stands for Net-
work Service Interface and it is a module installed on
every mobile device in order to provide basic ”send”
and ”receive” multi-hop calls over a manet. This mod-
ule acts as if it would send and receive messages to
other devices (as in a real manet). Although as a
matter of fact, everything is sent to the emulator that
decides if messages have to be forwarded to destina-
tion. NSI will go on functioning even when emulator is
taken out.

NSI implementation is the same one of [5] that we
developed and deployed for MANETs of Windows Mo-
bile devices.

A generic Device defines a NeighInfo module which
provides an interface for knowing which are neighbors
in the manet and the distances from them. Over em-
ulation this information is held by the Octopus Server
and, therefore, this module contacts the emulator to
obtain that information by using the Octopus Client
module. Octopus Client contacts its server counterpart
through a TCP/IP socket. Octopus Client will not be
needed any more, and only the NeighInfo module will
have to be coded again. This one will invoke the soft-
ware module provided by the specific hardware but the
software interface to the other Generic Device modules



Coordinator Device

WfMS

Actor Device

Process 
Definition

P
ro

ce
ss

 
X

M
L 

F
ile

ServicesServicesServicesServices

Invoked 
Application

Octopus 
Client

Workflow Handler

F
in

is
h 

T
as

k

S
ta

rt
 / 

K
ill

 T
as

k

Octopus 
Client

NeighInfo 
Module

Worklist 
Client 

Handler

Stub

NSI

Emulator server

TCL 
Server

NS-2

Octopus 
Server

GUI Predictive 
Layer

NeighInfo 
Server 
Module

Worklist 
Server 

Handler
Stub

NSI

Workflow Engine

Physical 
Comunication

Physical Comunication

Figure 2. The Software modules composing effective architecture

will be unchanged. The Worklist Client Handler’s
purpose is to contact the Coordinator in order to reg-
ister, to obtain the list of available tasks to be per-
formed, to pick a work-item and to inform the Coordi-
nator about the end of task execution.

When actor picks one item from the worklist, the
Worklist Client Handler gets information needed for
the software able to carry on the corresponding task.
Such a software is installed on the same device of the
actor picking the workitem and represents a service
provided by the actor. Possibly, such a software needs
a particulary hardware which has to be present on the
actor’s device. The Figure 3 shows a possible software
providing a service.

The Worklist Client Handler executes the software
in separate process. When the client ends activity
performance, he/she quits the corresponding software.
The Worklist Client Handler detects this event and
considers completed the task. So the information about
task completion is sent to the Coordinator via NSI.
If the task has to be aborted, Worklist Client Handle
kills the process of the software. When software starts,
it has to inform Octopus Server about the need for a
movement (emulation scenario in which movement may
be needed).

The coordinator contains a NeighInfo Server

module upon the stub. This module is performed in a
separated thread; it continuously asks to the actors for
neighbor distances and it holds this information. The
request is sent by NSI and on the devices it is handled
by NeighInfo Module. This is needed for Predictive
Layer Module which implements the predictive tech-
nique [4]; this module is implemented as a timer thread:
at regular intervals a novel prediction is done. If a de-
vice is predicted to be going to disconnect, an asyn-
chronous event is thrown to the Workflow Engine. It
will have to look for a bridge and to push a support
task for it. As a matter of fact, the pushing of tasks is
not done directly by the Workflow Engine but it is for-
warded to the Worklist Server Handler. This one
will go to force corresponding work item to devices on
behalf of the engine. The Workflow Engine, besides
handling only disconnections, it takes care of manag-
ing process routing: when new tasks become enabled,
the Worklist Server Handler is informed. The latter
one creates corresponding item to be put in the Work-
list. Moreover, Worklist Server Handler manages the
worklist requests, the registrations, the task pickings
and the signallings of task completion.



Figure 3. A possible software installed on a device to provide a service

Figure 4. A Screen Shot of the Octopus Server GUI



3. Experiments Tuning

The Experimental architecture4 described in the
previous section is used to test our algorithms.

Experiments in this context are influenced by the
initial positions of nodes and objects, and by the graphs
of the processes. In our preliminary experiments,
nodes, obstacles and other objects were manually put
in the map at design-time by using the GUI of the em-
ulation system, and process schemas were chosen with
both loops and AND/OR splits.

The purpose of the first part of experiments is to
tune some parameters of the algorithms. Once param-
eters has been tuned, we have performed more deep
experiments.

The first tuned parameter is the polling time, i.e.,
the shortest time between two corrective actions; an
higher value means more reactivity in doing corrective
actions. The second parameter is β, i.e., the fraction
of the radio-range the predictive technique doesn’t sig-
nal a disconnection anomaly. As an example, in IEEE
802.11 with 100 meters of radio-range, β equal to 0.3
means that for a communication distance of 70 meters
the prediction algorithm signals a probable disconnec-
tion.

β 0.3 0.5 0.7
polling time 3 sec 1% 0.09% 0.02%
polling time 5 sec 32% 4% 0,88%

Table 1. Experimental results.

The choices for parameter tuning are depicted in
Table 1, varying polling time between 3 and 5 seconds
and β between 0.3 and 0.7.

Specific experiments on the prediction techniques
have been presented in [4]. Those experiments were
based on simulated settings, so no prototypal architec-
ture was implemented to be tested: the only purpose
was to evaluate the prediction goodness.

4. Preliminary Results

A first set of experiments concerns how many pre-
dicted disconnections are resolved in order to evalu-
ate the effectiveness of the bridging algorithm. The
result is depicted in Figure 5, where the total num-
ber of disconnections in all experiments is shown. The
first interesting result involves the number of discon-
nections predicted, effettive and resolved by bridging:

4It is possible to download a video-demo of the whole system
at the URL http://www.dis.uniroma1.it/∼deleoni/documents/DMCVideo.avi

Figure 5. The total number of resolved and
non-resolved disconnection in experiments

Figure 6. Connected components going to
create in experiments



it is invariant with respect to the chosen values for beta.
Anyway, this preliminary result shows that just under
half of disconnections are handled correctly and this
is a good result. In fact, each disconnection means a
roll-back action; avoiding half disconnection means the
productivity is more or less doubled.

A second set of experiments analyzes the number of
average connected components created during emula-
tions. The result is depicted in Figure 6. Of course, the
best situation is one connected components, that is no
nodes goes ever out of range. In order to better analyze
these data, consider that if new connected component
is going to create during an experiments but after net-
work becomes full connected again, then two connected
components are considered to be created. After, if an-
other connected component is born, then we consider
three components to have been created in the whole
experiment. Moreover, for β = 0.5 the mean value
of created connected components is just over 2; that
implies, even if disconnected manet components were
formed by four or five nodes, less than 10 nodes goes
out of manet range in a whole process performance.

These results are only a very preliminary validation
of approach, to be refined in future works.

References

[1] The network simulator NS-2,
http://www.isi.edu/nsnam/ns

[2] Daniel Mahrenholz, Svilen Ivanov, Real-Time
Network Emulation with ns-2, University of
Magdeburg, Germany.

[3] A. Jardosh, E.M. BeldingRoyer, K.C. Almeroth,
S. Suri, “Towards Realistic Mobility Models For
Mobile Ad hoc Networks”, Proceedings of Mobi-
Com 2003.

[4] F. De Rosa, A. Malizia, and M. Mecella. “Discon-
nection Prediction in Mobile Ad hoc Networks for
Supporting Cooperative Work”. IEEE Pervasive
Computing, Vol.4, N. 3, 2005.

[5] F. De Rosa, M. Mecella: Designing and Imple-
menting a MANET Network Service Interface
with Compact .NET on Pocket PC. Proc. 3rd
International Conference on .NET Technologies
(.NET 2005).


