
Conformance Checking of Interacting Processes With
Overlapping Instances

Dirk Fahland, Massimiliano de Leoni, Boudewijn F. van Dongen, and
Wil M.P. van der Aalst

Eindhoven University of Technology, The Netherlands
(d.fahland|m.d.leoni|b.f.v.dongen|w.m.p.v.d.aalst)@tue.nl

Abstract. The usefulness of process models (e.g., for analysis, improvement,
or execution) strongly depends on their ability to describe reality. Conformance
checking is a technique to validate how good a given process model describes
recorded executions of the actual process. Recently, artifacts have been proposed
as a paradigm to capture dynamic, and inter-organizational processes in a more
natural way. Artifact-centric processes drop several restrictions and assumptions
of classical processes. In particular, process instances cannot be considered in iso-
lation as instances in artifact-centric processes may overlap and interact with each
other. This significantly complicates conformance checking; the entanglement of
different instances complicates the quantification and diagnosis of misalignments.
This paper is the first paper to address this problem. We show how conformance
checking of artifact-centric processes can be decomposed into a set of smaller
problems that can be analyzed using conventional techniques.

Keywords: artifacts, process models, conformance, overlapping process instances

1 Introduction

Business process models have become an integral part of modern information systems
where they are used to document, execute, monitor, and optimize business processes.
However, many studies show that models often deviate from reality (see. [1]). To avoid
building on quicksand it is vital to know in advance to what extent a model conforms to
reality.

Conformance checking is the problem of determining how good a given process
model M describes process executions that can be observed in a running system S in
reality. Several conformance metrics and techniques are available [2–7]. The most basic
metric is fitness telling whether M can replay every observed execution of S. In case
M cannot replay some (or all) of these executions, the model M needs to be changed
to match the reality recorded by S (or the system and/or its underlying processes are
changed to align both).

Existing conformance checking techniques assume rather simple models where
process instances can be considered in isolation. However, when looking at the data
models of ERP products such as SAP Business Suite, Microsoft Dynamics AX, Oracle E-
Business Suite, Exact Globe, Infor ERP, and Oracle JD Edwards EnterpriseOne, one can
easily see that this assumption is not valid for real-life processes. There are one-to-many

and many-to-many relationships between data objects, such as customers, orderlines,
orders, deliveries, payments, etc. For example, an online shop may split its customers’
quotes into several orders, one per supplier of the quoted items, s.t. each order contains
items for several customers. Consequently, several customer cases synchronize on the
same order at a supplier, and several supplier cases synchronize on the same quote of a
customer. In consequence, we will not be able to identify a unique notion of a process
instance by which we can trace and isolate executions of such a process, and classical
modeling languages are no longer applicable [8–10].

The fabric of real-life processes cannot be straightjacketed into monolithic processes.
Therefore, we need to address two problems:

(1) Find a modeling language L to express process executions where several cases of
different objects overlap and synchronize.

(2) Determine whether a process model M expressed in L adequately describes actual
executions of a process in reality — despite the absence of process instances.

The first problem is well-known [8–10] and several modeling languages have been
proposed to solve it culminating in the stream of artifact-centric process modeling that
emerged in recent years [8–12]. In short, an artifact instance is an object that participates
in the process. It is equipped with a life-cycle that describes the states and possible
transitions of the object. An artifact describes a class of similar objects, e.g., all orders.
A process model then describes how artifacts interact with each other, e.g., by exchanging
messages [11, 12]. Note that several instances of one artifact may interact with several
instances of another artifact, e.g., when placing two orders consisting of multiple items
with an electronic bookstore items from both orders may end up in the same delivery
while items in the same order may be split over multiple deliveries.

In this paper we use proclets [8] as a modeling language for artifacts to study
and solve the second problem. A proclet describes one artifact, i.e., a class of objects
with their own life cycle, together with an interface to other proclets. A proclet system
connects the interfaces of its proclets via unidirectional channels, allowing the life-
cycles of instances of the connected proclets to interact with each other by exchanging
messages; one instance may send messages to multiple other instances, or an instance
may receive messages from multiple instances.

After selecting proclets as a representation, we can focus on the second problem;
determine whether a given proclet system P allows for the behavior recorded by the
actual information system S, and if not, to which degree P deviates from S and where.
The problem is difficult because S does not structure its executions into isolated process
instances. For this reason we develop the notion of an instance-aware log. The system
S records executed life-cycle cases of its objects in separate logs L1, . . . , Ln — one
log per class of objects. Each log consists of several cases, and each event in a case is
associated to a specific object. For each event, it is recorded with which other objects
(having a case in another log) the event interacted by sending or receiving messages.
The artifact conformance problem then reads as follows: given a proclet system P and
instance-aware logs L1, . . . , Ln, can the proclets of P be instantiated s.t. the life-cycles
of all proclets and their interactions “replay” L1, . . . , Ln?

Depending on how objects in S interact and overlap, a single execution of S can
be long, possibly spanning the entire lifetime of S which results in having to replay all

2

cases of all logs at once. Depending on the number of objects and cases, this may turn
out infeasible for conformance checking with existing techniques. Proclets may also
be intertwined in various ways. This makes conformance checking a computationally
challenging problem. Analysis becomes intractable when actual instance identifiers are
taken into account. Existing techniques simply abstract from the identities of instances
and their interactions.

Therefore, we have developed an approach to decompose the problem into a set of
smaller problems: we minimally enrich each case in each log to an interaction case,
describing how one object evolves through the process and synchronizes with other
objects, according to other cases in other logs. We then show how to abstract a given
proclet system P to an abstract proclet system P|P for each proclet P s.t. P can replay
L1, . . . , Ln iff the abstract proclet system P|P can replay each interaction case of P , for
each proclet P ofP . As an interaction case focuses on a single instance of a single proclet
at a time (while taking its interactions into account), existing conformance checkers [6,7]
can be used to check conformance.

This paper is structured as follows. Section 2 recalls how artifacts describe processes
where cases of different objects overlap and interact. There, we also introduce the notion
of an instance-aware event log that contains just enough information to reconstruct
executions of such processes. Further, proclets are introduced as a formal language
to describe such processes. Section 3 then formally states the conformance checking
problem in this setting, and Section 4 presents our technique of decomposing proclet
systems and logs for conformance checking. The entire approach is implemented in the
process mining toolkit ProM; Section 5 presents the tool’s functionality and shows how
it can discover deviations in artifact-centric processes. Section 6 concludes the paper.

2 Artifacts

This section recalls how the artifact-centric approach allows to describe processes where
cases of different objects overlap and interact.

2.1 Artifacts and Proclets: An Example

To motivate all relevant concepts and to establish our terminology, we consider a backend
process of a CD online shop that serves as a running example in this paper. The CD
online shop offers a large collection of CDs from different suppliers to its customers.
Its backend process is triggered by a customer’s request for CDs and the shop returns a
quote regarding the offered CDs. If the customer accepts, the shop splits the quote into
several orders, one for each CD supplier. One order handles all quoted CDs by the same
supplier. The order then is executed and the suppliers ship the CDs to the shop which
distributes CDs from different orders according to the original quotes. Some CDs may
be unavailable at the supplier; in this case notifications are sent to the CD shop which
forwards the information to the customer. The order closes when all CDs are shipped and
all notifications are sent. The quote closes after the customer rejected the quote, or after
notifications, CDs, and invoice have been sent. In the recent years, the artifact-centric
approach emerged as a paradigm to describe processes like in our CD shop example

3

quote order

send quote

+,1

create from
request

accept

reject

processed +,?

deliver
generate
invoice

notified un-
availability

+,?

close

add CD1,+

add CD

order at
supplier

+,?

+,?

ship
available

notify un-
available

close

Fig. 1. A proclet system describing the back-end process of a CD online shop. A customer’s quote
is split into several orders according to the suppliers of the CDs; an order at a supplier handles
several quotes from different customers.

where several cases of quotes object interact with several cases of orders. Quotes and
orders are the artifacts of this process. Figure 1 models the above process in terms of a
proclet system [8] consisting of two proclets: one describing the life-cycle of quotes and
the other describing the life-cycle of orders. Note that Fig. 1 abstracts from interactions
between the CD shop and the customers. Instead the focus is on interactions between
quotes in the CD shop and orders handled by suppliers.

The distinctive quality in the interactions between quotes and orders is their cardi-
nality: each quote may interact with several orders, and each order may interact with
several quotes. That is, we observe many-to-many relations between quotes and orders.
For example, consider a process execution involving two quote instances: one over CDa

(q1) and the other over CDa, CDb, and CDc (q2). CDb and CDc have the same supplier,
CDa has a different supplier. Hence, the quotes are split into two order instances (o1
and o2). In the execution, CDa and CDb turn out to be available whereas CDc is not.
Consequently, CDa is shipped to the first quote, and CDa and CDb are delivered to the
second quote. The second quote is also notified regarding the unavailability of CDc.
This execution gives rise to the following cases of quote and order which interact as
illustrated in Fig. 2 (note that a CD is not an artifact as it does not follow a life-cycle in
this process).

q1 : create, send, accept, processed, deliver, generate, close
q2 : create, send, accept, notified, processed, deliver, generate, close
o1 : add CD, add CD, order, ship, close
o2 : add CD, add CD, order, notify, ship, close

4

CDa

CDa

CDb CDc

CDa

CDa

CDc CDb

create send accept processed deliver generate close

create send accept processed deliver generate closenotified

q1:

q2:

add CDo1: add CD order ship close

add CD order ship closenotifyo2: add CD

Fig. 2. An execution of the CD shop process involving two quote cases and two order cases that
interact with each other in a many-to-many fashion.

2.2 Instance-Aware Logs

The task of checking whether a given process model accurately describes the processes
executed in a running system S requires that S records the relevant events in a log.
Classically, each process execution in S corresponds to a case running in isolation.
Such a case can be represented by the sequence of events that occurred. In an artifact-
centric process like Fig. 1, one cannot abstract from interactions and many-to-many
relations between different cases; quotes and orders are interacting in a way that cannot
be abstracted away.

Relating events of different cases to each other is known as event correlation; see [13]
for a survey of correlation patterns. A set of events (of different cases) is said to be
correlated by some property P if each event has this property P . The set of all correlated
events defines a conversation. For instance in Fig. 2, events accept and processed of q1,
and events add CD and ship of o1 form a conversation. Various correlation mechanisms
to define and set the correlation property of an event are possible [13]. In this paper,
we do not focus on the actual correlation mechanism. We simply assume that such
correlations have been derived; these are the connections between the different instances
illustrated in Fig. 2.

To abstract from a specific correlation mechanism we introduce the notion of an
instance-aware log. In the following we assume asynchronous interaction between
different instances. Let e be an event. Event correlation defined the instances from
which e received a message and the instances to which e sent a message. As e could
send/receive several messages to/from the same instance, correlation data are stored as
multisets of instance ids. For sake of simplicity, in this paper we assume that correlation
data on receiving and sending messages was defined by a single correlation property
each. Hence, e is associated to one multiset of instances from which e received messages
and to one multiset of instances to which e sent messages. A multiset m ∈ NI over a set
I of instance ids is technically a mapping m : I → N defining how often each id ∈ I
occurs in m; [] denotes the empty multiset.

Definition 1 (Instance-aware events). Let Σ = {a1, a2, . . . , an} be a finite set of
event types, and let I = {id1, id2, . . .} be a set of instance identifiers. An instance-
aware event e is a 4-tuple e = (a, id ,SID ,RID) where a ∈ Σ is the event type, id

5

is the instance in which e occurred, SID = [sid1, . . . , sidk] ∈ NI is the multiset of
instances from which e consumed messages, and RID = [rid1, . . . , ridl] ∈ NI is the
multiset of instances for which e produced messages.Let E(Σ, I) denote the set of all
instance-aware events over Σ and I.

Consider for example the third event of q2 in Fig. 2. This instance aware event is denoted
as (accept, q2, [], [o1, o2, o2]). The fifth event of q2 is denoted as
(processed, q2, [o1, o2], []). Instance-aware events capture the essence of event cor-
relation and abstraction from the underlying correlation property, e.g., CDa.

All events of one instance of an artifact A define a case; all cases of A define the
log of A. An execution of the entire process records the cases of the involved artifact
instances in different logs that together constitute an instance-aware log.

Definition 2 (Instance-aware cases and logs). An instance-aware case σ = 〈e1, . . . , er〉
∈ E(Σ, I)∗ is a finite sequence of instance-aware events occurring all in the same in-
stance id ∈ I. Let L1, . . . , Ln be sets of finitely many instance-aware cases s.t. no two
cases use the same instance id. Further, let < be a total order on all events in all cases
s.t. e < e′ whenever e occurs before e′ in the same case.1 Then L = ({L1, . . . , Ln}, <)
is called an instance-aware log.

For example, the instance-aware cases of Fig. 2 are the following:

σq1 : 〈(create, q1, [], []), (send, q1, [], []), (accept, q1, [], [o1]), (processed, q1, [o1], []),
(deliver, q1, [], []), (generate, q1, [], []), (close, q1, [], [])〉

σq2 : 〈(create, q2, [], []), (send, q2, [], []), (accept, q2, [], [o1, o2, o2]), (notified, q2, [o2], []),
(processed, q2, [o1, o2], []), (deliver, q2, [], []), (generate, q2, [], []), (close, q2, [], [])〉

σo1 : 〈(add CD, o1, [q1], []), (add CD, o1, [q2], []), (order, o1, [], []), (ship, o1, [], [q1, q2]),
(close, o1, [], [])〉

σo2 : 〈(add CD, o2, [q2], []), (add CD, o2, [q2], []), (order, o2, [], []), (notify, o2, [], [q2]),
(ship, o2, [], [q2]), (close, o1, [], [])〉

Together these instances form an instance-aware log with an ordering relation <, e.g.,
(accept, q1, [], [o1]) < (add CD, o1, [q1], []).

2.3 Proclets

Different languages for describing artifacts have been proposed [8–12]. In the following,
we use proclets [8] to study instantiation of artifacts and the many-to-many interactions
between different artifact instances in a light-weight formal model. A proclet describes
an artifact life-cycle as a labeled Petri net where some transitions are attached to ports. A
proclet system consists of a set of proclets together with channels between the proclets’
ports. Annotations at the ports specify how many instances interact with each other via a
channel.

Definition 3 (Petri net, labeled). A Petri net N = (S, T, F, `) consists of a set S of
places, a set T of transitions disjoint from S, arcs F ⊆ (S × T) ∪ (T × S), and a
labeling ` : T → Σ ∪ {τ} assigning each transition t an action name `(t) ∈ Σ or the
invisible label τ .

1 Note that technically two different events could have the same properties (e.g., in a loop). We
assume these to be different, but did not introduce additional identifiers.

6

Definition 4 (Proclet). A proclet P = (N, ports) consists of a labeled Petri net N =
(S, T, F, `) and a set of ports , where

– some transition initial ∈ T has no pre-place (i.e., {s | (s, initial) ∈ F} = ∅) and
some transition final ∈ T has no post-place (i.e., {s | (final , s) ∈ F} = ∅),

– each port p = (T p, dirp, cardp,multp) is (1) associated to a set T p ⊆ T of
transitions, has (2) a direction of communication dirp ∈ {in, out} (i.e., receive or
send messages, resp.), (3) a cardinality cardp ∈ {?, 1, ∗,+}, and (4) a multiplicity
multp ∈ {?, 1, ∗,+}, and

– each transition is attached to at most one input port and to at most one output port,
i.e., for all t ∈ T holds |{p ∈ ports | t ∈ T p, dirp = in}| ≤ 1, |{p ∈ ports | t ∈
T p, dirp = out}| ≤ 1.

Instead of an initial marking a proclet has an initial transition which will produce the
first tokens in the net. This will allow us to express the creation of multiple instances of
the same proclet.

Figure 1 shows two proclets. Each has three ports. The output port of accept has
cardinality + (one event may send messages to multiple orders) and multiplicity 1 (this
is done only once per quote). The input port of add CD has a cardinality of 1 (each
individual input message triggers one of the add CD transitions) and a multiplicity +
(at least one message is received during the life-cycle of an order). Although the example
happens to be acyclic, proclets may contain cycles.

Definition 5 (Proclet system). A proclet system P = ({P1, . . . , Pn}, C) consists of a
finite set {P1, . . . , Pn}2 of proclets together with a set C of channels s.t. each channel
(p, q) ∈ C connects an output port p to an input port q, p, q ∈

⋃n
i=1 portsi, dirp =

out , dirq = in .

Without loss of generality, we assume the proclets’ sets of transitions and places to
be pairwise disjoint. Hence, the labeling of the proclets lifts to the proclet system:
`P(t) := `i(t), for each transition t ∈ Ti of each proclet i = 1, . . . , n. We will also
write P = P1 ⊕ . . . ⊕ Pn as a shorthand for P = ({P1, . . . , Pn}, C). Figure 1 shows
the proclet system consisting of proclets quote and order. Extending the usual notation
for Petri nets, each half-round shape represents a port; the bow indicates the direction of
communication. A dashed line between 2 ports denotes a channel of the proclet system.

2.4 Semantics of Proclets: Overlapping Cases

During execution, there may be several instances of the same proclet running concur-
rently. Instances are created dynamically during process execution, that is, whenever
there is a need for a new instance, one will be created. Initial and final transitions of
a proclet (depicted in bold in Fig. 1) express instantiation and termination, i.e., when-
ever create of proclet quote occurs, a new instance of quote is created; the top-most
transition add CD creates a new order instance.

2 Introducing P implicitly introduces its components Np = (SP , TP , FP , `P) and portp; the
same applies to P ′,P1, etc. and their components N ′ = (S′, T ′, F ′, `′) and port′, and N1 =
(S1, T1, F1, `1) and port1, respectively.

7

Proclet instances interact with each other by sending messages over the channels of
the proclet system. A transition attached to an output port sends messages, a transition
attached to an input port receives messages. A port p’s annotations specify how many
messages are sent or received (cardinality cardp) and how often the port can be used
by a proclet instance to send or receive messages (multiplicity multp). For example,
cardinality + of the port of accept denotes that a quote sends out one or more messages
on quoted CDs to multiple orders per invocation. Its multiplicity 1 indicates that there
is precisely one such invocation during the lifecycle of a quote. Conversely, the process
repeatedly (multiplicity +) adds one CD of a quote to an order (cardinality 1).

Each message contains the sender’s instance ids and the recipient’s instance idr to
properly identify which proclet instances are interacting with each other; thus a message
is formally a pair (ids, idr). So, altogether a state of a proclet system is a configuration.

Definition 6 (Configuration). A configuration K = (I,mS ,mC) of a proclet system
P = ({P1, . . . , Pn}, C) is defined as follows:

– The set I defines the active proclet instances in the system (as a set of instance ids).
– The place marking mS defines for each place s ∈ S :=

⋃n
i=1 Si the number of

tokens that are on place s in instance id . Formally, mS : S → NI assigns each
place s ∈ S a multiset of instance ids, i.e., mS(s)(id) defines the number of tokens
on s in id .

– The channel marking mC defines for each channel c ∈ C the messages in this
channel. Formally mC : C → NI×I is a multiset of pairs of instances ids, i.e.,
mC(c)(ids, idr) defines the number of messages that are in transit from ids to idr

in channel c.

The initial configuration K0 := (∅,mS,0,mC,0) defines mS,0(s) = [], for all s ∈ S, and
mC,0(c) = [], for all c ∈ C.

An execution of P starts in the initial configuration K0 = (∅,mS,0,mC,0) and occur-
rences of transitions of P take the system from configuration to configuration, creating
and terminating proclet instances as the execution evolves. Each transition t occurs in
a specific proclet instance id , thereby consuming a set of messages received from a
multiset SID of sender instances and producing messages to a multiset RID of recipient
instances. If t is not attached to an input or output port, then SID and/or RID are,
respectively, always empty for each occurrence of t.

A transition t can only occur if it is enabled at the given configuration K = (I,mS ,
mC) in instance id . The enabling of t depends on the validity of the multiset SID of
sender instances, from which t expects to receive messages.

Definition 7 (Valid multiset of senders). Let P be a proclet system,K = (I,mS ,mC)
a configuration of P , P = (N, ports) a proclet of P and t ∈ TP a transition of P . Let
SID be a multiset of sender instances, from which t expects to receive messages. SID is
valid w.r.t. t in proclet instance id at configuration K = (I,mS ,mC) iff

– if t is not attached to any port, then SID = [], and
– if t is attached to an input port p = (T p, dirp, cardp,multp), t ∈ T p, dirp = in

at channel c = (q, p) ∈ C and the channel contains messages from senders X =
{ids | (ids, idr) ∈ mC(c) ∧ idr = id} then

8

1. cardp = 1 implies SID ⊆ X and |SID | = 1,
2. cardp = ? implies SID ⊆ X and if X 6= ∅ then |SID | = 1,
3. cardp = + implies SID = X and |SID | ≥ 1, and
4. cardp = ∗ implies SID = X .

Validity of the recipient ids RID w.r.t. t is defined correspondingly: RID is either empty
(if t has no output port), or RID satisfies the cardinality constraint of its output port (i.e.,
1 implies |RID | = 1, ? implies |RID | ∈ {0, 1}|, + implies |RID | ≥ 1).

Definition 8 (Enabled transition). Let P be a proclet system, K = (I,mS ,mC) a
configuration of P , P a proclet of P . A transition t ∈ TP is enabled in instance id at
configuration K w.r.t. multisets SID of sender- and RID of recipient ids, iff

1. if t has no pre-place, then id 6∈ I (an initial transition creates a new instance),
2. each pre-place s of t in instance id has a token, i.e., mS(s)(id) > 0, and
3. SID and RID are both valid with respect to t.

When an enabled transition t occurs, it takes the system from a configuration K =
(I,mS ,mC) to the successor configuration K ′ = (I ′,m′S ,m′C), depending on SID
and RID .

Definition 9 (Occurrence of a transition). Let P be a proclet system, K a configu-
ration of P , and P a proclet of P . If transition t ∈ Tp is enabled in instance id at
configuration K w.r.t. SID and RID , then t can occur which defines an instance-aware
event e = (`P(t), id ,SID , RID), and yields the successor configuration K ′ as follows:

1. in instance id , consume a token from each pre-place s of t, and produce a token on
each post-place s of t,

2. if t is attached to an input port p, then for each ids ∈ SID , consume from channel
c = (q, p) ∈ C as many messages (ids, id) as expected, i.e., SID(ids) messages,
and

3. if t is attached to an output port p, then for each idr ∈ RID , produce on channel
c = (p, q) ∈ C as many messages (id , idr) as intended, i.e., RID(idr) messages.

An execution of the proclet system P is a sequence K0
e1−→ K1

e2−→ . . .Kn where each
Ki+1 is the successor configuration of Ki under the instance-aware event ei.

This semantics also allows to replay an instance-aware log L = ({L1, . . . , Ln}, <)
on a given proclet system P = P1 ⊕ . . .⊕ Pn, or to check whether P can replay L. For
this replay, merge all events of all cases of all logs L1, . . . , Ln into a single sequence σ
of events that are ordered by <. P can replay L iff the events of σ define an execution of
P . For instance, merging the cases σq1, σq2, σo1, σo2 of Section 2.2 yields a case that
can be replayed in the proclet system of Fig. 1.

Note that proclets may have τ -labeled transitions which are usually interpreted
as internal or unobservable transitions. The corresponding instance-aware event e =
(τ, id ,SID ,RID) would not be recorded in an event log. Replaying a log on a model
with unobservable transitions is the main technical problem addressed by conformance
checking as we discuss next.

9

3 The Interaction Conformance Problem

The problem of determining how accurately a process model describes the process imple-
mented in an actual information system S is called conformance checking problem [2].

Classically, a system S executes a process as a set of isolated instances. The corre-
sponding observed system execution is a sequence of events, called case, and a set of
cases is a log L. The semantics of a process model M define the set of valid process
executions as sequences of M ’s actions. Conformance of M to L can be characterized
in several dimensions [2]. In the following, we consider only fitness. This is the most
dominant conformance metric that describes to which degree a model M can replay all
cases of a given log L, e.g., [7]. M fits L less, for instance, if M executes some actions
in a different order than observed in L, or if L contains actions not described in M .

There exist several techniques for the classical conformance checking problem
[2–7, 14, 15]. The approaches compare cases in a log with possible executions of a
process model, often by replaying the log on the model to see where model and log
deviate. The most advanced conformance metrics reflect that only parts of a case are
deviating [14], and pinpoint where deviations occur [6], while taking into account that
models may contain behavior that is unobservable by nature [7,15]. The latter techniques
find for each case σ ∈ L an execution σ′ of M that is as similar as possible to σ; the
similarity of all σ to their respective σ′ defines the fitness of M to L. This particulary
allows to extend σ′ with τ -labeled transitions not recorded in σ, so σ′ can be replayed
on a model with unobservable transitions (see Sect. 2.4).

A proclet system raises a more general conformance checking problem, because a
case contains events of several proclet instances that all may interact with each other. In
our example from Section 2, handling one quote of the CD shop involves several order
instances, i.e., the case spans one quote instance and several order instances. From a
different angle, a complete handling of an order involves several quote instances.

In the light of this observation, we identify the following artifact conformance
problem. A system records events in an instance-aware event log L. Each event can be
associated to a specific proclet P of a proclet system P , it knows the instance in which it
occurs and the instances with which it communicates. Can the proclet system P replay
L? If not, to which degree does P deviate from the behavior recorded in L?

4 Solving Interaction Conformance

A naı̈ve solution of the artifact conformance problem would replay the entire log L
on the proclet system P , by instantiating proclets and exchanging messages between
different proclet instances. This approach can become practically infeasible because of
the sheer size of L and the number of active instances. In typical case studies we found
logs with 80,000 events of 40-60 distinct actions. Checking conformance would define a
search space of 6080,000 possible solutions among which the most similar log L′ has to
be found. Even exploring only a small fraction of such a search space quickly turns out
infeasible. Moreover, existing techniques would be unable to distinguish the difference
instances. For these two reasons, we decompose the problem and reduce it to a classical
conformance checking problem. Here we will use the technique presented in [7, 15]
which is most robust and flexible.

10

4.1 Reducing Artifact Conformance to Existing Techniques

A naive solution would be to simply decompose the conformance problem of proclet
system ({P1, . . . , Pn}, C) and instance-aware event log L = ({L1, . . . , Ln}, <) into n
smaller problems where classical techniques are used to compare Pi and Li. However,
it is not sufficient as the life-cycle of some case id does not only depend on “local”
events, but also on events that sent messages to id or received messages from id . So,
all events of id together with all events of L that exchange messages with id constitute
the interaction case σid of id . It contains all behavioral information showing how id
interacts with other proclet instances.

An interaction case σid of a proclet instance P id gives rise to the following confor-
mance problem. The proclet system P fits σid iff σid (1) follows the life-cycle of P , and
(2) has as many communication events as required by the channels in P . The interaction
conformance problem is to check how good P fits all interactions cases of all proclets.

We will show in the next section that decomposing artifact conformance into interac-
tion conformance is correct: if P fits L, then P fits each interaction case of each proclet
P of P; and if P does not fit L, then there is an interaction case of a proclet P to which
P does not fit. As each interaction case is significantly smaller than L and involves only
one proclet instance, the conformance checking problem becomes feasible and can be
solved with existing techniques.

4.2 Structural Viewpoint: a Proclet and its Environment

order order

+,1accept

processed +,?

notified un-
availability

+,?

add CD1,+

add CD

order at
supplier

+,?

+,?

ship
available

notify un-
available

close

Fig. 3. The proclet order of Fig. 1 together with
its environment order.

Our aim is to decompose the confor-
mance checking problem of a proclet
system P = P1 ⊕ . . . ⊕ Pn w.r.t.
L into a set of smaller problems: we
check interaction conformance for each
proclet Pi. Interaction conformance of
Pi considers the behavior of Pi to-
gether with the immediate interaction
behavior of Pi with all other proclets
P1, . . . , Pi−1, Pi+1, . . . , Pn.

We capture this immediate in-
teraction behavior by abstracting
P1, . . . , Pi−1, Pi+1, . . . , Pn to an en-
vironment Pi of Pi. Pi is a proclet
that contains just those transitions of
P1, . . . , Pi−1, Pi+1, . . . , Pn at the remote ends of the channels that reach Pi — together
with the corresponding ports for exchanging messages with Pi. Obviously, occurrences
of transitions of Pi are unconstrained up to messages sent by Pi. Composing Pi and Pi

yields the proclet system Pi ⊕ Pi in which we can replay the interaction cases of Pi.
Figure 3 shows the proclet order together with its abstracted environment order

from the proclet system of Fig. 1. The formal definition reads as follows.

Definition 10 (Environment Abstraction). Let P = ({P1, . . . , Pn}, C) be a proclet
system, Pi = (Ni, portsi), Ni = (Si, Ti, Fi, `i), i = 1, . . . , n with the global labeling

11

`P(t) = `i(t), t ∈ Ti, i = 1, . . . , n. We write t ∈ T p if a transition t is attached to port p.
The channels that reach Pi are Ci = {(p, q) ∈ C | (T p∪T q)∩Ti 6= ∅}. The transitions
at the remote ends of these channels are Ti = {t | (p, q) ∈ Ci, t ∈ (T p ∪ T q) \ Ti}.

The abstract environment w.r.t. Pi is the proclet Pi = (N, ports) with N =
(∅, Ti, ∅, `P |Ti

), and ports = {q | (p, q) ∈ Ci ∪ C−1i , q 6∈ portsi}. The abstracted
system Pi ⊕ Pi is ({Pi, Pi}, Ci).

4.3 Behavioral Viewpoint: Extending Cases to Interaction Cases

After decomposing the proclet system, the next step is to check conformance of each
single proclet Pi with its abstract environment P i. For this, each case of Pi that is stored
in the instance-aware log L needs to be extended to an interaction case by inserting all
events of L that correspond to transitions of P i and exchange messages with the instance
id of this case.

Definition 11 (Interaction case, interaction log). Let L = ({L1, . . . , Ln}, <) be an
instance-aware log. Let E be the set of all events in all cases in L. Let Pi be a proclet
of a proclet system P = P1 ⊕ . . . ⊕ Pn, i ∈ {1, . . . , n}. Let σ ∈ Li be a case of an
instance id of Pi.

The set E|id of events of L that involve id contains event e = (a, id ′,SID ,RID) iff
e ∈ E ∧ (id ′ = id ∨ id ∈ SID ∨ id ∈ RID). The interaction case of σ is the sequence
σ containing all events E|id ordered by < of L. The interaction log of Pi w.r.t. L is the
set L|Pi

:= {σ | σ ∈ Li} containing the interaction case of each case of Pi in L.

For example, the interaction cases σo1 of σo1 and σo2 of σo2 shown in Section 2.2 are

σo1 : 〈(accept, q1, [], [o1]), (accept, q2, [], [o1, o2, o2]), (add CD, o1, [q1], []),
(add CD, o1, [q2], []), (order, o1, [], []), (ship, o1, [], [q1, q2]), (processed, q1, [o1], []),
(processed, q2, [o1, o2], []), (close, o1, [], [])〉

σo2 : 〈(accept, q2, [], [o1, o2, o2]), (add CD, o2, [q2], []), (add CD, o2, [q2], []), (order, o2, [], []),
(notify, o2, [], [q2]), (notified, q2, [o2], []), (ship, o2, [], [q2]), (processed, q2, [o1, o2], []),
(close, o1, [], [])〉.

The abstracted proclet system quote⊕ quote can replay both interaction cases.

4.4 The Decomposition is Correct

Decomposing a proclet systemP = P1⊕. . .⊕Pn into abstracted proclet systems Pi⊕Pi

and replaying the interaction log of Pi on Pi ⊕ Pi, for each i = 1, . . . , n equivalently
preserves the fitness of P w.r.t. the given instance-aware event log L.

Recall from Sect. 2.4 that L is replayed on P by ordering all events of L in a single
case σ. From Def. 11 follows that we obtain each interaction case σid of an instance id
of a proclet Pi also by projecting σ onto events that occur in id or exchange messages
with id . By induction then holds that P1 ⊕ . . .⊕ Pn can replay σ iff each proclet with
its environment Pi ⊕ Pi can replay each projection of σid onto events of each instance
id of Pi. In other words, P1 ⊕ . . .⊕Pn fits L iff Pi ⊕Pi fits each interaction case of Pi,
i.e. Pi ⊕ Pi fits L|Pi . The full proof is given in [16].

12

4.5 Checking Interaction Conformance

The previous transformations of abstracting a proclet’s environment and extracting inter-
action cases allow us to isolate a single proclet instance for conformance checking w.r.t.
the proclet and its associated channels. In other words, we reduced artifact conformance
to the problem of checking whether the proclet system Pi⊕Pi can replay the interaction
log L|Pi , where each case in L|Pi only refers to exactly one proclet instance. Thus, the
problem can be fed into existing conformance checkers.

Our conformance checker leverages the technique described in [7, 15]. As this
technique only takes Petri nets as input, the conformance checking problem of Pi ⊕ Pi

w.r.t. L|Pi is further reduced to a conformance checking problem on Petri nets. This
reduction translates the proclet ports into Petri net patterns that have the same semantics.
Replacing each port of P in P ⊕ P with its respective pattern yields a Petri net NP that
equivalently replays the interaction cases L|P . Fig. 4 shows an example. Each channel
of Fig. 3 translates to a place, the port annotations of proclet order translate to additional
nodes and arcs.

o
rd

e
ro

rd
e
r

accept

processed

notified un-
availability

add CD

add CD

order at
supplier

ship
available

notify un-
available

close

t1 p1

t2

p2

Fig. 4. The result of translating order⊕ order of Fig. 3
to a Petri net Norder.

For instance, cardinality + of
the output port of ship available
translates to the Petri net pat-
tern highlighted grey in Fig. 4.
It ensures that an occurrence of
ship available yields one (t2) or
more messages (t1) on the chan-
nel. The multiplicity + of the input
port of add CD translates to place
p2 and adjacent arcs: each occur-
rence of add CD produces a token,
the normal arc to the final transi-
tion close ensures that add CD oc-
curred at least once during the life-
time of order, the reset arc (double
arrow head) removes all other to-
kens on p2 (allowing for multiple
occurrences of add CD), the inhibitor arc from the channel to close ensures that all
messages were consumed; see [16] for details.

Moreover, the technique described in [7,15] is not aware of interaction cases (Def. 11).
In particular, it is unaware that event e = (a, id ′, [id , id , id ′′], []) sends two messages to
instance id and one message to instance id ′′. In our translation of ports to Petri nets [16],
each event emay produce one message to one instance. In order to preserve the number of
messages sent to instance id in an interaction case, we replace e by as many occurrences
of a as e sends messages to id , i.e., two occurrences of a. For example, the interac-
tion case σo2 (Sect. 4.3) is transformed to 〈accept,accept,add CD,add CD,order,
notify,notified, ship,processed, close〉, which can be replayed on the net of Fig. 4.
Further details are given in [16].

After converting the proclets into Petri nets NP1 , . . . , NPn and translating their
interaction cases as mentioned above, our conformance checker applies the technique

13

of [7, 15] to check how good the net NPi replays L|Pi , for each i = 1, . . . , n separately.
Technically, the checker finds for each interaction case σ ∈ L|Pi

an execution σ′ of
NPi

that is as similar as possible to t. If NPi
cannot execute σ, then σ is changed to

an execution σ′ of NPi
by inserting or removing actions of NPi

. The more σ′ deviates
from σ, the less NPi

fits σ. The fitness of NPi
on σ is defined by a cost-function that

assigns a penalty on σ′ for each event that has to be added or removed from σ to obtain
σ′. The most similar σ′ is found by efficiently exploring the search space of finite
sequences of actions of NPi

guided by the cost function [7, 15]; this technique also
checks conformance of cyclic models. The fitness of NPi

w.r.t. LPi
is the average fitness

of NPi
w.r.t. all cases in LPi

.
The fitness of the entire proclet system P1 ⊕ . . .⊕ Pn w.r.t. L is currently computed

as the average fitness of each Pi to its interaction cases L|Pi . Alternatively, a weighted
average could measure the fitness of the entire proclet system: a proclet’s weight could
be for instance its size (i.e., number of transitions), or the size of its interface (i.e., the
number of ports, measuring the amount of interaction of the proclet).

To illustrate the misconformances that can be discovered with this technique, assume
that in the process execution of Fig. 2, case q1 did not contain an accept event. This
would lead to the following interaction case of o1:

〈(accept, q2, [], [o1, o2, o2]), (add CD, o1, [q1], []),
(add CD, o1, [q2], []), (order, o1, [], []), (ship, o1, [], [q1, q2]), (processed, q1, [o1], []),
(processed, q2, [o1, o2], []), (close, o1, [], [])〉.

Our conformance checker would then detect that the cardinality constraint + of the input
port of add CD would be violated: only one message is produced in the channel, but
two occurrences of add CD are noted, each requiring one message.

5 Implementation as a ProM plug-in

Fig. 5. The CD shop example in ProM.

The interaction conformance checker is
implemented as a software plug-in of
ProM, a generic open-source framework
for implementing process mining tools in
a standard environment [17]. The plug-in
takes as input the proclet system model
and the interaction logs of the proclet of
interests and, by employing the techniques
described in Sect. 4, returns an overview
of the deviations between the cases in the
log and the proclet system model.

As input for initial experiments, we
generated event logs by modeling our CD
shop example as an artifact-centric system
in CPN Tools (http://cpntools.org) and sim-
ulating the model. The simulation yielded
to instance-aware log of about 2914 events of 15 different types. Next we created the

14

Fig. 6. The conformance results for the order proclet in ProM.

proclet model of the CD shop which is visualized in ProM as shown in Fig. 5; invisible
transitions are depicted as black rectangles. Then we generated interaction logs from the
instance-aware log (Def. 11). The longest interaction case was part of the interaction
log of quote and contained 31 events over 11 types. Therefore, our approach of decom-
posing the artifact conformance-checking problem into a set of smaller sub-problems
reduced the worst-case search space size from 152914 to 1131.

For conformance checking, we implemented generic conversions from proclet sys-
tems to Petri nets as explained in Sects. 4.2 and 4.5. The resulting Petri nets were then
checked for conformance w.r.t. the respective interaction logs using the existing confor-
mance checker [15], capable to replay logs on Petri Nets with reset- and inhibitor arcs.

The result of the conformance checking is shown in Figure 6. For clarity, we show a
log with only two cases, one conforming case, one deviating case. Every row identifies a
different case in which the replayed execution is represented as a sequence of wedges.
Every wedge corresponds to (a) a “move” in both the model and the log, (b) just a “move”
in the model (skipped transition), or (c) just a “move” in the event log (inserted event).
For a case without any problems, i.e., just moves of type (a), fitness is 1. The first case
in Figure 6 has fitness 1. Note that the conformance checker identified some invisible
transitions to have fired (indicated by the black triangles). These are the transitions
necessary in the Petri net to model cardinality of the ports. The second case shows a
lower conformance. The conformance checker identifies where the case and the model
deviate; and a color coding indicates the type of deviation.

6 Conclusion

In this paper, we considered the problem of determining whether different objects of
a process interact according to their specification. We took the emerging paradigm of
artifact-centric processes as a starting point. Here, processes are composed of interacting
artifacts, i.e., data objects with a life-cycle. The paradigm allows to model many-to-many
relationships and complex interactions between objects.

Existing conformance checking techniques allow only for checking the conformance
of artifacts in isolation. In this paper we went beyond and checked whether the complex

15

interactions among artifacts that are proposed in an artifact model fit the actual behavior
observed in reality. In particular, we showed that the problem of interaction conformance
can be decomposed a set of smaller sub-problems for which we can use classical
conformance checking techniques. The feasibility of the approach is demonstrated by a
concrete operationalization in the ProM framework.

An open problem is to generalize instance-aware events to have correlation data de-
fined by multiple correlation properties, and correspondingly to allow proclet transitions
to be attached to an arbitrary number of ports.

Acknowledgements. The research leading to these results has received funding from
the European Community’s Seventh Framework Programme FP7/2007-2013 under grant
agreement no 257593 (ACSI).

References
1. Rozinat, A., Jong, I., Gunther, C., van der Aalst, W.: Conformance Analysis of ASML’s Test

Process. In: GRCIS’09. Volume 459 of CEUR-WS.org. (2009) 1–15
2. Rozinat, A., de Medeiros, A.K.A., Günther, C.W., Weijters, A.J.M.M., van der Aalst, W.M.P.:

The Need for a Process Mining Evaluation Framework in Research and Practice. In: BPM’07
Workshops. Volume 4928 of LNCS., Springer (2007) 84–89

3. Greco, G., Guzzo, A., Pontieri, L., Sacca, D.: Discovering Expressive Process Models by
Clustering Log Traces. IEEE Trans. on Knowl. and Data Eng. 18 (2006) 1010–1027

4. Weijters, A., van der Aalst, W.: Rediscovering Workflow Models from Event-Based Data
using Little Thumb. Integrated Computer-Aided Engineering 10 (2003) 151–162

5. Medeiros, A., Weijters, A., van der Aalst, W.: Genetic Process Mining: An Experimental
Evaluation. Data Mining and Knowledge Discovery 14 (2007) 245–304

6. Rozinat, A., van der Aalst, W.: Conformance Checking of Processes Based on Monitoring
Real Behavior. Information Systems 33 (2008) 64–95

7. Adriansyah, A., van Dongen, B., van der Aalst, W.: Towards Robust Conformance Checking.
In: Business Process Management Workshops. Volume 66 of LNBIP. (2010) 122–133

8. van der Aalst, W., Barthelmess, P., Ellis, C., Wainer, J.: Proclets: A Framework for Lightweight
Interacting Workflow Processes. Int. J. Cooperative Inf. Syst. 10 (2001) 443–481

9. Nigam, A., Caswell, N.: Business artifacts: An Approach to Operational Specification. IBM
Systems Journal 42 (2003) 428–445

10. Cohn, D., Hull, R.: Business artifacts: A data-centric approach to modeling business operations
and processes. IEEE Data Eng. Bull. 32 (2009) 3–9

11. Fritz, C., Hull, R., Su, J.: Automatic Construction of Simple Artifact-Based Business Pro-
cesses. In: ICDT’09. Volume 361 of ACM ICPS. (2009) 225–238

12. Lohmann, N., Wolf, K.: Artifact-centric choreographies. In: ICSOC 2010. Volume 6470 of
LNCS., Springer (2010) 32–46

13. Barros, A.P., Decker, G., Dumas, M., Weber, F.: Correlation patterns in service-oriented
architectures. In: FASE. Volume 4422 of LNCS., Springer (2007) 245–259

14. van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business
Processes. Springer (2011)

15. Adriansyah, A., Sidorova, N., van Dongen, B.: Cost-based fitness in conformance checking.
In: ACSD’11. (2011) To appear.

16. Fahland, D., de Leoni, M., van Dongen, B., van der Aalst, W.: Checking behavioral confor-
mance of artifacts. BPM Center Report BPM-11-08, BPMcenter.org (2011)

17. Verbeek, H., Buijs, J.C., van Dongen, B.F., van der Aalst, W.M.P.: ProM: The Process Mining
Toolkit. In: BPM Demos 2010. Volume 615 of CEUR-WS. (2010)

16

