
A Bayesian Approach for Disconnection Management
in Mobile Ad-hoc Networks

Massimiliano de Leoni, Shah Rukh Humayoun, Massimo Mecella, Ruggero Russo
Dipartimento di Informatica e Sistemistica

SAPIENZA – Università di Roma
Via Ariosto, 25 - Roma (Italy)

{deleoni,humayoun,mecella,russo}@dis.uniroma1.it

Abstract

Mobile Ad-hoc Networks are used in many scenarios (e.g., emergency management) for supporting collab-
orative work of operators. But this requires either (i) continuous connections, or at least (ii) the possibility to
foresee that a device is going out and disconnecting. Therefore a basic problem is how to predict the possible
disconnections of devices, in order to let the upper layers appropriately address connection anomalies (e.g., either
taking global remedial actions to maintain the network connected, or local ones to let the disconnecting device
to go on for some time with its own work, e.g., cache important data needed for the following activities). In this
paper we present a bayesian approach to predict disconnections in MANETs, and validating experimental results
that show the viability of the approach.

Keywords: disconnection prediction, mobile ad hoc networks, cooperative work.

1 Introduction

A Mobile Ad hoc NETwork (MANETs) is a peer-to-peer
(P2P) network of mobile nodes capable to communi-
cate with each other without an underlying infrastruc-
ture. Nodes can communicate with their own neighbors
(i.e., nodes in radio-range) directly by wireless links.
Anyway, non-neighbor nodes can anyway communicate
by using other intermediate nodes as relays, which for-
ward packets toward destinations. The lack of a fixed
infrastructure makes this kind of network suitable in all
scenarios where it is needed to deploy quickly a network
but the presence of access points is not guaranteed. Ex-
amples are military applications, and more recently, per-
vasive systems for process management [13].

In order to guarantee the coordination and data ex-
change the nodes should be aware of the moment when
they are going to disconnect from their MANETs (i.e.,
there is not any neighbor – node in the radio range – to
which node is connected). Indeed, if nodes are alerted
about probable disconnections, some remedial actions
can be enacted:

local disconnection management – That is the
node can take autonomous – not requiring coordination
with other nodes – remedial actions, e.g., to cache some
data that are needed for other tasks to be carried out
while disconnected, or to disseminate to other nodes the

critical information it is storing that is crucial for the
other nodes (so to let them working);

global disconnection management – where the
nodes together coordinate, e.g., through an appropri-
ate Process Management System [6] to be hosted on a
“leader device”. Such a device acts as a central server
and rearranges nodes in a new configuration in which
none is going to disconnect.

This paper introduces a new technique that permits
to predict when MANET nodes are going to disconnect
from all of others and to become isolated. According
to the classification proposed in [17, 18], coordination
can be viewed as being divided into three layers, each
depending on those below: (i) communication, (ii) col-
laboration and (iii) coordination. The lowest layer al-
lows information sharing; collaboration permits partici-
pants to collectively establish the shared goals; the latter
ensures to enact collaborative actions to achieve shared
goals as efficiently as possible.

According to this classification, predicting discon-
nections can be categorized as part of the commu-
nication layer. Indeed, without predicting and han-
dling disconnections, MANET communication would
not work and, consequently, collaboration and coordi-
nation would be impossible

The rest of the paper is structured as follows. This
section ends by illustrating an example about global

1

disconnection management where disconnection predic-
tion may make sense.

Section 2 illustrates our approach: after sketching
the assumptions and some basis of Bayesian filtering,
it continues explaining how to predict when links fall
down. Finally, it ends by describing the algorithm for
building an estimated next connection graph. Such a
graph illustrates estimated MANET topology in the close
future: nodes are MANET peers and arcs represent links
that are estimated as active.

Section 3 describes OCTOPUS, the Virtual Environ-
ment that has been used as emulation platform during
testing. Section 4 shows some technical details of the
actual implementation where Section 5 describes the ex-
periments and following results. The paper concludes
with Section 7 where we report final comments in the
light of results and discuss future progression of this
work.

1.1 A Motivating Example
We are currently working on an European-funded
project, namely WORKPAD [3], that is in charge of de-
signing and implementing a 2-level software infrastruc-
ture to support cooperative works in disaster manage-
ment scenarios. In complex emergency scenarios, dif-
ferent teams, belonging to different organizations, need
to collaborate. So, there exist the need of inter-team and
intra-team coordination. The front-end level consists of
several teams, whereas the back-end is formed by the
headquarters. A single front-end community is consti-
tuted by the operators of a team, equipped with mobile
devices, connected in an ad-hoc and peer-to-peer fash-
ion, that carry on a process, in which the adaptiveness
to connection/task anomalies is fundamental. Opera-
tors may be humans or robots; therefore, teams may be
mixed.

Every human team member is equipped with hand-
held devices (PDAs) and communication technologies,
and is in charge of specific tasks. Team includes also
special robots, e.g., UAVs - Unmanned Aerial Vehicles,
that are intended only to ensure connectivity among
nodes, working as relays. In such a way we can see
the whole team as carrying on a process, and the dif-
ferent teams (of the different organizations) collaborate
through the exchange and integration of data. Different
data sets are stored in the headquarters of organizations
which are responsible for them.

Front-end operators access to the corresponding
back-end server located at headquarters through private
defined protocols. Here they can get or set information
which is relevant to the situation they are dealing with.
At the same time, operators can query information pro-
vided by other organizations. This feature is provided

by an underlying P2P network. Indeed, each and ev-
ery headquarter exports data and their schema. Then,
all these data sources are integrated in order to create a
single “virtual” data source. It does not make difference
to clients which servers actually provide those data.

As a more concrete example, consider a scenario of
archeological disaster/recovery: after an earthquake, a
team is sent to the hit area to evaluate the state of arche-
ological sites and of precarious buildings; the goal is to
draw a situation map to schedule restructuring jobs. A
typical cooperative process to be enacted by the team
would be as shown in Figure 1(a) (depicted as a UML
Activity Diagram).

The team leader has got installed specific
hardware/software to connect to the back end to re-
trieve all previously stored data details, including a map
of the site, the list of the most sensible objects located
in the site, and precedent reports/materials, as well as to
update the information about the emergency situation.

The team is considered as an overall MANET, in
which the team leader’s device (requiring the most com-
putational power, therefore usually a laptop) coordinates
the other team members devices, by providing suitable
information (e.g., maps, sensible objects, etc.) and as-
signing activities.

Team members are equipped with hand-held de-
vices (PDAs), which allow them to execute some op-
erations but do not have too much computational power.
Such operations, possibly provided through the support
of particular hardware (e.g., digital cameras, computa-
tional power for image processing, main storage, clients
for Geographic Information System, etc.), are offered
as software services to be coordinated. Team Member 1
(using its device) could compile some specific question-
naires (after a visual analysis of a building). This will be
analyzed by the team leader to schedule next activities,
supported by specific softwares. Team Member 3 could
take some pictures of the precarious buildings. Finally
Team Member 2 is in charge of specific image process-
ing tasks on previous and recent pictures (e.g., for first
identification of architectural anomalies).

In this scenario, Team Member 2 is in charge at a
given point of matching the photos taken by Team Mem-
ber 3 and the previous ones stored at back-end. PDAs
are not so powerful that they can retrieve all photos and
temporally store. So, Team Member 3 must be con-
nected to the team leader during the whole task exe-
cution. Indeed, Team Leader provides a special hard-
ware proxy allowing any member to connect to the back
end. In theory, every member should not need to be con-
nected, possibly through multi-hop paths, to any other
member at all times. But applications running on mem-
ber devices have to get ensured that a connection always

Ubiquitous Computing and Communication Journal 2

(a) Process (b) Critical situation and adaptive management

Figure 1: Disconnection prediction for adaptive coordination in MANETs

exists between every couple of devices. They do not
have to be worried about disconnections: the Coordina-
tion Layer will take care of them.

But in a particular scenario, as the one depicted in
Figure 1(b), it could happen that the movement of the
operator/device equipped with the camera would result
in a disconnection from other devices/operators. The
Team Leader device has got deployed a Prediction Layer
being in charge of predicting disconnection. A Coordi-
nation Layer is arranged above and is continually ready
to receive disconnection alarms from the layer below. It
could decide to instruct a possible “bridge”, a robot, to
go after the disconnecting operator (i.e. his device), to
maintain the connection and to ensure a path between all
devices. Instructing a bridge device is just a way to han-
dle disconnections: the coordination layer could con-
sider more convenient, in some situations, to duplicate
required data such that the going-to-disconnect node can
be performing assigned task, even if disconnected.

The example described above is a typical global dis-
connection management. Indeed, actions for handling
disconnections are centrally managed by the coordina-
tion layer of the leader device. The leader device is ac-
tually the “global entity” that has the knowledge about
the status of all operators/devices, and takes into account
idle devices, dependencies and operations that can and
cannot be safely delayed, etc.

2 Bayesian Filtering for Discon-
nection Prediction

Our predictive technique is based on few assumptions:

1. Each device is equipped with specific hardware
that allows it to know its distance from the sur-
rounding connected (i.e., within radio range) de-
vices. This is not a very strong assumption, as
either devices are equipped with GPS or specific
techniques and methods (e.g., TDOA - time dif-
ference of arrival, SNR - signal noise ratio, the
Cricket compass, etc.) are easily available. Pa-
per [16] presents a precise technique to track mul-
tiple wireless nodes simultaneously. It relies on
measuring the position of tracked mobile nodes
through radio interferometry. This is guaranteed
to reduce significantly the error with respect to
GPS. Nevertheless, the authors of paper [14] have
recently devised techniques to mitigate the error
when computing node position through GPS. In-
deed, they performed experiments where the error
has been reduced to 3 meters when nodes are not
moving and to 20 meters when nodes are at 80
km/h.

2. At start-up, all devices are connected (i.e., for
each device there is a path - possibly multi-hop -
to any other device). The reader should note that
we are not requiring that each device is within the
radio range of (i.e., one hop connection to) any

Ubiquitous Computing and Communication Journal 3

other device (tight connection), but we require
only a loose connection (guaranteed by appropri-
ate routing protocols, e.g., DSR, AODV, etc.).

3. A specific device in MANET, referred to as coor-
dinator, is in charge of centrally predicting dis-
connections. As all devices can communicate at
start-up and the ultimate goal of our work is to
maintain such connections through predictions, it
is possible to collect centrally all the information
from all devices;

The predictive technique is essentially as follows: at a
given time instant ti the coordinator device collects all
distance information from other devices (for assump-
tions (1) and (3)); on the basis of such information, the
coordinator builds a probable connection graph that is
the probable graph at the next time instant ti+1 in which
the predicted connected devices are highlighted. On the
basis of such prediction, the coordinator layer will take
appropriate actions (which are no further considered in
the following of this paper).

2.1 Bayesian Filtering
Bayes filters [2] probabilistically estimate/predict the
current state of the system from noisy observations.
Bayes filters represent the state at time t by a random
variable Θt. At each point in time, a probability distri-
bution Belt(θ) over Θt, called belief, represents the un-
certainty. Bayes filters aim to sequentially estimate such
beliefs over the state space conditioned on all informa-
tion contained in the sensor data. To illustrate, let’s as-
sume that the sensor data consists of a sequence of time-
indexed sensor observations z1, z2,, zn . The Beli(θ)
is then defined by the posterior density over the random
variable Θt conditioned on all sensor data available at
time t:

Belt(θ) = p(θ|z1, z2, ...zt) (1)

Generally speaking, the complexity of computing
such posterior density grows exponentially over time be-
cause the number of observations increases over time;
the following two assumptions are needed for making
the computation tractable:

1. The system’s dynamic is markovian, i.e., the ob-
servations are statistically independent;

2. The devices are the only subjects that are capable
to change the environment.

On the basis of the above two assumptions, the equa-
tion in a time instant t can be expressed as the combina-
tion of a prediction factor Belt−1(θ) (the equation in
the previous time instant) and an update factor that on

the basis of the observation in the time instant t, realizes
the update of the prediction factor.

In our approach, the random variable Θt belongs to
[0, 1] and we use the Beta(α,β) function as a belief dis-
tribution to model the behavior of the system, according
to the following equation:

Belt(θ) = Beta(αt, βt, θ) (2)

where α and β represent the state of the system and vary
according to the following equations:

{
αt+1 = αt + zt

βt+1 = βt + zt
(3)

In our approach, the observation zt represents the
variation of the relative distance between nodes (i,j) nor-
malized with respect to radio range in the time period
[t-1,t]. It is used to update the two parameters α and β
of the Beta function according to Equation 3. The eval-
uated Beta(α, β) function predicts the value of θ

(i,j)
t+1

estimating the relative distance that will be covered by
the nodes (i,j) in the next time period [t,t+1].

2.2 Prediction of the Distances
Our approach relies on clock cycles whose periods are
T . The pseudo-code for the coordinator is described in
Figure 2. We assume the iBuffer data structure to be
stored only at Team Leader and accessed only by local
threads in a synchronized way. For each ordered couple
(i, j) of nodes, in the n-th cycle, the monitor stores two
float parameters, α

(i,j)
n and β

(i,j)
n , and the last observed

distance d
(i,j)
n−1.

Let us assume a node k comes in a MANET during
the m-th clock cycle. Then, for each MANET node j we
initialize α

(k,j)
m = β

(k,j)
m = 1. In such a way we get

the uniform distribution in [0, 1] and, so, every distance
d
(k,j)
m+1 gets the same probability.

For each time period T , each generic node i sends a
set of tuples (i, j, dj) to the coordinator, where j is an
unique name of a neighboring node and dj is the dis-
tance to j. The coordinator collects continuously such
tuples (i, j, dj) coming from the nodes in an intermedi-
ate buffer. We do no assumptions about clock synchro-
nization. So, every node collects and sends information
to Team Leader according to its clock, which is in gen-
eral shifted with respect to the one of other nodes.

Monitor performs prediction according to the same
clock T : at the beginning of the generic n-th clock cycle
upon timer expiring, it copies the tuples (i, j, dj

n) from
the intermediate buffer to another one and, then, it emp-
ties the former buffer to get ready for updated values. In
the clock cycle, for each collected tuple (i, j, dj) moni-
tor updates the parameters as follow by a bayesian filter:

Ubiquitous Computing and Communication Journal 4

timer: a timer expiring each T seconds.
iBuffer[x,y]: a bi-dimensional squared matrix storing distance among couples of nodes X and Y.
bayesianBuffer[x,y]: a bi-dimensional square matrix storing a triple (α, β, distance) for each couple of nodes X and Y.

UPON DELIVERING BY NODE I OF TUPLE(i, j, dist)
1 iBuffer[i, j] ← dist

UPON EXPIRING OF TIMER()
1 localBuffer ← iBuffer[i, j]
2 /*empty intermediate buffer*/
3 for (i, j) ∈ ibuffer
4 do ibuffer[i, j] ← RADIO RANGE
5
6 for (i, j) ∈ localBuffer
7 do if localBuffer[i, j] ← RADIO RANGE
8 then observation ← 1
9 else observation ← (localBuffer[i, j]− bayesianBuffer[i, j].distance)/RADIO RANGE

10 observation ← (observation + 1)/2
11 bayesianBuffer[i, j].distance ← localBuffer[i, j]
12 bayesianBuffer[i, j].alpha ← u ∗ bayesianBuffer[i, j].alpha + observation
13 bayesianBuffer[i, j].beta ← u ∗ bayesianBuffer[i, j].beta + (1− observation)

Figure 2: Pseudo-codes of the Bayesian algorithm for predicting node distances.

{
α

(i,j)
n+1 = u · α(i,j)

n + o
(i,j)
n

β
(i,j)
n+1 = u · β(i,j)

n + (1− o
(i,j)
n)

(4)

where o
(i,j)
n is an observation and u ∈ [0, 1] is a constant

value. Constant u aims for permitting old observations
to age. As new observations arrive, the previous gets
less and less relevance. Indeed, old observations do not
capture the updated status of MANET connectivity and
motion.

The value for observation can be computed from the
relative distance variation between i and j, scaled with
radio-range:

∆dr(i,j)
n =

d
(i,j)
n − d

(i,j)
n−1

radio range
(5)

where radio range is the maximum distance from
where two nodes can communicate with each other.

Possibly d
(i,j)
n can miss in the cycle n. The distance

between i and j could miss because i and j are not in
radio-range or packets sent by i to Team Leader are lost
or delivered lately.

It is straightforward to prove ∆dr
(i,j)
n to range in

[-1, 1] interval. This range is not suitable for Bayesian
filter since observations should be between 0 and 1. So
we map the value in Equation 5 into the suitable range
[0, 1] as follows1:

o(i,j)
n =

{
d
(i,j)
n −d

(i,j)
n−1

radio range dn and dn−1 are available

1 if dn is unavailable
1
2 if dn is available but dn−1 is not

(6)
In sum, our Bayesian approach estimates the vari-

ation of the future distance between every couple of

nodes, normalized in the [0, 1] range. Values greater
than 0.5 mean nodes to drift apart and smaller values
to move closer. If the value is equal to 0.5, node i is
estimated not to move with respect to j.

The parameters α and β are the inputs for
Beta distribution Beta(α, β), where the expectation
θ
(i,j)
n+1 = E

(
Beta(α(i,j)

n+1, β
(i,j)
n+1)

)
is the variation of the

distance between i and j in radio-range percentage that
will be estimated at the beginning of (n + 1)-th clock
cycle.

At this stage we can estimate the distance between
nodes i and j at the beginning of (n + 1)-th clock cy-
cle. That can be done from Equation 6 by replacing the
observation term o

(i,j)
n with the estimated value θ

(i,j)
n+1 .

Hence:

ed(i,j)
n+1 = d

(i,j)
n + f∆d

(i,j)

n =

= d
(i,j)
n + (2θ(i,j) − 1) ∗ radio range

(7)

It should hold d
(i,j)
n = d

(j,i)
n ; so, it should be

d̃
(i,j)
n+1 = d̃

(j,i)
n+1. But we have to consider d̃

(i,j)
n+1 6= d̃

(j,i)
n+1.

Indeed distance sent by i about distance (i, j) can differ
from what is sent by j about the same distance. This is
why distances are collected at beginning of clock cycles
but these can be shifted.

Therefore, estimated distance d̃i,j
n+1 is computed

by considering both d̃i,j
n+1 and d̃

(i,j)
n+1, through different

weights.

d̃i,j
n+1 = rel

(i,j)
n+1 ∗ d̃

(i,j)
n+1 + rel

(j,i)
n+1 ∗ d̃

(j,i)
n+1

where rel
(i,j)
n+1 is a factor for the estimation

reliability and it is inversely proportional to
1If a node has entered in this cycle we assume o

(i,j)
n = 0.5, i.e., it is not moving.

Ubiquitous Computing and Communication Journal 5

σ
(i,j)
n+1 =

√
V ar(Beta

(
α

(i,j)
n+1, β

(i,j)
n+1)

)
:

rel
(i,j)
n+1 =

1

σ
(i,j)
n+1

1

σ
(i,j)
n+1

+ 1

σ
(j,i)
n+1

=
σ

(j,i)
n+1

σ
(i,j)
n+1 + σ

(j,i)
n+1

.

2.3 Connected Components Computation
Disconnection prediction depends on a parameter γ,
which stands for the fraction of the radio-range for
which the predictive technique does not signal a discon-
nection anomaly2. Let be P (disc

(i,j)
n+1) = P (d̃(i,j)

n+1 ≥
γradio range); two nodes i and j are predicted going
to disconnect if and only if

rel
(i,j)
n+1 ∗P (disc

(i,j)
n+1)+ rel

(j,i)
n+1 ∗P (disc

(j,i)
n+1) >

1
2

(8)

i.e. two nodes i and j are estimated disconnecting if
it is more probable their distance to be greater than
γradio range rather than distance to be smaller than
such a value. We could tune more conservativeness by
lowing γ (i.e. the fraction of radio-range in which dis-
connections are not predicted). If we consider Equa-
tion 7, then:

P (disc
(i,j)
n+1) = P (

˛̨
d
(i,j)
n

radio range
+ (2θ(i,j) − 1)

˛̨
≥ γ)

= P
`
θ(i,j) ≥ 1+γ

2
− d

(i,j)
n

2∗radio range

´

(9)
where the last term in Equation 9 is directly computable
from the estimated beta distribution:

P (θ(i,j) > k) =
∫ 1

k

Beta
(
α(i,j), β(i,j)

)

Once the algorithm predicts which links exist at
the next cycle, we can compute easily the connected
components (i.e., sets of nodes that are predicted to
be connected). Afterwards, on the basis of the con-
nected components, disconnection anomalies are iden-
tified by the monitor. Finally, they are notified either to
the nodes (if a local management strategy is adopted) or
to a coordination layer (if a global management strat-
egy is adopted). Connected components are computable
through “The Mobile Gamblers Ruin Algorithm” below,
where an edge between couples of nodes in the connec-
tion graph exists if Equation 8 is false.

2.4 The Overall Technique
Our predictive algorithm, called as the “The Mobile
Gambler’s Ruin” (MGR) algorithm, is taken from the

Markov chain model of the well known gambler’s ruin
problem [10, 11]. Such a study of the device move-
ments and the consequent distance prediction is based
on Markov chains, because the success of a prediction
depends only on events of previous time frame units. In-
stead of using a markovian process in time domain, we
are going to focalize on spatial domain and we will build
a matrix, which is similar to the one presented in the
original gambler’s ruin model but with other elements.

Let’s consider a square matrix of |E| × |E| el-
ements, where |E| = m, with m, with m is
the total number of mobile devices in the MANET.
We build M = (mij) as a m × m symmet-
ric matrix, in which mij = 1 is the Equation 8
is false or, otherwise mij = 0 if the equation is
true3. Every diagonal element mii = 1 since the
P (disc

(i,j)
n+1) = P (disc

(j,i)
n+1) = 0. That follows for

definition: the distance of a mobile device from itself is
always equal to 0.

The matrix M = (mij) can be considered as the
Adjacency matrix of an (undirected) graph where the
set of nodes are devices and an arc exists between two
nodes if they are foreseen as direct neighbors.

The strategy of the MGR algorithm, which is de-
scribed in Figure 3, is to find the connected compo-
nents of the graph (using the CCDFSG procedure),
and then, by giving two devices ei and ej , to verify
if they belong to the same connected component (the
TEST CONNECTION function); if it is true then ei,
ej will still communicate in the next time period; else
they will lose their connection within the next time
period. Using this strategy, after building the matrix
M = (mij), we can verify which devices are con-
nected, directly (i.e., one hop) or indirectly (i.e., multi
hop), and thus let decide when disconnection manage-
ment techniques should be activated in order to keep the
connection between the involved devices. The aim of
such techniques should be to have a unique connected
component in the graph.

The MGR algorithm computes the connected com-
ponents starting from the matrix that represents the
graph. The output of the MGR program is the Comps
array in which for each i-th element there is an inte-
ger value corresponding to the connected component
it belongs. For example, if we have a set of devices
E = {e1, ..., em} and they form a graph with k con-
nected components, we will have an output vector of
this shape:

(
0 0 . . . 1 . . . 2 . . . k − 1

)
(10)

2As an example, in IEEE 802.11 with 100 meters of radio-range, γ equal to 0.7 means that for a communication distance of 70 meters the
prediction algorithm signals a probable disconnection.

3The matrix is of course symmetric since always there holds mij = mji

Ubiquitous Computing and Communication Journal 6

FUNCTION MGR()
1 numcomps ← 0
2 Comps ← newArray of integer[m];
3 for i ← 0 to (m− 1)
4 do if Comps[i] = 0
5 then numcomps ← numcomps + 1
6 Comps[i] ← numcomps
7 CCDFSG(M, i, numcomps, Comps[])
8 return Comps[]

SUB CCDFSG(M, i, numcomps, Comps[])
1 for i ← 0 to (m− 1)
2 do if Comps[j] = 0 and M [i, j] = 1
3 then numcomps ← numcomps + 1
4 CCDFSG(M, j, numcomps, Comps[])
5

FUNCTION TEST CONNECTION(i, j, Comps[])
1 if Comps[i] = Comps[j]
2 then TEST ← true
3 else TEST ← false
4 return TEST

Figure 3: Pseudo-Code of the MGR algorithm.

Thus for two different devices ei, ej we have only to
test, using the TEST CONNECTION program, if they
have the same value in the vector (10), It will give us a
confidence about the probability of being still connected
in the next time period.

3 The OCTOPUS Virtual Environ-
ment

We implemented and deployed a fully-fledged version
of the algorithm, which is running on PDAs, laptops e
tablet PCs. The aim is to test a real implementation in
order to get realistic results, instead of having informa-
tion from simulations. On the other hand, on-spot test-
ing may be expensive both in terms of resources and
time: several persons are required to be arranged in a
wide area. That might need much time (and, thus, high
cost) to prepare the whole test-bed. Furthermore, field
testing does not provide a controlled environment and
it should be used just as the final user validation of the
system.

Therefore, we test the implementation through em-
ulation. We used OCTOPUS [4], an emulator, which we
have implemented, specifically targeted for MANETs 4.

OCTOPUS keeps a map of virtual areas, which users
can design and show by a GUI. Such a GUI enables the
users to put in that map the virtual nodes and bind each
one to a different real device. Furthermore, users can
add possible existing obstacles in a real scenario: ruins,
walls and buildings.

OCTOPUS benefits are that real devices are complete

unaware of it: so when a node send packets, it believes
to send them to the specified destination. But they are
captured by OCTOPUS, playing a gateway role. OCTO-
PUS analyzes the sender and receiver: the distance of the
corresponding virtual nodes in the virtual map (basically
whether in the radio-range), the probability of losses,
obstacles screening direct view5, motion speed and so
on. According to such parameters, it decides whether
or not to deliver each packet to the recipient. Since the
nodes are basically unaware of OCTOPUS, it is possible
to remove it and deploy finally the software with no or
very limited changes.

4 Technical Details

We implemented the Bayesian algorithm on actual de-
vices. We coded in MS Visual C# .NET as it enables to
write applications once and deploy them on any device
for which a .NET framework exists (PCs and PDAs in-
cluded). In this section, we describe the technical details
of packages and classes for implementing the Bayesian
algorithm.

We can identify two sides in the implementation as
described in Figure 5: the code running on the coordina-
tor device, which realizes the prediction, and the one on
the generic peers sending information about neighbors
to the coordinator.

The code of generic peers is conceptually easy. It is
basically composed of two modules:

it.uniroma1.dis.Octopus. We tested our algorithm
by OCTOPUS. OCTOPUS is intended to emulate small

4OCTOPUS can be downloaded at www.dis.uniroma1.it/∼deleoni/Octopus
5We assume whenever two nodes are not directly visible, every packet sent by the first node to the second is always dropped.

Ubiquitous Computing and Communication Journal 7

Figure 5: The components of the actual implementation.

Ethernet LAN

Laptop
(Mobile Node)

PDAs
(Mobile Nodes)

Laptop
(Coordinator)

Access
Point

Octopus Server

Tablet
(Mobile Node)

Tablet
(Mobile Node)

Figure 6: The test bed setting.

Ubiquitous Computing and Communication Journal 8

MANET and holds a virtual map of the are where nodes
are arranged. Every real device is mapped to a virtual
node in the map. This module is intended to query OC-
TOPUS in order to know neighbors and their distance. It
allows also to send special commands to OCTOPUS dur-
ing run-time emulation. In such a way modes can vir-
tually move in the virtual map. That causes topology to
change at any time and, therefore, new disconnections
are continuously predicted.

BayesianPredClient. This module includes inter-
nally two timers. The first timer has a clock T, where T
is the same as defined in Figure 2. For each clock pe-
riod, it gets information about neighbors (who and how
far they are) by using the it.uniroma1.dis.Octopus mod-
ule. Then, it arranges such an information in a proper
packet, which is sent to coordinator. Upon expiring of
the second timer, the client sends a command to OCTO-
PUS to change the position of the node which this de-
vice is mapped to. Of course, this timer uses also the
it.uniroma1.dis.Octopus module.

The code of the coordinator’s implementation has as
its core the BayesianPredServer module. In order to de-
tail more, we have exploded it to its five classes:

DistanceServer. This module implements a TCP/IP
server to retrieve the neighboring information from
peers (sent by them through the module BayesianPred-
Client). At the same time, it stores retrieved information
in the intermediate buffer, which is implemented by the
module Buffer. It corresponds to event handler for upon
delivering of a tuple from a peer as defined in Figure 2.

Buffer. It implements the intermediate buffer
module, written by the DistanceServer module and
read/made empty by PredictiveTimer. This module
guarantees synchronized accesses.

PredictiveTimer. This is a timer that repeats each T
seconds. It implements the event upon expiring of timer
as defined in Figure 2. Consistently to the pseudo-code,
it accesses to the Buffer module to get new information
from other peers, as well as the BayesianBuffer module.
The latter module stores the information to compute for
each couple of nodes the Equations 4 e 6. This module
uses also the it.dis.uniroma1.Octopus module. Indeed,
Team Leader is a node itself and it can lead to discon-
nections. Therefore, it has to ask for neighbors to OC-
TOPUS and predict distances to any other node.

BayesianBuffer, BayesianTuple. The Bayesian-
Buffer class handles and stores the triple(
α(i,j),β(i,j),d(i,j)

)
, each one represented by a

BayesianTuple object.

5 Experiments
Figure 6 shows the testbed, which consists of ten ma-
chines (PCs and PDAs). One of them hosts OCTOPUS
and, hence, it does not represent a real mobile node.
Each of the other machines is bound to a different virtual
node of OCTOPUS’ virtual map.

We set the testing virtual map as 400 × 300 meters
wide and communication radio-range as 100 meters. At
the beginning, nodes are located into the virtual map in a
random fashion in order to form one connected compo-
nent. Afterwards, each S seconds, every node chooses
a point (X ,Y) in the map and begin heading towards at
a speed of V m/s. Both S and V are Gaussian random
variables: the mean and variance are set as, respectively,
450 and 40 seconds for S and 3 and 1.5 m/s for V . The
couple (X ,Y) is chosen uniformly at random in the vir-
tual map. Of course, devices used in tests do not move
actually: nodes move only in the virtual map. For this
purpose, devices send particular commands to a specific
OCTOPUS socket for instructing node motions.

The first set of experiments has been intended to ver-
ify which error in percentage is obtained for different
values of clock period T . The error here is defined as
the gap between the estimated distances d̃n at (n−1)-th
clock cycle and the actual measures dn at n-th clock cy-
cle. The value is scaled with respect to the radio-range:

The Figure 7(a) shows the outcome for the clock
periods equal to 15, 20, 30, and 45 seconds. We have
set the parameter u of Equation 4 to value 0.5 and per-
formed ten tests per clock period. Every test was 30
minutes long. The results show, of course, that the error
percentage grows high as clock period increases. Prob-
ably the most reasonable value for real scenarios is 30–
45 seconds (smaller values are not practically feasible
since MANETs would be probably overloaded by “dis-
tance” messages). Please consider the greatest clock pe-
riod we tested: the error ranges between 24.34% and
26.8% (i.e., roughly 25 meters).

Afterwards, in a second tests set, we fixed clock pe-
riod to 30 seconds, testing for u equal to 0.01, 0.05,
0.1, 0.2, . . . , 0.8. We even tripled the frequency which
nodes start moving with. The outcomes are depicted in
Figure 7(b), where x-axis corresponds to u values and
y-axis to the error percentage. The trend is parabolic:
the minimum is obtained for u = 0.3 where the error
is 17.44% and the maximum is for u = 0.8 where the
error is 21.54%. Small values for u mean that the past is
scarcely considered whereas large values mean the past
is strongly taken into account. This matches our expec-
tation: we get the best results for the intermediate val-
ues. That is to say that the best tuning is obtained when
we consider the past neither too little nor too much.

Concerning coordination, applications can rely on

Ubiquitous Computing and Communication Journal 9

0,00%

2,50%

5,00%

7,50%

10,00%

12,50%

15,00%

17,50%

20,00%

22,50%

25,00%

15 20 30 45

Polling time

T
h

e
er

ro
r

p
er

ce
n

ta
g

e

Best Case

Worst Case

(a) The smallest and largest measured error in percentage, chang-
ing clock periods.

20,30%

19,55%

19,02%

18,09%

17,44%
17,59%

18,28%

19,03%

19,94%

21,53%

17,00%

17,50%

18,00%

18,50%

19,00%

19,50%

20,00%

20,50%

21,00%

21,50%

22,00%

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

u

T
h

e
er

ro
r

p
er

ce
n

ta
g

e

(b) The measured error in percentage, changing the weight of
past observations.

Figure 7: Experiment results.

such predictions. Indeed, setting polling time to 30 sec-
onds, we have got errors around 18% for u = 0.3. If
range is supposed to be 100 meters, the mean error is
around 18 meters. Considering this is a preliminary val-
idation, these values are quite good. Indeed, if we set
γ = 0.75 (i.e., disconnections are predicted when nodes
are more than 75 far), we would be sure to predict every
actual disconnection. That means no disconnection is
not handled, although coordination layer (distributed or
centralized, local or global) will be alerted about some
false negatives, enacting recovery actions to handle un-
real disconnections.

We remark that this only a preliminary validation;
we are working on more detailed experiments. In new
test sets, we will be evaluating directly disconnection
predictions: varying γ, how many disconnections are
predicted and among them how many are real. We will
be analyzing, as well, how many actual disconnections
are not predicted on time.

6 Related Work

Much research on mobility prediction has been carried
on (and still it is in progress) for cellular phone sys-
tems [1, 8]. These approaches are based on Markov
models, which predict the mobile user future’s location
on the basis of its current and past locations. The aim is
to predict whether a mobile user is leaving a current cell
(crossing the cell boundaries) and the new cell where

she is going. Such an information is then used for chan-
nel reservation in the new cell. Anticipating reservation
should lower the probability of a call to be dropped dur-
ing handoff 6 due to the absence of a free channel for the
call in the new cell.

The main differences with our approach are related
to different scenarios: MANETs versus mobile phone
networks. Indeed, peculiarities of MANETs consist in
the higher mobility compared with phone networks. In
MANETs, links between couples of devices disappear
very frequently. That does not happen in phone cells,
which are very big: leaving a cell and entering into a
new is rare with respect to how often MANET links falls
down.

We use a centralized approach like in cellular net-
work where a coordinator collects information to allow
prediction. The difference is that our approach takes
into account the knowledge of all distances among all
users. Indeed, we do not have any base station; there-
fore, we do not have just to predict the distance of any
mobile device to it. We are interested in the distance
from any device to whichever else.

In the literature, several approaches predict the state
of connectivity of MANET nodes. The most common ap-
proaches assume that some of nodes are aware of their
location through GPS systems in order to study node
motions and predict disconnections. In [19] the authors
perform positioning in a network using range measure-
ments and angle of arrival measurements. But their
method requires a fraction of nodes to disseminate their

6In cellular telecommunications, the term handoff refers to the process of transferring an ongoing call or data session from one channel
connected to a core network or cell to another.

Ubiquitous Computing and Communication Journal 10

location information such that other nodes can triangu-
late their position. In [20] the probability that a con-
nection will be continuosly available during a period of
time is computed only if at least one node knows its po-
sition and its speed through GPS. Our approach is more
generic as it does not require any specific location tech-
niques: every hardware allowing to know node distances
is fine.

In [9], MANETs are considered as a combination
of clusters of nodes and it studies the impact (i.e., the
performances) of two well defined mobility prediction
schemes on the temporal stability of such clusters; un-
like our approach the authors use the pre-existing pre-
dictive models while the novelty of our approach con-
sists in the formalization of a new model based on
Bayesian filtering techniques. In [21] neighbor predic-
tion in MANETs is enacted through a suitable particle fil-
ter and it uses the information inside the routing table of
each node. Routing table is continuously updated by the
underlying MANET protocol. The first drawback is that
it can operates only with those protocols that work by
updating routing tables. Since it is based only on rout-
ing table updates, it predicts how long couples of nodes
are going to be connected on the basis of how long they
have been connected in the past. It does not consider
whether couples of nodes are moving closer or drift-
ing apart, nor node motion speed. Our approach takes
such an information also into account, making predic-
tion more accurate.

[7] addresses the issue of robot location estimation.
For each position pi and each robot rj , the technique
gives the probability for rj to be in pi. This approach
cannot be easily used to compute when nodes are going
to disconnect.

7 Conclusion and Future Works
In this paper, we have proposed, implemented and
tested a novel technique for predicting disconnections
in MANETs. We think prediction is a basic block for any
middleware for coordination in MANET settings.

Collaboration and coordination among MANET
nodes could not take place when they cannot commu-
nicate. Since MANETs are very dynamic, nodes are con-
tinuously moving and that can cause several disconnec-
tions. If disconnections were not handled, communica-
tion could not take place and, consequently, coordina-
tion. Remedial actions (either local or global) need to
be enforced in advance (i.e., predicted) against the ac-
tual disconnection.

This work is the basis of the development
of a coordination system for MANETs in emer-
gency management – cfr. the WORKPAD project

(http://www.workpad-project.eu) we are
currently involved, as our plans are to build a global
management approach in which, after predicting dis-
connections, the coordination middleware instructs de-
vices on how to arrange differently their tasks in order
to keep the MANET connected.

We are realizing such a middleware: our first results
consist in a general recovery method to detect and cope
with any unpredictable event (see [5]) which changes
the environment where the process is executed. These
event may be such that the process cannot be carried on
any longer. Therefore, we plan to apply the described
prediction technique to such a middleware, as discon-
nections represent unforeseeable events.

Future works include the evaluation in very unreli-
able environments where information pieces could be
lost. We plan, as well, to distribute prediction among all
nodes which participate actively to the prediction. This
should make the prediction layer more reliable as it does
not have to rely on any special node (e.g., Team Lead-
ers), which could crash. Moreover, distributing com-
putational load among all devices permits to balance
battery consumption. Indeed, every node consumes
roughly the same energy amount, instead of having only
a central node to consume its battery.

References
[1] I. F. Akyildiz, J. S. M. Ho, and Y. B. Lin.

Movement-based Location Update and Selective
Paging for PCS Networks. IEEE/ACM Transac-
tions on Networking, 4(4):629 - 638, 1996.

[2] J. O. Berger. Statistical Decision Theory and
Bayesian Analysis. Springer, 1985.

[3] T. Catarci, M. de Leoni, F. De Rosa, M. Mecella,
A. Poggi, S. Dustdar, L. Juszczyk, H.L. Truong, G.
Vetere. The WORKPAD P2P Service-Oriented In-
frastracture for Emergency Management In Proc.
of the 3rd IEEE International Workshop on Col-
laborative Service-Oriented P2P System (COPS)
at WETICE 2007, 2007.

[4] F. D’Aprano, M. de Leoni, and M. Mecella. Em-
ulating Mobile Ad-hoc Networks of Hand-held
Devices. The OCTOPUS Virtual Environment. In
Proc. of the International ACM Workshop on Sys-
tem Evaluation for Mobile Platforms (MobiEval),
2007.

[5] M. de Leoni, M. Mecella, G. De Giacomo. Highly
Dynamic Adaptation in Process Management Sys-
tem through Execution Monitoring. In Proc. of

Ubiquitous Computing and Communication Journal 11

the 5th Internation Conference on Business Pro-
cess Management (BPM 2007), 2007.

[6] M. de Leoni, F. De Rosa, M. Mecella. MOBIDIS:
A Pervasive Architecture for Emergency Manage-
ment. In Proc. of the 4th International Workshop
on Distributed and Mobile Collaboration (DMC
2006) (at WETICE 2006), 2006.

[7] D. Fox, J. Hightower, L. Lao, D. Schulz, and G.
Borriello. Bayesian Filters for Location Estima-
tion. In IEEE Pervasive Computing, 2(3):24 - 33,
2003.

[8] B. Liang, and Z. J.Haas. Predictive Distance-based
Mobility Management for Multidimensional PCS
Networks. IEEE/ACM Transactions on Network-
ing, 11(5):718 - 732, 2003.

[9] A. Venkateswaran, V. Sarangan, N. Gautam, and
R. Acharya. Impact of Mobility Prediction on the
Temporal Stability of MANET Clustering Algo-
rithms. In Proc. of the 2nd ACM International
Workshop on Performance Evaluation of Wireless
Ad hoc, Sensor, and Ubiquitous Networks (PE-
WASUN ’05), 114 - 151, 2005.

[10] W. Feler. An Introduction to Probability Theory
and its Applications (2nd ed.). Willey, 1966.

[11] G. Harik, E. Cantu-Paz, D. E. Goldgerg, and B. L.
Miller. The Gambler’s Ruin Problem, Generic Al-
gorithms, and the Sizing of Populations. In Proc.
of the IEEE International Conference on Evolu-
tionary Computation, 1997.

[12] A. Jardosh, E. M. BeldingRoyer, K. C. Almeroth,
and S. Suri. Towards Realistic Mobility Models for
Mobile Ad-hoc Networks. In Proc. of MobiCom,
2003.

[13] G. Hackmann, R. Sen, M. Haitjema, G. C. Roman,
and C. Gill. MobiWork: Mobile Workflow for
MANETs. Technical Report WUCSE-06-18, Wash-
ington University, Department of Computer Sci-
ence and Engineering, St. Louis, Missouri, 2006.

[14] D. Hadaller, S. Keshav, T. Brecht, and S. Agar-
wal. Vehicular Opportunistic Communication Un-
der the Microscope. In Proc. of the 5th Interna-
tional Conference on Mobile systems, Applications
and Services (MobiSys), 2007.

[15] R. J. Punnoose, P. V. Nikitin, and D. D. Stancil.
Efficient Simulation of Ricean Fading Within a
Packet Simulator. In Proc. of the 52th IEEE Ve-
hicular Technology Conference, 2000.

[16] Branislav Kusy, Jnos Sallai, Gyrgy Balogh, kos
Ldeczi, Vladimir Protopopescu, Johnny Tolliver,
Frank DeNap, and Morey Parang. Radio interfero-
metric tracking of mobile wireless nodes. In Proc.
of the 5th International Conference on Mobile sys-
tems, Applications and Services (MobiSys), 2007.

[17] Thomas W. Malone, Kevin Crowston. The Inter-
disciplinary Study of Coordination. In ACM Com-
puting Surveys, Vol. 26, No.1, March 2004.

[18] Mark Klein. Coordination Science: Challenges
and Directions. In Proc. of the workshop on
Coordination Technology for Collaborative Appli-
cations - Organizations, Processes, and Agents
(ASIAN), 1996.

[19] Dragos Niculescu, Badri Nath Position and Orien-
tation in ad hoc Networks In Elsevier Journal of
Ad Hoc Networks, Vol. 2, No.2, April 2004.

[20] Min Qin, Roger Zimmerman, Leslie S. Liu Sup-
porting Multimedia Streaming Between Mobile
Peers with Link Availability Prediction In Proc.
the 13th annual ACM International Conference on
Multimedia, 2005.

[21] Ovidiu V. Drugan, Thomas Plagemann, Ellen
Munthe-Kaas Non-intrusive Neighbor Prediction
in Sparse MANETs In Proc. of 4th Annual IEEE
Communications Society Conference on Sensor,
Mesh and Ad Hoc Communications and Networks
(SECON’07), 2007.

Ubiquitous Computing and Communication Journal 12

