
Finding Process Variants in Event Logs
(Short Paper)

Alfredo Bolt, Wil M. P. van der Aalst, and Massimiliano de Leoni

Eindhoven University of Technology, Eindhoven, The Netherlands
{a.bolt,w.m.p.v.d.aalst,m.d.leoni}@tue.nl

Abstract. The analysis of event data is particularly challenging when
there is a lot of variability. Existing approaches can detect variants in
very specific settings (e.g., changes of control-flow over time), or do not
use statistical testing to decide whether a variant is relevant or not. In
this paper, we introduce an unsupervised and generic technique to detect
significant variants in event logs by applying existing, well-proven data
mining techniques for recursive partitioning driven by conditional infer-
ence over event attributes. The approach has been fully implemented and
is freely available as a ProM plugin. Finally, we validated our approach by
applying it to a real-life event log obtained from a multinational Spanish
telecommunications and broadband company, obtaining valuable insights
directly from the event data.

1 Introduction

Organizations can record the execution of business processes supported by pro-
cess aware information systems into event logs [1]. Process mining is a relatively
young research discipline that is concerned with discovering, monitoring, and
improving real processes by extracting knowledge from event logs [1]. Processes
are affected by variability that is not only related to the control-flow perspec-
tive (e.g., a process may skip risk assessment steps for gold customers), but
can also be related to other perspectives, such as performance. For example, if
two branches of a company execute their processes in the same way (i.e., same
control-flow) there could still be performance differences between the branches.

In this paper, we briefly discuss a novel technique to detect relevant process
variants (i.e., groups of process executions) in an event log using the control-flow,
performance and context attributes of events in an interactive and exploratory
way, where only relevant results are presented. The full version of this paper
containing extended discussions, formalizations and results is presented in [2].

It is important to note that the type of analysis performed with our approach
can also be achieved by combining other approaches and standard data min-
ing techniques. However, such techniques require extensive and manual ad-hoc
parametrization and configuration to achieve the same results that our approach
can obtain in a much easier way. We achieve this by leveraging on process models
to identify points of interest in the process (e.g., a given state in the process).
Then, the same variability analysis is automatically performed in each point of

Fig. 1: Overview and steps of our approach: (1) Given an event log, a process
model is created. (2) Points of interest are identified in the process model. (3) For
each point of interest, the set of cases that reach it is partitioned into process
variants. (4) A summary of process variants is produced, where the splitting
criteria and the resulting variants are shown for each point of interest.

interest and the summarized results for the whole process are presented to the
user as result. Figure 1 illustrates the overview and steps of our approach. Note
that our technique provides, for each point of interest, a clear partitioning cri-
teria that allows one to easily identify and characterize process variants. The
resulting process variants can be analyzed individually, but can also be com-
pared using process comparison techniques such as [3]. Our approach has been
implemented and evaluated in a real case study.

2 Preliminaries

Let E be the universe of events, N be the universe of attribute names and V
be the universe of possible attribute values. Events can have values for given
attributes through the function # : N → (E 9 V). For an attribute a ∈ N , the
partial function #(a) : E 9 V, denoted as #a, can relate events to values of the
attribute a.

Let σ ∈ E∗ be a trace. A trace records the execution of an instance of a process
and is a finite sequence of events. Let L ⊆ E∗ be an event log, i.e., a set of traces.
Each event is unique and appears only once in one trace within the event log,
i.e., for any event e ∈ E :

∣∣{(σ, i)| σ ∈ L ∧ i ∈ {1, ..., |σ|} ∧ σ(i) = e
}∣∣ ≤ 1.

A process variant V ⊆ L is defined as a set of traces. The traces in a process
variant also contain similarities in other event attributes. Process variants also
should have differences with respect to other process variants. The traces in such
process variants should be similar to traces in the same variant, but are different
to traces in other process variants.

In this paper, we leverage on the same log augmentation techniques defined
in [4] (i.e., trace manipulation operations) to extend events with obtain addi-
tional attributes, such as the elapsed time of an event within its case, or the next
activity to be executed in a case.

The first step in our approach is to create a process model from the event log.
Transition systems are very simple process models that are composed of states
and of transitions between them. A transition is defined by an activity being
executed, triggering the current state to move from a source to a target state.
Prefixes of traces can be mapped to states and transitions using representation
functions that define how these prefixes are interpreted.

Definition 1 (Transition System). Let L ∈ E∗ be an event log, PL the set
of all the prefixes of traces of L, EL the set of all the events of L, rs a state
representation function and ra an activity representation function. A transition
system TS (rs,ra,L) is defined as a triplet (S,A, T) where S = {s ∈ Rs | ∃σ∈PL

s =
rs(σ)} is the set of states, A = {a ∈ Ra | ∃e∈EL

a = ra(e)} is the set of activities

and T = {(s1, a, s2) ∈ S × A × S | ∃σ∈PL\{〈〉} s1 = rs(pref |σ|−1(σ)) ∧ a =
ra(σ(|σ|)) ∧ s2 = rs(σ)} is the set of valid transitions between states.

3 Finding Process Variants in Event Logs

Defining Points of Interest in a Transition System (step 2): Given a

transition system TS (rs,ra,L) = (S,A, T), we define P ⊆ S∪T as the set of points

of interest. Given an event log L and a transition system TS (rs,ra,L) = (S,A, T),
every point of interest p ∈ S ∪ T can be related to a set of traces through the
function tr : (S ∪ T)→ P(L).

Finding Variants in a Point of Interest (step 3): We find process vari-
ants in the points of interest defined above by using Recursive Partitioning by
Conditional Inference (RPCI) techniques [5] over event attributes. This tech-
nique is able to split a set of instances based on dependent and independent
attributes (i.e., features, variables).

A trace cannot correspond directly to an instance because it may have several
different values for the same attribute. For example, an elapsed time attribute
can have different values for each event in the trace. For this purpose, we choose
the attribute values of a single event of a trace to represent it as an instance.
The choice of which event should be used is related to the definition of points of
interest discussed before. Since we know that for a given point of interest p, any
trace σ ∈ tr(p) reaches it at some point, we could simply choose the last event
of the smallest prefix of σ that reaches p.

Given a point of interest p, the set of events that represent the traces in tr(p)
is defined as Ep =

⊎
σ∈tr(p)E(p)(σ), where every event e ∈ Ep corresponds to an

instance. For each point of interest p, we aim to find the relevant partitions of
its corresponding set of events (i.e., instances) Ep (denoted as simply E) based
on their event attributes.

Let E be a set of events, and A(E) = {a ∈ N|dom(#a) ∩ E 6= ∅} the set of
event attributes associated with the events in E. For each attribute a ∈ A(E),
na(E) = {#a(e)|e ∈ dom(#a) ∩ E} defines the set of values of the attribute a
over the set of events E.

We choose one of the event attributes d ∈ A(E) as our dependent attribute
(chosen by the user), for which we will reduce the variability by partitioning

any combination of the other A(E) \ {d} event attributes, namely independent
attributes.

Our approach leverages on the Recursive Partitioning by Conditional Infer-
ence (RPCI) approach [5] to partition the set of events E. RPCI provides a
unbiased selection and binary splitting mechanism by means of statistical tests
of independence between the splitting attributes and the dependent attribute.
The details of how RPCI works are out of the scope of this paper, and the reader
is referred to [5] for the specific mechanisms that RPCI uses to deal with different
types of distributions and combinations of attributes.

In a nutshell, RCPI is described for a set of events E by the following steps:

1. Given a dependent attribute d ∈ A(E), find the independent attribute i ∈
A(E) \ {d} with the strongest significant correlation with d.

2. If such independent attribute i does not exist (i.e., no correlation is signifi-
cant), stop the recursion. If it does exist, an optimal binary partition of the
dependent attribute d is obtained, such that E is split into E1 ⊂ E and
E2 = E \ E1.

3. Repeat step 1 and 2 for E1 and E2 recursively.

As a result of RPCI, a set of events E can be partitioned into a set of subsets
SE = {λ1, ..., λn}. Given the recursive nature of this approach, the exact total
number of partitions to be evaluated depends on the characteristics and distri-
butions of the attributes. Every subset λ ∈ SE corresponds to a set of events.
RPCI provides, for each λ ∈ SE a set of conditions that define it.

Given the way that E was built and the nature of events being unique, every
event in λ is related to a different trace. Therefore, SE = {λ1, ..., λn} can be
transformed into a set of process variants V = {v1, ..., vn} of the same size where
given an point of interest p, a variant v is defined as vi = {σ ∈ tr(p)|∃e∈λi

: e ∈ σ}
for any i ∈ {1, ..., n}. Therefore, the variants are guaranteed to be disjoint.

The approach discussed in this section is repeated for the sets of events
related to each point of interest in the transition system defined by the user.

A Summary of Process Variants (step 4): According to RPCI, the
traces related to a point of interest can be split into process variants or not,
depending on the significance of the correlation between dependent and inde-
pendent attributes. We present a summary of only the points of interest where
process variants were found. For each point of interest, the splitting criteria ob-
tained from RPCI is clearly presented, and the process variants are available
to the user for other types of analysis. A concrete visual representation of the
summary is presented in [2]

4 Implementation & Case Study

We have implemented our approach as a ProM [6] plugin named “Process Variant
Finder” included in the VariantFinder package.1

1 The reader can get this package via the ProM Package Manager.

Fig. 2: Transition system representing the claim handling process. States are
defined by the last two activities executed in a trace prefix. Thickness represents
frequency. Points of interest (ı.e., states and transitions) with a frequency of 5%
of claims or less were filtered out. States “Active, New” and “Closed,Solved” are
highlighted.

In this paper, we report on the results of a case study obtained by applying
our approach to an event log provided by a Spanish broadband and telecommu-
nications company. The provided event log refers to a claim handling process
related to three services that this company provides, codenamed: Globalsim,
SM2M and Jasper. In total, the event log contains 8296 cases (i.e., claims) pro-
cessed between January 2015 and December 2016. Each claim has, on average 5
activities. Claims correspond to traces of this process and can have four sever-
ities: slight, minor, major and critical. In total, there are 40965 events in the
event log.

Customers of the company create a claim which is activated by an employee of
the company when he/she starts working on it. Claims with missing information
can be delayed. If the service was interrupted, the first step is to work on the
restoration of the service. If there was no interruption, or the service has been
restored, resources work on solving the problem that caused the claim. Once a
problem has been solved, it is informed to the customer, which can close the
claim. Customers can also cancel claims at any moment.

Figure 2 illustrates this process as a transition system, in which a state is
defined by the last two activities executed in a prefix of a trace. We used our
approach to discover process variants in all states and transitions of the transition
system shown in Figure 2. In every state and transition, we searched for process
variants. Because of space limitations, the remainder of this section discusses
only a few process variants detected in the “Active, New” and the “Closed,
Solved” states of the transition system presented in Figure 2 (highlighted in red
and blue respectively).

The variants detected in the “Active, New” state (shown in Figure 3) was
obtained by selecting the next activity attribute (described in Section 2) as
the dependent attribute, and using all the other attributes as independent at-
tributes. Therefore, the resulting variants of this partition can be considered as
control-flow variants. On the one hand, we can observe that the claims related
to the Globalsim and Jasper services (i.e., first branch to the left in Figure 3)
have a higher tendency to get delayed than claims related to the SM2M service.
This is accentuated in claims with a “Slight” severity. On the other hand, claims
associated to the SM2M service (i.e., first branch to the right in Figure 3) do not
follow this pattern. From these claims, the ones that have a “Slight” severity are

Fig. 3: Partition detected in the “Active, New” state, defining six Control-flow
variants with differences in the “next activity” to be executed. The labels in
each bar chart are (from left to right): Canceled, Delayed, Restored, Solved. The
dependent attribute is the next activity to be executed. All other attributes are
considered as independent attributes.

more likely to be immediately solved. Domain experts related this to the fact
that slight severity claims usually do not involve an interruption of the service
(thus, no restoration) and can be immediately solved.

More severe claims are divided whether they belong to a “parent claim” (1) or
not (0). This is indicated by the “isChild” attribute (a claim can be subdivided
into smaller claims). Claims that belong to a parent claim are more likely to
become “restored”. This make sense because bigger or more complex claims
are more likely to have child claims, and are also more likely to have a service
interruption. Claims that do not belong to any parent claim can be split into
two main variants: the ones that take one minute or less to be activated and
those that take more than one minute. We can observe that the faster claims are
more likely to be solved, but the slower ones get delayed more often. This could
be related to “easier” claims being processed first.

Figure 4 shows performance process variants detected in the “Close, Solved”
state (i.e., when a claim has been solved and then closed) where the splitting
attributes and criteria are represented in a tree-fashion. We can observe that
claims related to the Globalsim service have the longest throughput time (i.e.,
the time between a claim is created until it is closed), followed by claims related
to the Jasper service. Note that claims related to the S2M2 service are the
fastest to be closed in average, but the time distribution is more spread than
claims related to the Jasper service. This can be observed on the position of
quartiles in the box plots shown in Figure 4. Domain experts explained the fact
that, in average, Globalsim claims took longer to be closed by the fact that there
was a change in the management of this service in May 2016, which resulted,
among other consequences, in the massive closeup of claims. Most of such claims
were declared as “Solved” several months before, but were never officially closed.
It is important to note that the company is only responsible for claims until they

Fig. 4: Performance variants detected in the “Closed, Solved” state. Elapsed
time is measured in milliseconds and is presented as box plots for each variant.
The dependent attribute is Elapsed Time. All other attributes are considered as
independent attributes.

are solved, since the closing of a claim depends on the customer, hence it is not
included in the company’s SLAs.

Naturally, the obtained process variants can be compared. We refer the reader
to [2] for an comparative analysis of obtained process variants.

5 Related Work

We grouped existing process variant detection techniques into four categories:
Concept drift detection, Trace clustering, Performance analysis, and Attribute
Correlation. In this paper we only discuss Attribute Correlation approaches since
it is the category in which our paper falls into. For a more detailed discussion of
related work, we refer the reader to the full version of this paper [2].

Attribute Correlation techniques aim to group cases depending on any event
attributes. The only other approach that belongs in this category (besides our
approach) is [4], that focuses on classifying specific selections of events by build-
ing decision or regression trees with the attributes of such events that are later
used to classify traces into process variants. Our approach is closely related to [4].

The similarities between these approaches are: (1) Behavioral features are
annotated into events as extra attributes via trace manipulation functions. (2)
Selection of events are partitioned into subgroups using such event attributes.

The differences between these approaches are that, in our approach: (1) Pro-
cess variants are always guaranteed to be disjoint (see Sec. 3). This is only
guaranteed in [4] for the event filters EF2 and EF3, which select either the first
or the last event of a trace respectively. (2) The required configuration is simpler
than in [4]: In our approach, given a transition system, the user only needs to
select the dependent and independent attributes, and the same analysis is per-
formed for all points of interest. In [4] an ad-hoc analysis use case needs to be
manually designed for each point of interest. Therefore our approach presents

a summary of process variants in many points of the process. In [4], the result
is a single decision tree describing variants in a single point of the process. (3)
Events are split using RPCI instead of Decision or Regression trees.

Arguably, if RPCI would be used in [4], then they could replicate the results
provided by our approach in processes without loops (see first difference), but
it would require to manually configure several analysis use cases (see second
differences).

6 Conclusions

The problem of detecting process variants in event logs has been tackled by
several authors in recent years. Many authors have successfully solved specific
scenarios where the focus in on specific attributes, such as time. Some have even
provided general solutions, but they fail to filter out irrelevant splits. This pa-
per presents an approach that is able to detect relevant process variants in any
available event attribute by automatically splitting any other (combination of)
event attributes in many points of the process. The approach has been imple-
mented and is publicly available. We were able to successfully identify points
of process variability inside in a real-life event log and we were able to detect
process variants without the use of domain knowledge, confirming such vari-
ability using process comparison techniques. Therefore, our approach provides a
viable solution to process variant detection, even when no domain knowledge is
available.

References

1. van der Aalst, W.M.P.: Process Mining: Data Science in Action. 2nd edn. Springer-
Verlag Berlin Heidelberg (2016)

2. Bolt, A., van der Aalst, W.M.P., de Leoni, M.: Finding process variants in event
logs. Research Report BPM-17-04, BPMCenter.org (2017)

3. Bolt, A., de Leoni, M., van der Aalst, W.M.P.: A visual approach to spot
statistically-significant differences in event logs based on process metrics. In: Pro-
ceedings of 28th International Conference on Advanced Information Systems Engi-
neering (CAiSE 2016). Volume 9694 of Lecture Notes in Computer Science., Springer
International Publishing (2016) 151–166

4. de Leoni, M., van der Aalst, W.M., Dees, M.: A General Process Mining Framework
for Correlating, Predicting and Clustering Dynamic Behavior based on Event Logs.
Information Systems 56 (2016) 235 – 257

5. Hothorn, T., Hornik, K., Zeileis, A.: Unbiased Recursive Partitioning: A Conditional
Inference Framework. Journal of Computational and Graphical Statistics 15(3)
(2006) 651–674

6. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M.,
van der Aalst, W.M.P.: The ProM Framework: A New Era in Process Mining Tool
Support. In: Applications and Theory of Petri Nets. Volume 3536 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg (2005) 444–454

