
Alarm-Based Prescriptive Process Monitoring?

Irene Teinemaa1, Niek Tax2, Massimiliano de Leoni2,
Marlon Dumas1, and Fabrizio Maria Maggi1

1 University of Tartu, Estonia,
{irene.teinemaa,marlon.dumas,f.m.maggi}@ut.ee

2 Eindhoven University of Technology, The Netherlands
{n.tax,m.d.leoni}@tue.nl

Abstract. Predictive process monitoring is concerned with the analysis
of events produced during the execution of a process in order to predict
the future state of ongoing cases thereof. Existing techniques in this field
are able to predict, at each step of a case, the likelihood that the case
will end up in an undesired outcome. These techniques, however, do not
take into account what process workers may do with the generated pre-
dictions in order to decrease the likelihood of undesired outcomes. This
paper proposes a framework for prescriptive process monitoring, which
extends predictive process monitoring approaches with the concepts of
alarms, interventions, compensations, and mitigation effects. The frame-
work incorporates a parameterized cost model to assess the cost-benefit
tradeoffs of applying prescriptive process monitoring in a given setting.
The paper also outlines an approach to optimize the generation of alarms
given a dataset and a set of cost model parameters. The proposed ap-
proach is empirically evaluated using a range of real-life event logs.

1 Introduction

Predictive process monitoring [1,2] is a family of techniques to predict the future
state of ongoing cases of a business process based on event logs recording past
executions thereof. A predictive process monitoring technique may provide pre-
dictions on the remaining execution time of an ongoing case, the next activity
to be executed, or the final outcome of the case wrt. a set of possible outcomes.
This paper is concerned with the latter type of predictive process monitoring,
which we call outcome-oriented [3]. For example, in a lead-to-order process, an
outcome-oriented predictive process monitoring technique may predict whether
a case will end up in a purchase order (desired outcome) or not (undesired out-
come).

Existing outcome-oriented predictive process monitoring techniques are able
to predict, after each event of a case, the likelihood that the case will end up in an
undesired outcome. These techniques are restricted in scope to predicting. They
do not suggest nor prescribe how and when process workers should intervene in
order to decrease the likelihood of undesired outcomes.

? Work supported by the European Community’s FP7 Framework Program under
grant n. 603993 (CORE) and by the Estonian Research Council (IUT20-55)

This paper proposes a framework to extend outcome-oriented predictive pro-
cess monitoring techniques in order to make them prescriptive. Concretely, the
proposed framework extends a given outcome-oriented predictive process moni-
toring model with a mechanism for generating alarms that lead to interventions,
which, in turn, mitigate (or altogether prevent) undesired outcomes. The pro-
posed framework is armed with a parameterized cost model that captures, among
others, the tradeoff between the cost of an intervention and the cost of an un-
desired outcome. Based on this cost model, the paper outlines an approach for
return on investment analysis of a prescriptive process monitoring system under
a configuration of cost parameters and a predictive model trained on a given
dataset. Finally, the paper proposes and empirically evaluates an approach to
tune the generation of alarms to minimize the expected cost for a given dataset
and set of parameters.

The paper is structured as follows. Section 2 introduces basic concepts and
notations. Next, Section 3 presents the prescriptive process monitoring frame-
work, Section 4 outlines the approach to optimize the alarm generation mech-
anism, and Section 5 reports on our empirical evaluation. Finally, Section 6
discusses related work, Section 7 delineates the limitations of our framework
and consequent future work, and Section 8 summarizes the contributions.

2 Background: Events, Traces, and Event Logs

For a given set A, A∗ denotes the set of all sequences over A and σ =
〈a1, a2, . . . , an〉 a sequence of length n; 〈〉 is the empty sequence and σ1 · σ2 is
the concatenation of sequences σ1 and σ2. hdk(σ) = 〈a1, a2, . . . , ak〉 is the prefix
of length k (0 < k < n) of sequence σ. For example, hd2(〈a, b, c, d, e〉) = 〈a, b〉.

Let E be the event universe, i.e., the set of all possible event identifiers, and T
the time domain. We assume that events are characterized by various properties,
e.g., an event has a timestamp, corresponds to an activity, is performed by a
particular resource, etc. We do not impose a specific set of properties, however,
we assume that two of these properties are the timestamp and the activity of an
event, i.e., there is a function πT ∈ E → T that assigns timestamps to events,
and a function πA ∈ E → A that assigns to each event an activity from a finite
set of process activities A. An event log is a set of events, each linked to one
trace and globally unique, i.e., the same event cannot occur twice in a log. A
trace in a log represents the execution of one case.

Definition 1 (Trace, Event Log). A trace is a finite non-empty sequence of
events σ ∈ E∗ such that each event appears only once and time is non-decreasing,
i.e., for 1 ≤ i < j ≤ |σ| : σ(i) 6= σ(j) and πT (σ(i)) ≤ πT (σ(j)). An event log is
a set of traces L ⊂ E∗ such that each event appears at most once in the entire log.

3 Prescriptive Process Monitoring Framework

In this section, we introduce a cost model for alarm-based prescriptive process
monitoring and illustrate this model using three scenarios (Section 3.1). We then

formalize the concept of alarm system (Section 3.2) and discuss conditions under
which an alarm system has a positive return on investment (Section 3.3).

3.1 Concepts and Cost Model

An alarm-based prescriptive process monitoring system (alarm system for short)
is a monitoring system that raises an alarm in relation to a running case of
a business process, in order to indicate that the case is likely to lead to an
undesired outcome. These alarms are handled by process workers who intervene
by performing an action (e.g., calling a customer or blocking a credit card) in
order to prevent or mitigate the undesired outcome. These actions may have a
cost, which we call cost of intervention. Instead, if the case ends in a negative
outcome, this leads to a cost called cost of undesired outcome.

As an example, consider a municipality that needs to collect city taxes. If the
inhabitants do not pay their taxes on time, the municipality may run into cash
flow issues. Accordingly, in case of an unpaid tax debt (undesired outcome), the
municipality may decide to outsource the debt collection to an external collection
agency, for which it has to pay a recovery fee. These fees constitute the cost of
the undesired outcome. In light of their characteristics and past payment history,
certain inhabitants may have a higher risk of missing the payment deadline.
Therefore, sending a reminder letter to these high-risk inhabitants may increase
the likelihood of receiving the payment on time. However, such an intervention
comes with costs related to preparing the letter by an employee (proportional
to the employee’s hourly salary rate) and the postal costs for sending the letter.

In certain scenarios, the cost of an intervention may increase over time, ac-
knowledging the importance of alarming as early as possible. For instance, in a
railway maintenance process, if an alarm about a possible railway disruption is
raised early, the problem could be solved with regular maintenance procedures.
Conversely, if the alarm is raised when the need for maintenance has become
urgent, the maintenance provider could be required to allocate more resources
in order to solve the problem on time.

When an alarm is raised, there is a certain probability, but no certainty, that
the case will reach an undesired outcome if no intervention is made. If the case
does not conclude with an undesired outcome even without interventions, doing
the intervention causes unnecessary costs (e.g., a company could lose customers
and/or opportunities). The cost related to such unnecessary interventions is
referred to as cost of compensation. For instance, financial institutions may
block credit card payments when they suspect that a card was cloned. However,
in some cases, it may happen that the suspicion was unfounded and that the
payment was legitimate. If these cases become too frequent, the reputation of
the financial institution could be hampered.

The purpose of alarming is to avoid an undesired outcome. However, in sev-
eral scenarios, it is not possible to fully prevent the cost of the undesired outcome,
while the intervention could still help to mitigate it. Based on this rationale, we
introduce the concept of mitigation effectiveness of an intervention, reflecting the
proportion of the cost of an undesired outcome that can be avoided by carry-
ing out the intervention. Oftentimes, the mitigation effectiveness decreases with

time, i.e., the earlier the intervention takes place, the higher is the proportion
of costs that can be avoided. Consider, for instance, the process of paying un-
employment benefits by a social security institution. In this case, the aim of an
alarm system could be to notify the institution about citizens who might be re-
ceiving unentitled benefits. Since the benefits that have already been issued are
unlikely to be recollected, the cost of the undesired outcome cannot be avoided
completely. Therefore, it is important to raise the alarm as early as possible, in
order to effectively mitigate the cost of the undesired outcome.

An alarm system is intended as a system where cases are continuously moni-
tored. However, since continuous monitoring is impractical, we assume that cases
are monitored after each executed event and, therefore, alarms can only be raised
after that an event has occurred. In the remainder, each case is identified by a
trace σ that is (eventually) recorded in an event log. Definition 2 formalizes the
costs defined above. Since costs may depend on the position in the case in which
the alarm is raised and/or on other cases being executed, we define the costs as
functions over the number of already executed events and over the entire set of
cases under execution.

Definition 2 (Alarm-based Cost Model). An alarm-based cost model is a
tuple (cin , cout , ccom , eff) consisting of:
– a function cin ∈ N×E∗×2E

∗ → R+
0 modeling the cost of intervention: given

a trace σ belonging to an event log L, cin(k, σ, L) indicates the cost of an
intervention in σ when the intervention takes place after the k-th event;

– a function cout ∈ E∗ × 2E
∗ → R+

0 modeling the cost of undesired outcome;
– a function ccom ∈ E∗ × 2E

∗ → R+
0 modeling the cost of compensation;

– a function eff ∈ N× E∗ × 2E
∗ → [0, 1] modeling the mitigation effectiveness

of an intervention: given a trace σ belonging to an event log L, eff (k, σ, L)
indicates the mitigation effectiveness of an intervention in σ when the inter-
vention takes place after the k-th event.

To illustrate the versatility of the above cost model, we discuss three use cases
for alarm systems and their corresponding cost model configurations. The first
scenario, in Box 1, refers to the provision of unemployment benefits. The cost
model for this scenario is based on several discussions with the stakeholders of
a real social security institution [4]. The second scenario, in Box 2, refers to the
detection of malicious credit card payments in a financial institution. Differently
from the previous scenario, in this case, there is a risk of cost of compensation:
due to the inconvenience caused by blocking their credit card, customers can
switch to competitors. Box 3 refers to the process of predictive maintenance in
railway services. This scenario is different from the previous ones because, in
this case, the cost of an intervention increases over time.

3.2 Alarm-Based Prescriptive Process Monitoring System

An alarm-based prescriptive process monitoring system is driven by the outcome
of the cases. Hereon, the outcome of the cases is represented by a function
out ∈ E∗ → {true, false}: given a case identified by a trace σ, if the case has an
undesired outcome, out(σ) = true; otherwise, out(σ) = false. In reality, during

Box 1 — Scenario “Unemployment Benefits”
In several countries, a social security institution is responsible for the execution of a number
of employee-related insurances, such as unemployment benefits. When residents (hereafter
customers) become unemployed, they are usually entitled to monthly monetary benefits for a
certain period of time. These payments are stopped when the customer reports that he/she has
found a new job. Unfortunately, several customers omit to inform the institution about finding
a job and, thus, keep receiving benefits they are not entitled to. Those customers are expected
to return the amount of benefits that they have received unlawfully. However, in practice,
this rarely happens and the overpaid amount is lost to the institution. In light of the above,
the social security institution would benefit from an alarm system that would inform about
customers who are likely to be receiving unentitled benefits. Let unt(σ) denote the amount
of unentitled benefits received in a case corresponding to trace σ. Based on discussions with
the stakeholders of a real social security institution, we designed the following cost model
instantiation for such an alarm system.

Cost of intervention. For the intervention, an employee needs to check if the customer is
indeed receiving unentitled benefits and, if so, fill in the forms for stopping the payments.
Let S be the employee’s average salary rate per time unit; let is and if denote the
positions of the events in σ when the employee started working on the intervention and
finished it, respectively. The cost of an intervention can be modeled as: cout (σ, L) =
(πT (σ(if))− πT (σ(is))) · S.

Cost of undesired outcome. The total amount of unentitled benefits that the customer
would obtain without stopping the payments, i.e., cout (σ, L) = unt(σ).

Cost of compensation. The social security institution works in a situation of monopoly,
which means that the customer cannot be lost because of moving to a competitor, i.e.,
there is no cost of compensation: ccom(σ, L) = 0.

Mitigation effectiveness. The proportion of unentitled benefits that will not be paid thanks

to the intervention: eff (k, σ, L) =
unt(σ)−unt(hdk(σ))

unt(σ)
. Note that this cost function is not

employed if there is no undesired outcome (i.e., if unt(σ) = 0).

Box 2 — Scenario “Financial Institution”
Suppose that the customers of a financial institution use their credit cards to make payments
online. Each such transaction is associated with a risk that the transaction is made through a
cloned card. In this scenario, an alarm system is intended to determine whether the credit card
needs to be blocked due to a high risk of being cloned. However, in case the credit card is not
malicious, blocking the card would cause discomfort to the customer who may consequently
opt to switch to a different financial institution. Let σ be the trace of credit card transactions
for a customer and value(σ) the total amount of money related to malicious transactions in
σ, the following is a possible cost model instantiation for this scenario.

Cost of intervention. The card is automatically blocked by the system and, therefore, the
intervention costs are limited to Post Cost, i.e., to the costs for sending a new credit
card to the customer by mail: cin(k, σ, L) = Post Cost.

Cost of undesired outcome. The total amount of money related to malicious transactions
that the bank would need to reimburse to the legitimate customer: cout (σ, L) = value(σ).

Cost of compensation. Denoting the asset value of a customer (consisting of the amount of
the investment portfolio, the account balance, etc.) with asset(σ) and supposing that a
fraction p (i.e., p ∈ [0, 1]) of the customers would switch to a different institution, the cost
of compensation can be estimated as the value of the lost asset (the customer), multiplied
by p: ccom = p · asset(σ).

Mitigation effectiveness. The proportion of the total amount of money related to malicious
transactions that does not need to be reimbursed by blocking the credit card after that

k events have been executed: eff (k, σ, L) =
value(σ)−value(hdk(σ))

value(σ)
.

the execution of a case, its outcome is not yet known and needs to be estimated
based on past executions that are recorded in an event log L ⊂ E∗. The outcome
estimator is a function ôutL ∈ E∗ → [0, 1] predicting the likelihood ôutL(σ′) that
the outcome of a case that starts with prefix σ′ is undesired. We can define an

Box 3 — Scenario “Railway Maintenance”
In a process for railway maintenance, an alarm should be raised when there is a risk that
the railway may break down within a relatively short time range. Railway breakdowns can
cause severe disruptions in the train transportation (i.e., trains could be canceled or delayed),
thereby causing losses of reimbursing tickets to travelers.

Cost of intervention. The cost of an intervention increases with time because the more
urgent the disruption is, the more resources need to be allocated for handling it. We
assume that the cost is at its minimum m at the beginning of a trace σ and grows
exponentially with time: cin(k, σ, L) = m · β exp(πT (σ(k))) for some β > 0.

Cost of undesired outcome. Let P be the average total price of tickets sold per time unit;
let id(σ) and im(σ) be the positions of the events in σ when the disruption took place
and was resolved, respectively. The cost of the undesired outcome can be calculated as
P multiplied by the length of the timeframe when the railway service was disrupted:
cout (σ, L) = (πT (σ(im))− πT (σ(id))) · P .

Cost of compensation. Assuming that performing (unnecessary) maintenance actions does
not cause inconveniences to the customers, no cost of compensation is present:
ccom(σ, L) = 0.

Mitigation effectiveness. A timely intervention fully avoids the undesired outcome:
eff (k, σ, L) = 1 for any k ∈ [1, |σ|].

Table 1: Cost of a case σ based on its outcome and whether an alarm was raised

undesired outcome desired outcome

alarm raised cin(k, σ, L) + (1− eff (k, σ, L))cout(σ, L) cin(k, σ, L) + ccom(σ, L)
alarm not raised cout(σ, L) 0

alarm system as a function that returns true or false depending on whether an
alarm is raised based on the predicted outcome or not.

Definition 3 (Alarm-Based Prescriptive Process Monitoring System).
Given an event log L ⊂ E∗, let ôutL be an outcome estimator built from L. An
alarm-based prescriptive process monitoring system is a function alarm ôutL

∈
E∗ → {true, false}. Given a running case identified by a trace σ and with current
prefix σ′, alarm ôutL

(σ) returns true, if an alarm is raised based on the predicted

outcome ôutL(σ′), or false, otherwise.

For simplicity, we omit the subscript L from ôutL and omit ôutL from alarm ôutL
when it is clear from the context. An alarm system can raise an alarm at
most once per case, since we assume that already the first alarm triggers an
intervention by the stakeholders.

The purpose of an alarm system is to minimize the cost of executing a case.
Table 1 summarizes how the cost of a case is determined based on a cost model
(cf. Def. 2), on the case outcome, and on whether an alarm was raised or not.

Definition 4 (Cost of Case Execution). Let cm = (cin , cout , ccom , eff) be
an alarm-based cost model. Let out ∈ E∗ → {true, false} be an outcome function.
Let alarm ∈ E∗ → {true, false} be an alarm-based prescriptive process monitoring
system. Let L ⊂ E∗ be the entire set of complete (i.e., no more running) cases.
Let σ ∈ L be a case. Let I(σ, alarm) be the index of the event in σ when the
alarm was raised or zero if no alarm was raised:

I(σ, alarm) =

0 if ∀k ∈ [1, |σ|−1].¬alarm(hdk(σ)),

1 if alarm(hd1(σ)),

i ∈ [2, |σ|] s.t. alarm(hd i(σ))∧ otherwise.

∀k ∈ [1, i− 1]. ¬alarm(hdk(σ))

The cost of execution of case σ supported by the alarm system is:

cost(σ, L, cm, alarm) =

cin(I(σ, alarm), σ, L) + (1− eff (I(σ, alarm), σ, L)) · cout(σ, L) out(σ) ∧ I(σ, alarm) > 0,

cin(I(σ, alarm), σ, L) + ccom(σ, L) ¬out(σ) ∧ I(σ, alarm) > 0,

cout(σ, L) out(σ) ∧ I(σ, alarm) = 0,

0 otherwise.

Section 4 illustrates how an alarm-based prescriptive process monitoring
system can be designed aiming at the minimization of the case execution costs
(according to Def. 4).

3.3 Return on Investment Analysis

In this section, we provide an analysis and guidelines that suggest when it is
valuable to invest in developing an alarm system, namely, when the return on
investment (ROI) is positive. To this aim, we need to compare the case of a
business process execution supported by an alarm system with the as-is situation
where the business process is executed without this support. For this analysis,
we consider a set of cases recorded in an event log L, where no interventions
were done, and a cost model cm = (cin , cout , ccom , eff).

The as-is situation implies that no interventions are done in any of the cases
σ ∈ L that lead to an undesired outcome, yielding a cost cout(σ). When ap-
plied to the entire log L, the cost is costas-is(L) =

∑
σ∈L s.t. out(σ) cout(σ). In-

stead, when a certain system alarm is in effect, the costs are costalarm(L) =∑
σ∈L cost(σ, L, cm, alarm) (cf. Defs. 2, 3). With this setting, the return

on investment of the system alarm is ROI (L, cm, alarm) = costas-is(L) −
costalarm(L), which must be positive to make deploying the system worthwhile.

The question that remains is: how does the ROI depend on the cost model
and the alarm system? For the sake of simplicity, we assume, in this analysis,
that every component of the cost model is constant. Furthermore, the initial
investment costs are not considered because we assume the system to be fully
operational already for a sufficiently long time, so that the the initial costs have
been amortized. The above assumptions yield the following case cost:

cost(σ, L, cm, alarm) =

cin + (1− eff)cout out(σ) ∧ I(σ, alarm) > 0,

cin + ccom ¬out(σ) ∧ I(σ, alarm) > 0,

cout out(σ) ∧ I(σ, alarm) = 0,

0 otherwise
where cin , cout , ccom , and eff are constants. In order for the ROI to be pos-
itive, it should be costas-is(L) > cost(σ, L, cm, alarm), that is:

|Lund| · cout > |Lund&al|(cin + (1− eff)cout) + |Ldes&al|(cin + ccom) + |Lund&nal| · cout

where Lund&al, Ldes&al, Lund&nal respectively consist of the traces in L related
to the cases with an undesired outcome that would be alarmed, with a desired

outcome that would still be alarmed, with an undesired outcome that would not
be alarmed; also, Lund = Lund&al ∪ Lund&nal. After simplification:

|Lund&al|(eff cout − cin) > |Ldes&al|(cin + ccom). (1)

Because the right-hand side of Eq. 1 is non-negative, it follows as a corollary
that eff cout > cin is a necessary condition for return on investment. In other
words, it must be possible to avoid a cost that is higher than the cost of doing
the intervention. This provides a validation of our framework: it complies with
the reasonableness condition in the cost-sensitive learning literature [5], which
states that the cost of labeling an example incorrectly should always be greater
than the cost of labeling it correctly.

Eq. 1 also illustrates that the policy of always alarming does not yield a
positive ROI, unless the number of cases with undesired outcome and the cost
of the undesired outcome are sufficiently high. When the number of cases with
an undesired outcome is small (e.g., the unemployment benefits and the financial
institution scenarios described in Boxes 1 and 2) and at the same time the cost
of this undesired outcome is small, then the left-hand side of Eq. 1 is negligible,
thus leading to condition cin + ccom < 0, which can never hold.

So far we have assumed, for the sake of simplicity, that costs and mitigation
effectiveness are constant, similarly to traditional cost-sensitive learning. How-
ever, the novelty of our formulation lays in the fact that costs are functions that
depend on the time when an intervention is made. As a result, the reasonable-
ness of the cost matrix would not be fixed, but potentially changes over time.
Still, variable costs do not invalidate the ROI analysis. In fact, in order for the
ROI to be positive, it is sufficient that the cost model is reasonable for a certain
time period; otherwise, the alarm system would never raise alarms because of
the cost model. Clearly, the longer the reasonable-cost period is, the higher the
ROI.

4 Alarming Mechanisms and Empirical Thresholding

An alarm system needs two components to minimize the costs of future cases: (1)
a probabilistic classifier ôutL ∈ E∗ → [0, 1] that estimates the likelihood of an un-
desired outcome for a partial trace based on some historical observations L, and
(2) an alarming mechanism that, for a given incomplete case, decides whether
or not to raise an alarm based on the prediction made by ôutL. We propose to
implement the second component using a function agent ∈ [0, 1] → {true, false}
that operates on the estimated likelihood of an undesired outcome, where value
true represents the decision to raise an alarm. Together, the two components
form an alarm system, alarm(hdk(σ)) = agent(ôutL(hdk(σ))), which makes the
decision on whether or not to raise an alarm based on the observed k events of
trace σ.

The first component, function ôutL, can be implemented using any classifica-
tion algorithm that is naturally probabilistic, i.e., that outputs likelihood scores
on a [0, 1]-interval instead of a binary outcome. Examples of probabilistic clas-
sification algorithms include naive Bayes, logistic regression, and random forest.
The classifier is trained on historical cases recorded in a log Ltrain .

It is easy to see that the decision on whether or not to raise an alarm should
be dependent not only on ôutLtrain

(hdk(σ)), but also on the configuration of cin ,
cout , ccom , and eff . When cin and ccom are very low compared to cout , it might be
beneficial to use a lower threshold for the estimated likelihood ôutLtrain

(hdk(σ)),
while one would want to be more certain that the undesired outcome will happen
when cin or ccom is high.

We propose to implement the second component, agent , as an alarming
threshold, i.e., a mechanism that alarms when the estimated likelihood of an
undesired outcome is at least τ . We define function alarmτ (hdk(σ)) to be the
alarming function that uses the alarming mechanism agentτ (ôutLtrain

(hdk(σ))) =
ôutLtrain

(hdk(σ)) ≥ τ . We aim at finding the optimal value τ of the alarming
threshold that minimizes the cost on a log Lthres consisting of historical obser-
vations such that Lthres ∩Ltrain = ∅ with respect to a given likelihood estimator
ôutLtrain and cost model cm. The total cost of an alarming mechanism alarm
on a log L is defined as cost(L, cm, alarm) = Σσ∈Lcost(σ, L, cm, alarm). Using
this definition, we define τ = arg minτ∈[0,1] cost(Lthres , cm, alarmτ). Optimizing
a threshold τ on a separate thresholding set is called empirical thresholding [6]
and the search for the optimal threshold τ wrt. a specified cost model and log
Lthres can be performed using any hyperparameter optimization technique, such
as Tree-structured Parzen Estimator (TPE) optimization [7]. The resulting ap-
proach can be considered to be a form of cost-sensitive learning, since the value
τ depends on how the cost model cm is specified.

Note that as an alternative to a single global alarming threshold τ it is
possible to optimize a separate threshold τk for each prefix length k. We exper-
imentally found a single global threshold τ optimized on Lthres to outperform
separate prefix-length-dependent thresholds τk optimized on Lthres , therefore we
propose to use a single optimized threshold.

After creating the fully functional alarm system by training a classifier on
Ltrain and optimizing the alarming threshold on Lthres for the given cost model
cm, the obtained alarming function alarm can be applied to the continuous
stream of events coming from the executions of a business process, thereby re-
ducing the processing costs of the running cases.

5 Evaluation

In this section, we describe the experimental setup for evaluating the proposed
framework and the results of the evaluation. We address the following research
questions:

RQ1 Can empirical thresholding find thresholds that consistently lead to a re-
duction in the average processing cost for different cost model configura-
tions?

RQ2 Does the alarm system consistently yield a benefit over different values of
the mitigation effectiveness?

RQ3 Does the alarm system consistently yield a benefit over different values of
the cost of compensation?

5.1 Approaches and Baselines

We experiment with two different implementations of ôutLtrain
by using differ-

ent well-known classification algorithms, namely, random forest (RF) and gra-
dient boosted trees (GBT). Both classification algorithms have shown to be
amongst the top performing classification algorithms on a variety of classifica-
tion tasks [8,9]. We employ a single classifier approach where the features for a
given prefix are obtained using the aggregation encoding [10], which has been
shown to perform better than alternative encodings for event logs [3].

We apply the TPE optimization procedure for the alarming mechanism to
find the optimal threshold τ . We use several fixed thresholds as baselines. First,
we compare with the as-is situation in which alarms are never raised. Secondly,
we compare with the baseline τ = 0, allowing us to compare with the situation
where alarms are always raised directly at the start of a case. Finally, we compare
with τ = 0.5 enabling the comparison with the cost-insensitive scenario that
simply alarms when an undesired outcome is expected. The implementation of
the approach and the experimental setup are openly available online.3

5.2 Datasets

For each event log, we use all available data attributes as input to the classifier.
Additionally, we extract the event number, i.e., the index of the event in the
given case, the hour, weekday, month, time since case start, and time since last
event. Infrequent values of categorical attributes (occurring less than 10 times in
the log) are replaced with value “other”, to avoid exploding the dimensionality.
Missing attributes are imputed with the respective most recent (preceding) value
of that attribute in the same trace when available, otherwise with zero. Traces
are cut before the labeling of the case becomes trivially known and are truncated
at the 90th percentile of all case lengths to avoid bias from very long traces. We
use the following datasets to evaluate the alarm system:

BPIC2017. This log records execution traces from a loan application process
in a Dutch financial institution.4 The event log was split into two sub-logs,
denoted with bpic2017 refused and bpic2017 cancelled. In the first one, the
undesired cases refer to the process executions in which the applicant has
refused the final offer(s) by the financial institution and, in the second one,
the undesired cases consist of those cases where the financial institution has
cancelled the offer(s).

Road traffic fines. This event log originates from the Italian local police.5 The
desired outcome is that a fine is fully paid, while in the undesired cases the
fine needs to be sent for credit collection.

Unemployment. This event log corresponds to the Unemployment Benefits
scenario (Box 1 in Section 3.1). The undesired outcome is that a resident
will receive more benefits than entitled, causing the need for a reclamation.
Privacy constraints prevent us from making this event log publicly available.

3 https://taxxer.github.io/AlarmBasedProcessPrediction/
4 https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
5 https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5

https://taxxer.github.io/AlarmBasedProcessPrediction/
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5

Table 2: Dataset statistics

class min med (trunc.) max
dataset name traces ratio length length length events

bpic2017 refused 31 413 0.12 10 35 60 1 153 398
bpic2017 cancelled 31 413 0.47 10 35 60 1 153 398
traffic fines 129 615 0.46 2 4 5 445 959
unemployment 34 627 0.2 1 21 79 1 010 450

Table 2 describes the characteristics of the event logs used. The classes are well
balanced in bpic2017 cancelled and traffic fines, while the undesired outcome
is more rare in case of unemployment and bpic2017 refused. In traffic fines, the
traces are very short, while in the other datasets the traces are longer.

5.3 Experimental Setup

We apply a temporal split, i.e., we order the cases by their start time and from
the first 80% of the cases randomly select 80% (i.e., 64% of the total) for Ltrain

and 20% (i.e., 16% of the total) for Lthres , and use the remaining 20% as the test
set Ltest . The events in cases in Ltrain and Lthres that overlap in time with Ltest

are discarded in order to not use any information that would not be available yet
in a real setting. We use TPE with 3-fold cross validation on Ltrain to optimize
the hyperparameters for RF and GBT. We optimize the alarming threshold τ by
building the final classifiers using all the traces in Ltrain and search for τ using
Lthres .

It is common in cost-sensitive learning to apply calibration techniques to the
resulting classifier in order to obtain accurate probability estimates and, there-
fore, more accurate estimates of the expected cost [11]. However, we found that
calibrating the classifier using Platt scaling [12] does not consistently improve
the estimated likelihood of undesired outcome on the four event logs, and fre-
quently even leads to less accurate likelihood estimates. Therefore, we decided
to skip the calibration step. Moreover, since we use empirical thresholding, it is
not necessary that the probabilities are well calibrated and it is sufficient that
the likelihoods are reasonably ordered.

Table 3 shows the configurations of the cost model that we explore in the
evaluation. To answer RQ1, we vary the ratio between cout(σ, L) and cin(k, σ, L)
(keeping ccom(σ, L) and eff (k, σ, L) unchanged). To answer RQ2, we vary both
eff (k, σ, L) and the ratio between cout(σ, L) and cin(k, σ, L). To answer RQ3, we
vary two ratios: 1) between cout(σ, L) and cin(k, σ, L) and 2) between cin(k, σ, L)
and ccom(σ, L).

We measure the average processing cost per case in Ltest , and aim at mini-
mizing this cost. Additionally, we measure the benefit of the alarm system, i.e.,
the reduction in the average processing cost of a case when using the alarm
system compared to the average processing cost when not using it.

Table 3: Cost model configurations

cout(σ, L) cin(k, σ, L) ccom(σ, L) eff (k, σ, L)

RQ1 {1, 2, 3, 5, 10, 20} 1 0 1− k/|σ|
RQ2 {1, 2, 3, 5, 10, 20} 1 0 {0, 0.1, 0.2, ..., 1}
RQ3 {1, 2, 3, 5, 10, 20} 1 {0, 1/20, 1/10, 1/5, 1/2, 1, 2, 5, 10, 20} 1− k/|σ|

bpic2017_cancelled bpic2017_refused traffic_fines unemployment

3:1 10:1 20:1 3:1 10:1 20:1 3:1 10:1 20:1 3:1 10:1 20:1

0.1
0.2
0.3
0.4
0.5

c_out : c_inA
v
g

.
c
o

s
t

p
e

r
c
a

s
e

method always alarm never alarm optimized tau=0.5

Fig. 1: Cost over different ratios of cout(σ, L) and cin(k, σ, L) (GBT)

5.4 Results

Fig. 1 shows the average cost per case when increasing the ratio of cout(σ, L)
and cin(k, σ, L) from left to right. We only present the results obtained with
GBT as we found it to slightly outperform RF. When the ratio between these
two costs is balanced (i.e., 1:1), the minimal cost is obtained by never alarming.
This is in agreement with the ROI analysis, where we found eff cout > cin to
be a necessary condition for having an advantage from an alarm system. When
cout � cin the best strategy is to always alarm. When cout is slightly higher
than cin the best strategy is to sometimes alarm based on ôut. We found that
the optimized τ always outperforms the baselines. An exception is ratio 2:1 for
traffic fines, where never alarming is slightly better.

In Fig. 2, the average cost per case is plotted against different (fixed) thresh-
olds. The optimized threshold is marked with a red cross and each line represents
one particular cost ratio. We observe that, while the optimized threshold gen-
erally obtains minimal costs, there sometimes exist multiple optimal thresholds
for a given cost model configuration. For instance, in the case of the 5:1 ratio in
bpic2017 cancelled, all thresholds between 0 and 0.4 are cost-wise equivalent. We
conclude that the empirical thresholding approach consistently finds a threshold
that yields the lowest cost in a given event log and cost model configuration
(cf. RQ1).

Fig. 3a shows the benefit of having an alarm system compared to not having
it for different (constant) mitigation effectiveness values. As the results are simi-
lar for logs with similar class ratios, hereinafter, we only show the results for one
log from each of the groups: bpic2017 cancelled (balanced classes) and unemploy-
ment (imbalanced classes). As expected, the benefit increases both with higher
eff (k, σ, L) and with higher cout(σ, L) : cin(k, σ, L) ratio. For bpic2017 cancelled,

bpic2017_cancelled bpic2017_refused traffic_fines unemployment

0.0 0.3 0.6 0.9 0.0 0.3 0.6 0.9 0.0 0.3 0.6 0.9 0.0 0.3 0.6 0.9

0.1
0.2
0.3
0.4
0.5

Threshold (τ)A
v
g

.
c
o

s
t

p
e

r
c
a

s
e

c_out : c_in 1:1 2:1 5:1 20:1

Fig. 2: Cost over different thresholds (τ is marked with a red cross)

bpic2017_cancelled unemployment

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

1:1
2:1
3:1
5:1

10:1
20:1

mitigation effectiveness (eff)

c
_

o
u

t
:

c
_

in

(a) Varying eff (k, σ, L)

bpic2017_cancelled unemployment

1:0 10:1 5:1 2:1 1:1 1:2 1:5 1:10 1:0 10:1 5:1 2:1 1:1 1:2 1:5 1:10

c_in : c_com

benefit
0.0
0.1
0.2
0.3
0.4

(b) Varying ccom(σ, L)

Fig. 3: Benefit with different cost model configurations

the alarm system yields a benefit when cout(σ, L) : cin(k, σ, L) is high and
eff (k, σ, L) > 0. Also, a benefit is always obtained when eff (k, σ, L) > 0.5 and
cout(σ, L) > cin(k, σ, L). In the case of unemployment, the average benefits are
smaller, since there are fewer cases with undesired outcome and, therefore, the
number of cases where cout can be prevented by alarming is lower. In this case,
a benefit is obtained when both eff (k, σ, L) and cout(σ, L) : cin(k, σ, L) are high.
We conducted analogous experiments with linear effectiveness decay, varying
the maximum possible effectiveness (at the start of the case), which confirmed
that the observed patterns remain the same. We have empirically confirmed our
theoretical finding (Section 3.3) that eff cout > cin is a necessary condition to
obtain a benefit from using an alarm system, and have shown that a benefit
is in practice also obtained under this condition when an optimized alarming
threshold is used (cf. RQ2).

Similarly, the benefit of the alarm system is plotted in Fig. 3b across dif-
ferent ratios of cout(σ, L) : cin(k, σ, L) and cin(k, σ, L) : ccom(σ, L). We observe
that when ccom(σ, L) is high, the benefit decreases due to false alarms. For
bpic2017 cancelled, a benefit is obtained almost always, except when cout(σ, L) :
cin(k, σ, L) is low (e.g., 2:1) and ccom(σ, L) is high (i.e., higher than cin(k, σ, L)).
For unemployment, a benefit is obtained with fewer cost model configurations,
e.g., when cout(σ, L) : cin(k, σ, L) = 5 : 1 and ccom(σ, L) is smaller than
cin(k, σ, L). We conducted analogous experiments with linearly increasing cost
of intervention, varying the maximum possible cost (at the end of the case),
which confirmed that the patterns described above remain the same. To answer
RQ3, we have empirically confirmed that the alarm system achieves a benefit as

discussed in Section 3.3 in case the cost of the undesired outcome is sufficiently
higher than the cost of the intervention and/or the cost of the intervention is
sufficiently higher than the cost of compensation.

6 Related Work

The problem of cost-sensitive training of machine learning models has received
significant attention. For example, Elkan [5] analyzes the notion of misclassifi-
cation cost and defines conditions under which a misclassification cost matrix
is reasonable. Turney [13] examines a broader range of costs in the context of
inductive concept learning. This latter study introduces the notion of cost of
intervention, which we include in our proposed cost model. These approaches,
however, do not take into account the specific costs that arise in prescriptive
process monitoring.

Predictive and prescriptive process monitoring are related to Early Classifi-
cation of Time Series (ECTS), which aims at classifying a (partial) time series
as early as possible, while achieving high classification accuracy [14]. To the best
of our knowledge, works [15,16,17] are the only ECTS methods trying to balance
accuracy-related and earliness-related costs. However, these approaches assume
that predicting a positive class early has the same effect on the cost function as
predicting a negative class early, which is not the case in typical business process
monitoring scenarios, where earliness matters only when an undesired outcome
is predicted.

Works [18,19] focus on alarm-based prescriptive process monitoring, but only
allow alarms to be raised when a given state of the process is reached. This mo-
ment might potentially be late to mitigate the consequences, which would have
been possible if the alarm was raised earlier. Furthermore, our approach does
not require an explicit modelling of the process states. Last but not least, they
rely on a fixed-threshold alarming mechanism provided by process owners, as
opposed to our empirical thresholding approach. Gröger et al. [20] is an existing
approach to provide recommendations, but it misses the two core elements of
our proposed prescriptive process monitoring framework, i.e., cost models and
earliness.

7 Limitations and Future Work

While the scenarios discussed in Boxes 1-3 show that the proposed framework is
versatile enough to cover a variety of cases, the current version of the framework
relies on two main assumptions. First, it assumes that an alarm always trig-
gers an intervention, thus ignoring that a process worker might in some cases
decide not to or be unable to intervene. Additionally, the current version of
the framework considers each case in isolation, omitting the overall workload of
the process workers, which in reality is an important factor for determining the
number of alarms that can be acted upon. This limitation can be lifted by, e.g.,
combining the alarm system with [21], which proposes a recommender system
that optimizes suggestions in case of concurrent process executions. A second

limitation of the framework is that only one possible type of intervention is en-
visaged. This assumption can be lifted by extending the framework so that the
cost of an intervention can vary depending on the specific action suggested by a
recommender system.

Next to these limitations, we acknowledge the importance of further inves-
tigation on the applicability of the framework in practice. In particular, in the
future, we aim at collaborating with companies and institutions to study whether
process stakeholders are able to define the costs in a natural and simple way.
Also, we plan to further investigate the consequences of incorrect and/or im-
precise instantiations of the cost models. Furthermore, the current evaluation is
limited to measuring the benefit of the alarm system in an offline manner, while
a more thorough evaluation would consist in deploying the alarming mechanism
in a real organization and making an end-to-end comparison of the costs before
and after the deployment of the alarm system. However, this is a difficult task for
two main reasons. First, companies need to be willing to let the technique really
influence the process executions. Second, the end-to-end effectiveness analysis
cannot be conducted without coupling the alarm system with a recommender
system: if the system raises proper alarms, but inappropriate interventions are
taken, the system would still be ineffective. Another avenue for future work is
to extend the framework with active learning methods in order to incremen-
tally tune the alarming mechanism based on feedback about the relevance of the
alarms and the effectiveness of the interventions.

8 Conclusion

This paper outlined an alarm-based prescriptive process monitoring framework
that extends existing predictive process monitoring approaches with the concepts
of alarms, interventions, compensations, and mitigation effects. The framework
incorporates a cost model to analyze the tradeoffs between the cost of interven-
tion, the benefit of mitigating or preventing undesired outcomes, and the cost
of compensating for unnecessary interventions induced by false alarms. The cost
model allows one to estimate the benefits of deploying a prescriptive process
monitoring system for the purposes of return on investment analysis. Addition-
ally, the framework incorporates a technique to optimize the alarm generation
mechanism with respect to a given configuration of the cost model and a given
event log. An empirical evaluation on real-life logs showed the benefits of apply-
ing this optimization versus a baseline where a fixed likelihood score threshold
is used to generate alarms, as considered in previous work in the field.

References

1. Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive moni-
toring of business processes. In: Proc. of CAiSE, Springer (2014) 457–472

2. Metzger, A., Leitner, P., Ivanovic, D., Schmieders, E., Franklin, R., Carro, M.,
Dustdar, S., Pohl, K.: Comparing and combining predictive business process mon-
itoring techniques. IEEE Trans. Systems, Man, and Cybernetics: Systems 45(2)
(2015) 276–290

3. Teinemaa, I., Dumas, M., La Rosa, M., Maggi, F.M.: Outcome-oriented predic-
tive process monitoring: Review and benchmark. arXiv preprint arXiv:1707.06766
(2017)

4. Dees, M., de Leoni, M., Mannhardt, F.: Enhancing process models to improve busi-
ness performance: A methodology and case studies. In: Proc. of CoopIS, Springer
(2017) 232–251

5. Elkan, C.: The foundations of cost-sensitive learning. In: Proc. of IJCAI. Vol-
ume 17., Lawrence Erlbaum Associates Ltd (2001) 973–978

6. Sheng, V.S., Ling, C.X.: Thresholding for making classifiers cost-sensitive. In:
AAAI. (2006) 476–481

7. Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter
optimization. In: Proc. of NIPS. (2011) 2546–2554

8. Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we need hundreds
of classifiers to solve real world classification problems. JMLR 15(1) (2014) 3133–
3181

9. Olson, R.S., La Cava, W., Mustahsan, Z., Varik, A., Moore, J.H.: Data-driven
advice for applying machine learning to bioinformatics problems. In: Proc. of
Biocomputing, World Scientific (2017)

10. de Leoni, M., van der Aalst, W.M.P., Dees, M.: A general process mining framework
for correlating, predicting and clustering dynamic behavior based on event logs.
Information Systems 56 (2016) 235–257

11. Zadrozny, B., Elkan, C.: Learning and making decisions when costs and probabil-
ities are both unknown. In: Proc. of KDD, ACM (2001) 204–213

12. Platt, J., et al.: Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. Advances in large margin classifiers 10(3) (1999)
61–74

13. Turney, P.D.: Types of cost in inductive concept learning. In: Proc. of the Cost-
Sensitive Learning Workshop. (2002)

14. Xing, Z., Pei, J., Philip, S.Y.: Early classification on time series. KAIS 31(1)
(2012) 105–127

15. Mori, U., Mendiburu, A., Dasgupta, S., Lozano, J.A.: Early classification of time
series by simultaneously optimizing the accuracy and earliness. IEEE Trans. Neural
Netw. Learn. Syst. (2017)

16. Dachraoui, A., Bondu, A., Cornuéjols, A.: Early classification of time series as
a non myopic sequential decision making problem. In: ECML PKDD, Springer
(2015) 433–447

17. Tavenard, R., Malinowski, S.: Cost-aware early classification of time series. In:
ECML PKDD, Springer (2016) 632–647

18. Metzger, A., Föcker, F.: Predictive business process monitoring considering relia-
bility estimates. In: Proc. of CAiSE, Springer (2017) 445–460

19. Di Francescomarino, C., Dumas, M., Maggi, F.M., Teinemaa, I.: Clustering-based
predictive process monitoring. IEEE Trans. Services Computing (2017)

20. Gröger, C., Schwarz, H., Mitschang, B.: Prescriptive analytics for recommendation-
based business process optimization. In: Proc. of BIS, Springer (2014) 25–37

21. Conforti, R., de Leoni, M., La Rosa, M., van der Aalst, W.M.P., ter Hofstede,
A.H.M.: A recommendation system for predicting risks across multiple business
process instances. Decision Support Systems 69 (2015) 1–19

	Alarm-Based Prescriptive Process Monitoring

