
Measuring the Precision of Multi-perspective
Process Models

Felix Mannhardt1,2, Massimiliano de Leoni1⋆ , Hajo A. Reijers3,1,
Wil M.P. van der Aalst1

1 Eindhoven University of Technology, Eindhoven, The Netherlands
2 Lexmark Enterprise Software, Naarden, The Netherlands
3 VU University Amsterdam, Amsterdam, The Netherlands

{f.mannhardt,m.d.leoni,h.a.reijers,w.m.p.v.d.aalst}@tue.nl

Summary. Process models need to reflect the real behavior of an orga-
nization’s processes to be beneficial for several use cases, such as process
analysis, process documentation and process improvement. One quality
criterion for a process model is that they should precise and not express
more behavior than what is observed in logging data. Existing precision
measures for process models purely focus on the control-flow dimension
of a process model, thereby ignoring other perspectives, such as the data
objects manipulated by the process, the resources executing process ac-
tivities, and time-related aspects (e.g., activity deadlines). Focusing on
the control-flow only, the results may be misleading. This paper extends
existing precision measures to incorporate the other perspectives and,
through an evaluation with a real-life process and corresponding logging
data, demonstrates how the new measure matches our intuitive under-
standing of precision.

Key words: Process Mining, Process Model Quality, Precision, Multi-perspective
Process Mining

1 Introduction

Process mining is a quickly developing field that aims to discover, monitor, and
improve real processes by extracting knowledge from event logs readily avail-
able in today’s information systems. For most use cases of BPM, the discovered
process model needs to adequately reflect the real behavior of the process. An
obvious question is then: How does one know if a model is adequate? Clearly, a
process model should be able to explain the behavior of the process using the
process model: The model should recall the observed behavior. In other words,
using process-mining terminology, the model should fit [1] the real behavior ob-
served in the event log. However, the model should also be precise [1]: It should
not allow for more behavior than observed in the event log and, thus, allow for
⋆ This work has received funding from the European Community’s Seventh Framework

Program FP7 under grant agreement num. 603993 (CORE).

2 F. Mannhardt et al.

Table 1. Event log E recorded by a fragment of a credit application process

Id Case Activity Resource Loan

1 1 Handle Request Rory 750
2 1 Simple Check Rory ⊥
3 1 Call Customer Amy ⊥
4 1 Decide Amy ⊥

5 2 Handle Request Rory 750
6 2 Call Customer Amy ⊥
7 2 Simple Check Rory ⊥
8 2 Decide Rory ⊥

9 3 Handle Request Rory 1250
10 3 Simple Check Rory ⊥
11 3 Call Customer Amy ⊥
12 3 Decide Amy ⊥
..

..

13 4 Handle Request Rory 1500
14 4 Simple Check Rory ⊥
15 4 Call Customer Amy ⊥
16 4 Decide Amy ⊥

17 5 Handle Request Rory 1500
18 5 Extensive Check Rory ⊥
19 5 Call Customer Amy ⊥
20 5 Decide Rory ⊥

21 6 Handle Request Rory 5000
22 6 Extensive Check Rory ⊥
23 6 Call Customer Amy ⊥
24 6 Decide Amy ⊥

behavior without empirical support. Therefore, the precision of a model is not
an absolute value but it is relative to an event log. In other words, precision
depends on what has been observed.

Multiple measures for precision have been proposed in the literature [2, 3,
4, 5, 6, 7]. However, these approaches can only be used to measure precision of
models that do not encompass data-, resource and time-related aspects. This is a
serious limitation, since these aspects play an important role in real business pro-
cesses. The importance of data in business processes is, for example, paramount
as it is often data that drives the decisions that participants make [8]. In indus-
trial practice, the modeling of additional perspectives is picking up, too. Con-
sider, for example, that support for the standard Decision Model And Notation
(DMN) was recently added to the process modeling tool of a major vendor1.

We wish to illustrate the problem of measuring precision while ignoring per-
spectives beyond control flow. Let us consider a fragment of a credit application
process that generated the event log shown in Table 1. Figures 1 and 2 show
BPMN models that describe the entire behavior of the process, i.e., the mod-
els are perfectly fitting with respect to the event log E . When disregarding the
data perspective, model M1 (Fig. 1) can be seen as a precise representation
of the observed behavior. The difference between models M1 and M2 (Fig. 2)
is that the latter specifies additional rules: Depending on the requested loan
amount either activity Simple Check or activity Extensive Check needs to be
executed. For certain loan amounts between 1,000 and 2,000 the decision be-
tween Simple Check or Extensive Check is left to the process worker.2 More-
over, in M2, a separation-of-duty constraint is implemented between activities
Call Customer and Handle Request: These must be performed by different re-
sources.3 Intuitively, these rules based on process data make the process model
M2 more precise than M1: Their presence provides additional constraints that
reduce the amount of allowed behavior. For example, model M1 would allow to
1
http://www.signavio.com/news/managing-business-decisions-with-dmn-1-0/

2 We apply this non-standard BPMN semantics as simplification.
3 We use an annotation as this rule cannot be expressed in BPMN.

Measuring the Precision of Multi-perspective Process Models 3

Fig. 1. BPMN model M1 without rules and perfect fitness

Fig. 2. BPMN model M2 with data and resource rules and perfect fitness

execute Simple Check for any amount, but Simple Check is only considered for
an amount smaller than 2,000 in the event log. The major insight here is that
existing approaches [2, 3, 4, 5, 6, 7] would return the same precision score for
both models.

The main contribution of this paper is a technique that generalizes the preci-
sion measure proposed in [6, 9] to incorporate additional rules relating to multi-
ple perspectives. More precisely, it supports multi-perspective rules that can be
encoded as constraints over data attributes and directly influence the execution
of the process. The approach in [6] returns, for both M1 and M2, the same preci-
sion score of 0.913, because it ignores the constraints of duty separation as well as
those at decision points. By contrast, our approach, when applied to the shown
process model and event log, returns a lower precision score 0.757 for process
model M1 and a higher precision score 0.848 for the process model M2. Thus, the
precision added by specifying data-driven rules for choices in process models is
reflected in our measure. Note that the scores returned by our approach should
not be compared directly to the scores returned by the approach in [6], since
we compute the precision in a new, more generic manner that acknowledges the
precision added by those rules and penalizes their absence. We implemented the
multi-perspective precision measure as a plug-in in the ProM framework, and
evaluated it in the context of a real-life process.

The remainder of the paper is organized as follows. In Sect. 2, we define the
precision measure for multi-perspective process models, illustrate the measure
using examples and describe its actual implementation. Sect. 3 evaluates the
introduced measure using several process models created for a real-life event log.
Finally, Sect. 4 concludes with a summary and sketches future work.

4 F. Mannhardt et al.

2 Precision of Multi-perspective Process Models

In this section, we define a precision measure for multi-perspective process mod-
els that determines the precision of process models in relation to event logs.

2.1 Event Log and Process Model

In Sect. 1 we informally introduced event log E by listing the recorded events in
Table 1. Each of the recorded events refers to the execution of an activity in a
process instance, therefore, each event is unique. In the remainder of our paper,
we define an event log E as a collection of unique events: E = {e1, . . . , en} [1, 9].
Each event is associated with a set of pairs (v, u) indicating that the event assigns
value u to a process attribute v. In the remainder of the paper, we use V to define
the set of attribute names that are relevant for the process in question and U
to indicate the universe of possible values for attributes. Each event records
some special attributes such as the case identifier Case and the activity name
Activity. Each event and its location in the trace is uniquely identified through
an Id. We denote with A ⊆ U the set of recorded activity names. Given an event
log E , we also introduce the function act ∈ E → A that extracts the name of the
executed activity from an event.

Our approach to measure the precision of multi-perspective process models
is independent of the formalism used to model the process, e.g., BPMN, EPCs or
YAWL. To safeguard this independence, we use a transition-system notation to
represent a process model. We use a transition system, which can be considered
as a foundational formalism to capture processes:

Definition 1 (Process Model). A process model defines a transition system
P = (S, s0, SF , F) consisting of a set S of states, an initial state s0 ∈ S, a set
of final states SF ⊆ S, and a transition function F ∈

(
S×A× (V ̸→ U)

)
̸→ S.4

Here, we abstract from details on the state function to be configurable for differ-
ent settings. For process models expressed as Petri nets, the reachability graph
is an example of a possible transition-system representation. Several translations
from BPMN models to transition systems are available. In the remainder of the
paper, we assume the existence of a transition system having the following struc-
ture. Given a function f , we use dom(f) to denote the domain of that function.
Given the set V of model attributes, the set U of potential values, and the set A
of labels of BPMN activities, the transition system of BPMN models is a tuple
P = (S, s0, SF , F) where

– S ⊆ (A∗ × (V ̸→ U));
– the initial state is s0 = (⟨⟩, ass0) with ass0 being the function with an empty

domain (initially no model attributes take on values);
– the set of final states SF ⊆ S contains all activity sequences (with the latest

value assignments to model attributes) that reach the final BPMN event;
4 Symbol ̸→ is used to indicate partial functions.

Measuring the Precision of Multi-perspective Process Models 5

– from any state (σ, ass) ∈ S, a state transition δ = (a,w) ∈ A × (V ̸→ U)
is defined if the BPMN activity a ∈ A together with the value assignments
w ∈ V ̸→ U can be executed in state (σ, ass);

– for each state s = (σ, ass) ∈ S, for each transition δ = (a,w) ∈ A × (V ̸→
U) defined in that state, the state-transition function is defined as follows:
F
(
(σ, ass), δ) = (σ′, ass ′) with σ′ = σ ⊕ ⟨a⟩ and:

ass ′(v) =

{
w(v) if v ∈ dom(w)

ass(v) otherwise.

Events in the log can be related to a state of the transition system as follows:

Definition 2 (State Prior to the Occurrence of an Event). Given an event
log E and a process model P = (S, s0, SF , F), we define function stateP : E → S
that, for each event, returns the state reached in the transition system just before
the event happened.

For the sake of simplicity, we assume that the event log fits the process model.
Also, the names/labels of attributes and their values observed in the event log
(including the activity labels as a special case) are matched with the ones in the
process model. Moreover, if the process model contains unobservable routing
activities (i.e., invisible transitions) or multiple activities sharing the same label
(i.e., duplicate activities), then we assume that the event log contains informa-
tion to uniquely identify all executed activities including unobservable ones. For
any event log that does not meet these requirements, we can transform the log
to the closest event log matching the requirements. This can be done, for exam-
ple, by using alignment-based techniques for multi-perspective process models
as [10], which “squeeze” any non-compliant log portion into a compliant one,
adds events for required unobservable activities, and uniquely identifies every
executed activities. In [6] it is reported that this alignment has little effect on
the precision measurement even for event logs with major deviations.

2.2 Precision Measure

The precision of a process model in relation to an event log must take into
account the extra behavior allowed by the model that is not seen in the event
log. In Sect. 1, we mentioned that the precision of a process model is computed
with respect to an event log that records executions of such a process. It is the
ratio between the amount of observed behavior as recorded in the log and the
amount of possible behavior as allowed by the model. All behavior that is allowed
by the model yet never observed in the log makes a model less precise.

More precisely, we define possible behavior with respect to each event e ∈ E .
It consists of the the possible activities that can be executed in the state prior
to the occurrence of e according to the process model.

Definition 3 (Possible Behavior). Let P = (S, s0, SF , F) the transition sys-
tem of a process model. Let E be an event log. The possible behavior when event
e occurs as allowed by a model can be represented as a function posP : E → 2A:

6 F. Mannhardt et al.

posP(e) = {a ∈ A | ∃w ∈ V ̸→ U : ∃(stateP(e), a, w) ∈ dom(F)}.

In a similar way, we define the observed behavior prior to the occurrence of
any event e ∈ E as the activities that can observed in the whole event log when
being in the same state as prior to the occurrence of e:

Definition 4 (Observed Behavior). Let P = (S, s0, SF , F) be the transition
system of a process model. Let E be an event log, and e ∈ E an event. The
observed behavior as seen in the event log can be represented as a function obsP :
E → 2A:

obsP(e) = {a ∈ A | ∃ e′ ∈ E : stateP(e) = stateP(e
′) ∧ act(e′) = a}.

Using the definitions of possible and observed behavior in the context of an
event, we define the precision of a multi-perspective process model P according
to an event log E as follow.

Definition 5 (Precision of a Process Model wrt. an Event Log). Let P
be the transition system of a process model. Let E be an event log. The precision
of P with regard to E is a function precision : P × E → [0, 1]:

precision(P, E) =
∑

e∈E |obsP(e)|∑
e∈E |posP(e)|

.

Since for each event e ∈ E , |obsP(e)| ≤ |posP(e)|, precision scores are always
between 0 and 1. Note that the transition system is finite: a state s is only
considered if there is an event e ∈ E such that stateP(e) = s. Since the number
of events is finite, the number of states to consider is also finite.

For each event e ∈ E , computing stateP(e) is O(|E|), because, in the worst
case, one needs to iterate over all events in E to reconstruct the state. Once
stateP(e) is computed, computing obsP(e) and posP(e) is linear in the number
of activities: O(|A|). Since these functions need to be computed for each e ∈ E ,
the worst-case time complexity of computing precision is O(|E|(|A|+ |E|)), which
is O(|E|2) as |E| >> |A| (the number of events is way larger than the process
activity).

2.3 Illustration of the Measure

We proceed to show that our definition is intuitive by discussing a series of illus-
trative examples. In this section activities and attribute names are abbreviated
with their first letter; also, with abuse of notation, any model Mi also refers to its
transition-system representation as defined in Sect. 2.1. We obtain the following
sets of observed and possible behavior for the events listed in Table 1 and the
initial model M1:

posM1
(e1) = {H}, posM1

(e2) = {S, E, C}, posM1
(e3) = {C}, posM1

(e4) = {D}, . . .
obsM1

(e1) = {H}, obsM1
(e2) = {S, C}, obsM1

(e3) = {C}, obsM1
(e4) = {D}, . . .

For example, the set of observed behavior for e2 is {S, C} because the execution
of both activities Simple Check and Call Customer can be observed in those

Measuring the Precision of Multi-perspective Process Models 7

Fig. 3. BPMN model M3 for log E with a precision of 0.359

events that are carried out when the transition system is in the state prior to
the occurrence of e2: stateM1(e2) = (⟨H⟩, {R := Rory , L := 750}). This state is
reached when activity Handle Request has already been executed and the latest
values assigned to the attributes Resource and Loan are Rory and 750 respec-
tively. By consulting Table 1, it becomes clear that events e2 and e6 contribute
to the set of observed behavior for e2. Please note that the e2 and e6 are events
from different traces, i.e., the whole event log is considered when computing the
observed behavior. Continuing in the same manner with the remaining events
yields a precision of precision(M1, E) = 28

37 ≈ 0.76. Applying the same measure
on the process model M2, we get:

posM2
(e1) = {H}, posM2

(e2) = {S, C}, posM2
(e3) = {C}, posM2

(e4) = {D}, . . .
obsM2

(e1) = {H}, obsM2
(e2) = {S, C}, obsM2

(e3) = {C}, obsM2
(e4) = {D}, . . .

and subsequently a value of precision(M2, E) = 28
33 = 0.848. It is easy to see

that the added constraints regarding the attribute Loan limits the set of pos-
sible activities for event e2 to Simple Check and Call Customer. The activity
Extended Check cannot be executed anymore in the state prior to the occur-
rence of e2, as the value of the attribute Loan would need to be higher than 1,000.
This improves the precision of model M2. Moreover, the observed parallelism of
activities Simple Check and Call Customer for a Loan value of 750 is not seen
as imprecision in either case, as reflected in the set of observed behavior {S, C}
for event e2. Note that the assignment of data attributes needs to be exactly
the same in order to detect parallelism in the model as a precise representation
of the observed behavior. Otherwise, when parallelism is observed with differ-
ent attribute values, it is seen as an imprecision because a more precise process
model using the different attribute values for a data rule can be created.

Next to the two process models introduced in Fig. 1 and Fig. 2, we consider
two additional, illustrative process models representing extreme cases. Fig. 3
shows an example of a process model that is very imprecise in relation to event
log E . Always starting with Handle Request, model M3 in Fig. 3 allows to
execute the remaining activities any arbitrary number of times and, also, in any
order. On the opposite side of the spectrum, model M4 in Fig. 4 is very precise,
as only exactly the observed behavior in E is possible. For instance, the order
of the activities Simple Check and Call Customer depends on the value of the

8 F. Mannhardt et al.

Fig. 4. BPMN model M4 for log E with a precision of 1

data attribute Loan; if it has 750 as value both activities are carried out in any
order, for the values 1,500 and 1,250 only the modeled order is observed.

For the process model M3, we obtain precision(M3, E) = 28
78 ≈ 0.359, which is

less than half of the precision measure of M1 in Fig. 2 (0.848). On the other end of
the spectrum, model M4 in Fig. 4 has a perfect precision: precision(M4, E) = 1,
as only the behavior seen in the event log is allowed. These examples demonstrate
that the computed values for precision behave intuitively, as model M3 is the
least precise, and model M4 is the most precise of the presented examples.

The example above also shows that models scoring a very high precision
value are not always the most preferable. In particular, model M4 in Fig. 4 with
a perfect precision score allows for exactly the behavior observed in the event
log and nothing more. Given that event logs only contain example behavior as
observed in a limited time frame, one cannot assume that all possible behavior
has been observed. Hence, a process model should to some extent generalize and
allow for more behavior than what has simply been observed, yet is potentially
admissible. In other words, using data-mining terminology, model M4 is probably
over-fitting the event log. Therefore, when using the proposed precision measure
to, e.g., rank the quality of discovered process models it should be balanced with
other quality criteria [9], rather than aiming for a perfect precision score.

2.4 Implementation

This section shows the concrete implementation of the precision measure as a
plug-in for the process mining framework ProM5. We use Data Petri Nets (DPN-
nets) [10] as modeling language with simple and clear semantics.

A DPN-net is a Petri net [11] extended with variables (i.e., data attributes).
Transitions update the values of variables through so-called write operations and
can be associated with guards that further constrain when transitions are en-
abled to fire. A transition in a DPN-net can fire only if all its input places contain
at least one token and the guard, if any, is satisfied. Guards can be formulated as
an expression over the process variables. Fig. 5 shows how the BPMN model M2

(Fig. 2) can be expressed using the DPN-net notation. For instance, transition
5 Available at http://www.promtools.org in the DataAwareReplayer package

Measuring the Precision of Multi-perspective Process Models 9

Fig. 5. Screenshot of the implementation in ProM showing the precision visualization
of M2 and E . The darker the color of a place in the DPN-net, the lower its precision

(i.e., activity) Extensive Check is enabled if place p1 contains at least a token
and the value of variable Loan, which has been written by transition Handle

Request, is larger than 1,000. However, at times one may wish to constrain the
values that a transition is allowed to write. In those cases, variables are post-
fixed with a prime symbol, indicating the value assigned by the transition. For
instance, the guard of transition Call Customer states that the resource execut-
ing the activity must differ from the resource who executed the Handle Request:
in this way, we can enforce a separation of concerns. Readers are referred to [10]
for more details. The behavior of a DPN-net can be represented as a transition
system similarly as discussed in Sect. 2.1 for BPMN models.

To provide diagnostics on the precision measurement, we can compute a local
precision score for each place by including only those events that correspond to
DPN-net transitions that consume tokens from the place. A visualization of this
diagnostics for model M2 is shown in Fig. 5. Each place is colored according to its
local precision score (darker colors correspond to lower precision). Additionally,
the table on the right side provides an overview about the precision scores.

3 Evaluation

The evaluation is based on a real-life case study, which is concerned with the
process of handling road-traffic fine by an Italian local police force [10]. Specifi-
cally, we employed a real-life event log6 that records the execution of 11 different
activities and contains 550,000 events grouped into 150,000 traces. In total there
are 9 data attributes. All experiments were conducted with a memory limit of 2
GB, which is lower than what current-day, regular computers contain.

For this evaluation, we used five different models:

Model A, which is discovered using the Inductive Miner (IM) set to guarantee
perfect fitness [12];

Model B, which extends model A with guards as discovered by the decision-tree
miner (DTM) [13]; the minimal instances per decision-tree leaf parameter
was set to 125 to avoid over-fitting;

6
http://dx.doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5

10 F. Mannhardt et al.

Table 2. Precision and fitness scores for the normative and discovered process models
of a process managing road traffic fines enacted in an Italian municipality

Process Model Precision Fitness

A: Inductive Miner 0.298 1
B: Inductive Miner with discovered rules 0.362 0.932
C: Normative Model without guards 0.639 0.997
D: Normative Model 0.714 0.974
E: Normative Model with discovered rules 0.831 0.986

Model C, which is the normative model, shown in [10], but without any guards;
Model D, the normative model from [10] again, yet including all those guards

that concern attributes available in the public event log;
Model E, which extends Model C with the guards discovered with the DTM

(using the same as for model B).7

Table 2 shows the precision and fitness scores for the described process mod-
els. Intuitively, Model A should be the least precise process model. This model
does not constrain the allowed behavior with any data rules. Also, the IM, set
to guarantee perfect fitness, is unlikely to discover a precise model for this event
log, which includes infrequent behavior. Indeed, Model A scores a low precision
of 0.298. Model B (shown in Fig. 6) has the same control-flow as Model A, but
additional guards based on discovered rules. As expected, the discovered rules
in Model B result in an improved precision of 0.362 and a lower fitness. Fig. 6
shows the precision measurement for Model B as it is returned by the ProM
plug-in. The coloring of the places allows to locate the effect of the discovered
rules on precision. It shows that the data rule added for Send for Credit Collec-
tion results in a perfect precision in that part of the model, i.e., the rule added to
this transition is mutually exclusive with the rule added for the alternative tran-
sition τ4. Still, Model B arguably allows for too much behavior. The normative
model without data rules, Model C, is more precise than the models discovered
with the IM; it precision is 0.639. As expected, adding the normative data rules
shown in [10] to arrive at Model D will increase its precision to 0.714. However,
adding those data rules has an impact on the fitness of model D (-0.023). As
reported in [10], the event log shows that the rules are not always respected.
Finally, we applied the DTM on the normative model, which resulted in Model
E. It scores best on precision (0.831), and better on fitness than model D.

Completely in line with expectations, Model E scores better in fitness, be-
cause it discovers the as-is rules rather than the to-be rules. A cursory glance on
the results may invoke surprise that the precision of model E is higher than the
precision of model D. However, this can be expected: The guards are discovered
so as to maximize fitness and precision. Therefore, the rules added in model D
only reflect constraints on the process from a compliance perspective, e.g. Send
of Credit Collection should only be executed if the fine is not yet fully paid.
By contrast, the DTM strives for discovery of mutually-exclusive rules that de-
scribe the real behavior as observed in the event log. Being based on the real
7 All models can be retrieved from http://purl.tue.nl/726309911741849

Measuring the Precision of Multi-perspective Process Models 11

Fig. 6. The visualization in ProM provides a “helicopter view” of the precision measure-
ment of Model B. Black rectangles depict invisible routing transitions. Write operations
are omitted and the figure was redrawn to improve the readability on paper

process executions, these rules may violate the normative rules and provide logic
that has no business relevance. This case study shows that our way of comput-
ing precision is applicable to evaluate the quality of multi-perspective process
models and provides intuitive results.

4 Conclusion

In this paper, we proposed a new measure for the precision of multi-perspective
process models in relation to behavior that is described in the form of an
event log. Whereas process modeling languages commonly used in practice (e.g.
BPMN) allows one to specify data-driven rules to model choices, existing ap-
proaches to measure the precision of a process model ignore data-related aspects.
The precision of a process model can be seen as the fraction of the possible be-
havior allowed by the model in relation to what has actually been observed, as
recorded in the event log. This paper reports on the first proposal to measure
precision for multi-perspective process models.

As future work, we aim to put our technique to the test in several real-
life case studies. In particular, we want to perform an end-user evaluation with
business analysts to verify whether our notion of precision is in line with their
expectations. Our preliminary results make us believe that will be the case. In
particular, given an event log of a certain process and a number of models for
the same process, we are able to determine which model scores higher on pre-
cision. For each model, the respective precision score can be combined with the

12 F. Mannhardt et al.

fitness score, which, for instance, can be computed using the approach reported
in [10]. In many cases, higher values of precision are associated with lower val-
ues of fitness, and vice versa. By finding the right trade-off between these two
quantities, we can determine which model provides a better representation of the
process in question. Last but not least, we aim to employ the precision measure
to improve the discovery of guards. The approach proposed in [13] only allows
for discovering mutually exclusive guards at decision points. Often, guards at
decision points are not mutually exclusive: in the same process state, multiple
alternatives need to be enabled. We want to allow for multiple alternatives (to
increase fitness), but not for too many (which would reduce precision).

References

1. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhance-
ment of Business Processes. Springer (2011)

2. Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Mining expressive process models
by clustering workflow traces. In: Advances in Knowledge Discovery and Data
Mining. Volume 3056 of LNCS. Springer (2004) 52–62

3. de Medeiros, A.K.A., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic process
mining: an experimental evaluation. Data Min Knowl Discov 14(2) (2007) 245–304

4. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf Syst 33(1) (2008) 64–95

5. Munoz-Gama, J., Carmona, J.: A general framework for precision checking. Int J
Innov Comput I 8(7(B)) (2012) 5317–5339

6. Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst,
W.M.P.: Measuring precision of modeled behavior. Inf Syst E-Bus Manage 13(1)
(2015) 37–67

7. van den Broucke, S., De Weerdt, J., Vanthienen, J., Baesens, B.: Determining
process model precision and generalization with weighted artificial negative events.
IEEE Trans Knowledge Data Eng 26(8) (2014) 1877–1889

8. Maggi, F.M., Dumas, M., García-Bañuelos, L., Montali, M.: Discovering data-
aware declarative process models from event logs. In: BPM’13. Volume 8094 of
LNCS. Springer (2013) 81–96

9. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history
on process models for conformance checking and performance analysis. Wiley
Interdiscip Rev Data Min Knowl Discov 2(2) (2012) 182–192

10. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Balanced
multi-perspective checking of process conformance. Computing (2015)

11. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge University Press (1995)
12. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured

process models from event logs - a constructive approach. In: Application and
Theory of Petri Nets and Concurrency. Volume 7927 of LNCS. Springer (2013)
311–329

13. de Leoni, M., van der Aalst, W.M.P.: Data-Aware Process Mining: Discovering
Decisions in Processes Using Alignments. In: SAC’13, ACM (2013) 1454–1461

