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Abstract. The use of process models in business information systems for analy-
sis, execution, and improvement of processes assumes that the models describe
reality. Conformance checking is a technique to validate how good a given process
model describes recorded executions of the actual process. Recently, artifacts
have been proposed as a paradigm to capture dynamic, and inter-organizational
processes in a more natural way. In artifact-centric processes, several restrictions
and assumptions of classical processes are dropped. This renders checking their
conformance a more general problem. In this paper, we study the conformance
problem of such processes. We show how to partition the problem into behavioral
conformance of single artifacts and interaction conformance between artifacts,
and solve behavioral conformance by a reduction to existing techniques.
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1 Introduction

Process models have become an integral part of modern information systems where they
are used to document, execute, monitor, and optimize processes. However, many studies
show that models often deviate from reality (see. [1]). Hence, before a process model can
reliably be used, it is important to know in advance to what extent the model conforms
to reality.

Classical process modeling techniques assume monolithic processes where process
instances can be considered in isolation. However, when looking at the data models of
ERP products such as SAP Business Suite, Microsoft Dynamics AX, Oracle E-Business
Suite, Exact Globe, Infor ERP, and Oracle JD Edwards EnterpriseOne, one can easily
see that this assumption is not valid for real-life processes. There are one-to-many and
many-to-many relationships between data objects, such as customers, orderlines, orders,
deliveries, payments, etc. For example, an online shop may split its customers’ quotes
into several orders, one per supplier of the quoted items, s.t. each order contains items for
several customers. Consequently, several customer cases synchronize on the same order
at a supplier, and several supplier cases synchronize on the same quote of a customer.
In consequence, we will not be able to identify a unique notion of a process instance
by which we can trace and isolate executions of such a process, and classical modeling
languages are no longer applicable [2–4].

The fabric of real-life processes cannot be straightjacketed into monolithic processes.
Therefore, we need to address two problems:



(1) Find a modeling language L to express process executions where several cases of
different objects overlap and synchronize;
(2) The conformance checking problem: determine whether a process modelM expressed
in L adequately describes actual executions of a dynamic and inter-organizational
processes in reality — despite the absence of process instances.
The first problem is well-known [2–4] and several modeling languages have been
proposed to solve it culminating in the stream of artifact-centric process modeling [2–6].
An artifact instance is an object that participates in the process. An artifact describes a
class of similar objects, e.g., all orders, together with the life cycle of states and possible
transitions that each of these objects follows in a process execution. An artifact-centric
process model then describes how several artifact instances interact with each other in
their respective life cycles. In this paper, we use proclets [2] to describe artifact-centric
process models and to study and solve the second problem of conformance checking.

Conformance checking compares the behavior described by a process model M to
process executions in an actual information system S. Classically S records all events of
one execution in an isolated case; all cases together form a log. Existing conformance
checking techniques then check to which degree a given process model can replay
each case in the log [7–12]. Artifact-centric systems drop the assumption of an isolated
case and a log. Here, S records events in a database D [4]. Each event stored in D is
associated to a unique artifact instance. A complete case follows from an interplay of
several artifact instances and several cases overlap on the same artifact instance. Existing
conformance checkers cannot be applied in this setting.

In this paper, we investigate the conformance checking problem of artifacts. The
problem decomposes into subproblems of significantly smaller size which we reduce
to classical conformance checking problems. We contribute a technique to extract logs
L1, . . . , Ln of logs from a given database, one log for each artifact in the model. Each
case of Li contains all events associated to a specific instance of artifact i. Feeding
L1, . . . , Ln into existing conformance checkers [12] allows to check conformance of an
artifact-centric process model w.r.t. artifact life-cycles as well as artifact interactions.

The paper is structured as follows. Section 2 presents the artifact-centric approach
and proclets [2] as a light-weight formal model for artifacts. In Sect. 3, we and state the
artifact conformance problem. Section 4 introduces our techniques for reducing behav-
ioral conformance and interaction conformance to classical process conformance; these
techniques and conformance checkers are implemented in the Process Mining Toolkit
ProM (available at www.processmining.org). The paper concludes with a discussion on
related and future work.

2 The Artifact-Centric Approach

Artifacts emerged in the last years as an alternative approach for precisely describing
dynamic, inter-organizational processes in a modular way [3–6]. In the following, we
recall the key concepts of artifacts and present a simple formal model for artifact-centric
processes that we will use in this paper.

Data objects and artifacts. Artifacts compose complex processes from small building
blocks [3, 4]. The particular feature of artifacts is their foundation in the process’ under-
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Fig. 1. Data model of a CD online shop’s back-end process.

lying data model. The approach assumes that any process materializes itself in the (data)
objects that are involved in the process, for instance, a paper form, a CD, a customer’s
quote, or an electronic order; these objects have properties such as the values of the fields
of a paper form, the processing state of an order, or the location of a package.

A data model describes the (1) classes of objects that are relevant in the process, (2)
the relevant properties of these objects in terms of class attributes, and (3) the relations
between the classes. A process execution instantiates new objects and changes their
properties according to the process logic. Thereby, the relations between classes describe
how many objects of one class are related to how many objects of another class.

An artifact-centric process model enriches the classes themselves with process logic
restricting how objects may evolve during execution. More precisely, one artifact (1)
encapsulates several classes of the data model, (2) provides actions that can update
the classes’ attributes, (3) defines a life cycle, and (4) exposes some of its actions via
an interface. The artifact’s life cycle describes when an instance of the artifact (i.e., a
concrete object) is created, in which state of the instance which actions may occur to
advance the instance to another state, and which goal state the instance has to reach to
complete a case.

An example. As a running example for this paper, we consider the backend process of a
CD online shop. The shop offers a large collection of CDs from different suppliers to its
customers. The backend process is triggered by a customer’s request for CDs. The shop
then sends a quote of the offered CDs. If the customer accepts, the quote is split into
several orders, one per CD supplier. Each order in turn handles all quotes for CDs from
the same supplier. The order then is executed and the suppliers ship the CDs to the shop
which distributes the different CDs from the different orders according to the original
quotes. Some CDs may be unavailable at the supplier; in this case notifications are sent
to the CD shop which forwards it to the customer. From an artifact perspective, this
backend process is driven by the quotes and orders, their respective processing states,
and their relations. The UML class diagram of Fig. 1 denotes the data model of our CD
shop example.

Describing processes by proclet systems. Proclets propose concepts for describing
artifacts and their interactions [2]. A proclet P = (N, ports) consists of a labeled Petri
net, which describes the internal life cycle of one artifact, and a set of ports, through
which P can communicate with other proclets [13]. Relations between several proclets
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Fig. 2. A proclet system describing the back-end process of a CD online shop. A customer’s quote
is split into several orders according to the suppliers of the CDs; an order at a supplier handles
several quotes from different customers.

are described in a proclet system P = ({P1, . . . , Pn}, C) consisting of a set of proclets
{P1, . . . , Pn} and a set C of channels. Each channel (p, q) ∈ C connects two ports p
and q of two proclets of P . On one hand, proclets send and receive messages along these
channels. On the other hand, the channels also reflects the relations between classes:
annotations at the ports define how many instances of a proclet interact with how many
instances of another proclet.

Figure 2 shows a proclet system of two proclets that model artifacts quote and order.
Each half-round shape represents a port: the bow indicates the direction of communi-
cation. A dashed line between 2 ports denotes a channel of the system. Creation and
termination of an artifact instance is expressed by a respective transition, drawn in bold
lines in Fig. 2. Note that other modeling languages are likewise applicable to describe an
artifact’s life cycle [3–6]. Proclets can be mapped to the data model of the process: for
each proclet transition (e.g., add quote) exists a corresponding timestamp attribute that
is set when the transition occurs (e.g., add quote of quote order).

The decisive expressivity of proclets for describing artifacts comes from the annota-
tions 1, ?,+ that are inscribed in the ports [2]. The first annotation, called cardinality,
specifies how many messages one proclet instance sends to (receives from) other in-
stances when the attached transition occurs. The second annotation, called multiplicity,
specifies how often this port is used in the lifetime of a proclet instance. For example,
the port of accept has cardinality + and multiplicity 1 denoting that a quote once sends
out one or more messages on quoted CDs to multiple orders. Conversely, the process
repeatedly (+) adds one CD of a quote to an order. These constraints reflect the relation
1..*-1..* between quotes and orders denoted in Fig. 1.

The semantics of proclets generalizes the semantics of Petri nets by the ports. Basi-
cally, different proclet instances are distinguished by using instance identifiers as tokens.
A transition at an output port produces as many messages (to other proclet instances)
into the channel as specified by the port’s cardinality. A transition at an input port waits
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CDa
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create send accept processed deliver generate closenotified

q1:

q2:

add CDo1: add CD order ship close

add CD order ship closenotifyo2: add CD

Fig. 3. An execution of the proclet system of Fig. 2 with two quote instances and two order
instances.

quote
quoteID create send quote accept processed notify deliver generate reject close quote
q1 24-11,17:12 24-11,17:13 25-11,7:20 5-12,9:34 null 6-12,5:23 null null 6-12,5:25
q2 24-11,19:56 24-11,19:57 25-11,8:53 5-12,11:50 3-12,14:54 6-12,7:14 3-12,14:55 null 6-12,7:20

order
orderID ship order notify close order
o1 5-12,9:32 28-11,8:12 null 5-12,11:37
o2 5-12,11:33 28-11,12:22 3-12,14:34 5-12,13:03

CD
name author
a xyz
b zyx
c yxz

offered CDs
quoteID” CD” quantity”
q1 a 2
q2 a 1
q2 b 3
q2 c 1

quote order
quoteID’ orderID’ add CD deliverable CD
q1 o1 25-11,8:31 true a
q2 o1 25-11,12:11 true a
q2 o2 26-11,9:30 true b
q2 o2 26-11,9:31 false c

Fig. 4. Events of the run of Fig. 3 recorded in a database according to Fig. 1.

for as many messages (from other proclet instances) as specified and consumes them.
For example, Fig. 3 illustrates an execution of the proclet system of Fig. 2: one over CDa

and the other over CDa, CDb, and CDc. CDb and CDc have the same supplier, CDa has a
different supplier. Hence, the quotes are split into two orders. In the run, CDa and CDb

are available whereas CDc is not, which leads to the behavior shown in Fig. 3 involving
two quote instances and two order instances.

Operational semantics of proclets specify senders of messages to consume and
recipients of produced messages [2]. For conformance checking, focusing on the number
of produced and consumed messages is sufficient; see [13] for details. For example the
run of Fig. 3 satisfies all cardinality and multiplicity constraints of the ports of Fig. 2, i.e.,
it conforms to the proclet system. A system that executes this process records timestamps
of events in a database according to the data model of Fig. 1. The corresponding database
tables could be populated as shown in Fig. 4. The question that we consider in the
following is whether the model of Fig. 2 accurately describes the records of Fig. 4.

3 The Artifact Conformance Checking Problem

The problem of determining how accurately a process model describes the process imple-
mented in an actual information system S is called conformance checking problem [7].

Classically, a system S executes a process in an isolated instance. The corresponding
observed system execution is a sequence of events, called case, and a set of cases is a log
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L. The semantics of a formal process model M define the set of valid process executions
in terms of sequences of M ’s actions. Conformance of M to L can be characterized
in several dimensions [7]. In the following, we consider only fitness. This is the most
dominant conformance metric that describes to which degree a model M can replay
all cases of a given log L, e.g., [12]. M fits L less, for instance, if M executes some
actions in a different order than observed in L, or if L contains actions not described in
M . Several conformance checking techniques for process models are available [7–12].
The more robust techniques, e.g., [12], find for each case ρ ∈ L an execution ρ′ of M
that is as similar as possible to ρ; the similarity of all ρ to their respective ρ′ defines the
fitness of M to L.

3.1 The Artifact Conformance Problem

We have seen in Sections 1 and 2 that many processes do not structure their executions
into isolated instances. In the light of this observation, we identify the following artifact
conformance problem. The system S records occurrences of a set Σ of actions in a
database D according to the system’s data model. Each event is associated to a specific
object, that is stored in D. Let P be a proclet system where each proclet transition maps
to a timestamped attribute of D (i.e., each proclet of P describes an artifact of S). Can
the proclets of P be instantiated s.t. the life-cycles of all artifact instances and their
interaction “replay” all events recorded in D? If not, to which degree does P deviate
from the behavior recorded in D?

3.2 Reducing Artifact Conformance to Existing Techniques

A naı̈ve solution of the artifact conformance problem would replay all events of the
database D in the proclet system P . Technically, this would mean to find the database
D′ that can be replayed by P and is as similar as possible to D. In typical case studies
we found the actual system S to record about 80,000 events of 40-60 distinct actions.
Finding a conforming database D′ by replacing non-conforming events with conforming
events defines a search space of 80, 00060 possible solutions. Even exploring only a
small fraction of such a search space quickly turns out infeasible.

For this reason, we propose a compositional approach to check whether an proclet
system P fits D. As we cannot employ the notion of a process instance to structure D
into smaller parts we partition the problem into checking conformance within proclets
and between proclets.
Behavioral conformance. Each event in D is associated to an object, and hence to an
instance i of an artifact Ar described by a proclet PAr in the proclet system P . All
events associated to i together constitute the artifact case of i of Ar that describes how i
evolved along the life-cycle of Ar . It ignores how i interacts with other artifact instances.
The behavioral conformance problem is to check whether the life cycle of PAr can
replay each artifact case of Ar (i.e., each recorded artifact life cycle).
Interaction conformance. Completing a life cycle of an instance i of Ar also depends
on other artifact instances, as discussed previously. Let J be the set of artifact instances
with which i exchanges messages. All events of D that send or receive messages and
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are associated to an instance in {i} ∪ J together constitute the interaction case of Ar .
It contains all behavioral information regarding how i interacts with other instances.
Proclet PAr fits the interaction case of instance i of Ar if the interaction case involves
events of as many artifact instances as required by the ports of PAr . The interaction
conformance problem is to check how good all proclets of P fits all interactions cases
that are stored in D; it describes how good the proclet interactions reflect the object
relations in D.

The behavioral conformance and the interaction conformance together yield the
artifact conformance of the entire proclet system P w.r.t. D; see [13] for a formal proof.
Yet, either conformance can be checked per artifact case or per interaction action case,
respectively, which significantly reduces the search space during checking.

4 Checking Behavioral Conformance of Artifacts

In the following, we first solve the behavioral conformance problem by reduction to
classical process conformance. Assuming that events of artifacts Ar1, . . . ,Arn are
recorded in a given database D, we extract for each artifact Ar i all artifact cases from
D into a log Li. The logs L1, . . . , Ln describe the internal life cycle behavior of the
artifacts. These logs can then be used to check behavioral conformance of a proclet
system w.r.t.D in existing conformance checkers, as we show in Sect. 4.3. Moreover, the
logs L1, . . . , Ln can be leveraged to also express interaction between artifacts, which
then allows to check interaction conformance with existing conformance checkers [13].

4.1 Extracting logs from databases

In the following, we provide a technique to extract logs from a relational database D. We
assume that D recorded events of n different artifacts, and that each event is associated
to a specific instance of an artifact. Our vehicle to extract logs from D will be an artifact
view onD which specifies for each artifact of the system, the types of events occurring in
this artifact. Each event type is characterized in terms of database attributes (of different
tables) of D which need to be related to each other according to the schema of D. Using
this characterization, we then extract events from D by joining tables, and selecting and
projecting entries according to the specified attributes. We first introduce some notion on
databases and then present the details of this approach.

Preliminaries. We adopt notation from Relational Algebra [14]. A table T ⊆ D1×. . .×
Dm is a relation over domains Di and has a schema S(T ) = (A1, . . . , Am) defining for
each column 1 ≤ i ≤ m an attribute name Ai. For each entry t = (d1, . . . , dm) ∈ T
and each column 1 ≤ i ≤ m, let t.Ai := di. We write A(T ) := {A1, . . . , Am}
for the attributes of T , and for a set T of tables, A(T ) :=

⋃
T∈T A(T ). A database

D = (T ,K) is set T of tables with corresponding schemata S(T ), T ∈ T s.t. their
attributes are pairwise disjoint, and a key relation K ⊆ (A(T )×A(T ))N.

K expresses foreign-primary key relationships between the tables T : we say that(
(A1, A

′
1), . . . , (Ak, A

′
k)
)
∈ K relates T ∈ T to T ′ ∈ T iff the attributesA1, . . . , Ak ∈

A(T ) together are a foreign key of T pointing to the primary key A′
1, . . . , A

′
k ∈ A(T ′)
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of T ′. For instance, (quoteID, quoteID′) is a foreign-primary key relation from table
quote to table quote order of Fig. 4.

Relational algebra defines several operators [14] on tables. In the following, we
use projection, selection, and the canonical crossproduct. For a table T and attributes
{A1, . . . , Ak} ⊆ A(T ), the projection ProjA1,...,Ak

T restricts each entry t ∈ T to
the columns of the given attributes A1, . . . , Ak. Please note that projection removes
any duplicates: if there are two entries in t1, t2 ∈ T that coincide on the values of the
projected attributes A1, . . . , Ak (i.e., t1.A1 = t2.A2 ∧ t1.An = t2.An), after projecting,
the entry obtained by projection t2 is removed. Selection is a unary operation Selϕ(T )
where ϕ is a boolean formula over atomic propositions A = c and A = A′ where
A,A′ ∈ A(T ) and c a constant; the result contains entry t ∈ Selϕ(T ) iff t ∈ T and
t satisfies ϕ (as usual). We assume that each operation correspondingly produces the
schema S(T ′) of the resulting table T ′.

For a set T ′ = {T1, . . . , Tk} ⊆ T of tables, let JK,T ′ := {(A,A′) ∈ k | k ∈
K,A,A′ ∈ A(T ′)} denote the pairs of attributes that are involved in key relations
between the tables in T ′. The Join(T ′,K) := Selϕ(T1 × . . . × Tk) with ϕ :=∧

(Ai,A′)∈JK,T ′ (Ai = A′
i) keeps from the cross-product of all tables T ′ only those

entries which coincide on all key relations.
With these notions at hand, we first introduce an artifact view on a database D. It

specifies for each artifact the types of events that are recorded in D. Each event type is
characterized by attributes of the database, defining in which instance an event occurred
and when it occurred. We later use an artifact view to extract all events of an artifact and
group them into cases, which yields a log.

Definition 1 (Artifact View). Let D = (T ,K) be a database. An artifact view V =
({Σ1, . . . , Σn},Tab, Inst ,TS ) on D is specified as follows:

– It defines n pairwise disjoint sets Σ1, . . . , Σn of event types (one set per artifact).
Let Σ :=

⋃n
i=1Σi.

– Function Tab : {Σ1, . . . , Σn} → 2T specifies the set Tab(Σi) of tables linked to
each artifact i = 1, . . . , n.

– Function Inst : {Σ1, . . . , Σn} → A(T ) specifies for each each artifact i =
1, . . . , n the attribute Inst(Σi) = Aiid ∈ A(Tab(Σi)) that uniquely identifies an
instance of this artifact.

– Function TS : Σ → A(T ) specifies for each event type a ∈ Σ the timestamp
attribute TS (a) = ATS ∈ A(Tab(Σi)) that records when an event of type a
occurred. Attributes Inst(Σi) and TS (a) must be connected through tables T ′ ⊆
Tab(Σi).

Tab(Σorder) = {quote order, order},
Inst(Σorder) = orderID

event type a ∈ Σorder TS(a)
add CD add CD
order at supplier order
ship available ship
notify unavailable notify
close order close order

Table 1. Artifact view for order

Table 1 presents the artifact view for the artifact order
of our running example on the database of Fig 4. The
choice of the event types Σorder, tables Tab(Σorder),
the instance identifier orderID and the corresponding
time stamp attributes is straight forward.

After specifying an artifact view, an artifact log can
be extracted fully automatically from a given database
D.
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Definition 2 (Log Extraction). LetD = (T ,K) be a database, let V = ({Σ1, . . . , Σn},
Tab, Inst ,TS ) be an artifact view on D. The logs L1, . . . , Ln are extracted from D as
follows. For each set Σi, i = 1, . . . , n of event types:

1. Each event type a ∈ Σi defines the event table
Ta = Proj Inst(Σi),TS(a)Join(Tab(Σi),K).

2. Each entry t = (id , ts) ∈ Ta identifies an event e = (a, id , ts) of type a in instance
id . Let Ei be the set of all events of all event types a ∈ Σi.

3. For each instance id ∈ {id | (a, ts, id) ∈ Ta, a ∈ Σi} of artifact i ∈ {1, . . . , n},
the set Ei|id = {(a, ts, id ′) ∈ E | id = id ′} contains all events of instance id .

4. The artifact case ρid = 〈a1, a2, . . . an〉 of instance id of artifact i orders events
E|id by their timestamp: Ei|id = {(a1, id , ts1), (a2, id , ts2), . . . , (an, id , tsn)} s.t.
tsi < tsi+1, for all 1 ≤ i < n. The log Li contains all artifact cases of artifact i.

quoteID’ . . . orderID add CD ship . . .
q1 . . . o1 25-11,8:31 5-12,9:32 . . .
q2 . . . o1 25-11,12:11 5-12,9:32 . . .
q2 . . . o2 26-11,9:30 5-12,11:33 . . .
q2 . . . o2 26-11,9:31 5-12,11:33 . . .

Table 2. Intermediate table obtained by join-
ing Join({quote order, order},K).

We illustrate the log extraction by our run-
ning example from Sect. 2. For the database
of Fig. 4, we consider the artifact view
on order as specified in Tab. 1. To ex-
tract events of order first join the tables
order and quote order on (orderID, orderID′),
Tab. 2 shows parts of that table. To ob-

tain events of type add CD, project this tables onto Inst(Σorder) = orderID
and timestamp attribute TS (add CD) = add CD, which yields four en-
tries (o1, 25-11,8:31), (o1, 25-11,12:11), (o2, 26-11,9:30), and (o2, 26-11,9:31).
For event ship available, the projection onto Inst(Σorder) = orderID and
TS (ship available) = ship yields two entries (o1, 5-12,9:32) and (o2, 5-12,11:33),
duplicates are removed. Extracting all other events and grouping them by
orderID yields two cases: ρo1 = 〈add CD, add CD, order, ship, close〉 and ρo2 =
〈add CD, add CD, order, notify, ship, close〉.

4.2 Checking Behavioral Conformance of Artifacts with Existing Techniques

With the notions of an artifact view (Def. 1) and automatic log extraction (Def. 2), we re-
duced the behavioral conformance problem to a classical setting: behavioral conformance
of artifacts can be checked using existing conformance checkers.

Given a databaseD and a proclet system P = ({P1, . . . , Pn}, C) where each proclet
Pi describes an artifact of the system, first define an artifact viewpoint V that specifies
for each proclet Pi and each transition label a in Pi an event type a ∈ Σi in terms of D.
Then extract the artifact logs L1, . . . , Ln from D using V .

Then check behavioral conformance of each proclet Pi w.r.t. D by checking con-
formance of the Petri net that underlies Pi w.r.t. the log Li, by ignoring the ports of
Pi. A corresponding conformance checker [12] tries to replay each case ρ in Li by
firing transitions of Pi in the order given in ρ. If a transition cannot be fired, the checker
searches for a log ρ′ that is as similar to ρ as possible and that can be replayed in Pi.
We implemented this approach: logs can be extracted using XESame [15], the Process
Mining Toolkit ProM checks conformance of a proclet system and provides diagnostics
on non-conformance per artifact case (Fig. 5).
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The life cycle model of order of Fig. 2 conforms to the log Lorder extracted from the
database of Fig. 4, i.e., the two traces just presented. The conformance checker [12] will
also report for orderID = o1 that an “unobservable activity” occurred (to bypass notify).
The cases for quote of Fig. 4 stored in Fig. 4 yield a different result. Here, the trace of
quoteID = q1 lacks an event for generate invoice and an “activity in the model that was
not logged” is reported. The trace of quoteID = q2 generates an invoice before the order
is processed, so an “activity of the log that was not (yet) enabled” is reported.

4.3 Checking Interaction Conformance of Artifacts

Activity in the model that 

was not logged (yellow)

Activity in the log, that was not 

enabled in the model (purple)

Executed unobservable 

activity (grey)

Synchronous 

activities (green)

Execution as recorded in the log

Fig. 5. Screenshot of ProM, showing conformance re-
sults of the proclet system of Fig. 2.

We just showed how to check be-
havioral conformance artifacts, i.e.,
whether the internal life cycles of
each artifact, described by a proclet,
conform to the artifact cases stored
in a database D. Complete artifact
conformance also requires to check
conformance w.r.t. interactions be-
tween proclets. In the following, we
sketch how to leverage the notions of
a viewpoint (Def. 1) and of log ex-
traction (Def. 2) to extract so called
instance aware logs. Using instance
aware logs, interaction conformance
of artifacts can be checked again us-
ing existing techniques [13].

In an instance-aware log, an event e = (a, id ,SID ,RID) not only describes that an
event of type a occurred in instance id ; it also describes from which instances SID the
event consumed a message, and for which instances RID the event produced a message.
For instance, the instance-aware cases of artifact order of Fig. 3 are

ρo1 : 〈(add CD, o1, [q1], []), (add CD, o1, [q2], []), (order at supplier, o1, [], []),
(ship available, o1, [], [q1, q2]), (close order, o1, [], [])〉

ρo2 : 〈(add CD, o2, [q2], []), (add CD, o2, [q2], []), (order at supplier, o2, [], []),
(notify unavailable, o2, [], [q2]), (ship available, o2, [], [q2]), (close order, o1, [], [])〉

This information suffices to enrich each instance-aware case of an instance i with those
events that produced a message for i or consumed a message from i. The resulting cases
equivalently capture the interaction behavior that is stored in D, and they can be fed to
existing conformance checkers [13]. To extract SID from D, the artifact view (Def. 1)
needs to be extended.

Events of type a ∈ Σi may consume messages that were produced by a specific
artifact. The attribute Asid that distinguishes the different instances of that artifact must
be specified. The instance identifier Inst(Σi) of the artifact of a ∈ Σi and Asid must be
connected by tables T ′ of D. Not every connection between Inst(Σi) and Asid implies
that a message was exchanged; a guard g over T ′ specifies when this is the case. For
instance, the set SID of ship available contains all identifiers of attribute quoteID when
the guard deliverable = true evaluates to true.
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The log extraction (Def. 2) needs to be extended correspondingly. For each entry
t = (id , ts) ∈ Ta in the event table of event type a ∈ Σi, extract values for SID as
follows: joining all tables that connect attributes Inst(Σi) and Asid , select from the result
only the entries which satisfy Inst(Σi) = id ∧ TS (a) =∧ g (i.e., entries referring to t
where also the guard g holds), and project the result onto Asid . The set RID of instances
for which e produced a message is specified and extracted likewise. This procedure
yields instance-aware logs L1, . . . , Ln, one for each artifact in D.

5 Conclusion

In this paper, we considered the problem of checking how a given process model
conforms to executions of the actual process — under the realistic assumption that process
executions are not structured into monolithic process instances. Rather, executions of
most processes in reality are driven by their data objects which may participate in various,
overlapping cases. Usually, the life cycle history of each objects that is involved in a
process execution is recorded in a structured database. Likewise, the objects, their life
cycles, and their interactions can be expressed in an artifact-centric process models, for
instance using proclets [2].

In this setting, the conformance problem is to check how good a given proclet system
describes all events recorded in the database. We decomposed this conformance problem
in Sect. 3 into (1) the behavioral conformance problem on how good a proclet describes
events of an artifact instance, and (2) the interaction conformance problem on how
good the proclet system artifact interactions. Section 4 reduced behavioral conformance
to classical conformance by extracting a classical process log for each artifact life
cycle from the given database; technically, the log follows from a view on the database.
The technique is likewise applicable for checking interaction conformance [13]; it is
implemented in the Process Mining Toolkit ProM.

Related Work. Conformance checking, that is, comparing formal process models to
actual process executions is a relatively new field that was studied first on monolithic
processes with isolated process instances [16]. To the best of our knowledge, the con-
formance problem has not been studied yet for artifact-centric processes. Our approach
currently only reduces artifact conformance to classical conformance. Yet, classical con-
formance checking knows several metrics which describe conformance differently [16].

The most advanced conformance metrics reflect that only parts of a trace are deviat-
ing [10, 17], and pinpoint where deviations occur [11], while taking into account that
models may contain behavior that is unobservable by nature [12]. In particular the last
metric can be applied to several process modeling languages, including proclets used in
Sect. 2 to describe artifacts.

Open Issues. This paper made a first step towards checking conformance of artifact-
centric process models. Currently, we manually have to specify the artifact view on the
database by identifying which tables relate to which artifact, and which attributes relate
to which event. This can be cumbersome, as the relations between tables (expressed
by foreign-primary key relations) need to be respected. A view is insensitive to adding
further tables or attributes to the database, but sensitive to changes in the key relations.
For this reason, automated techniques for checking structural conformance of a given
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proclet system to a database, and for discovering conformant artifact views for a given
proclet system from a database would be required. Furthermore, metrics such as [12]
need to be adapted to the artifact setting to describe the degree to which a process model
describes observed executions. Finally, as artifact-centric processes are data-driven, also
conformance of data-dependent guards to recorded process executions is an open issue.
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