Decomposing Alignment-based Conformance Checking
of Data-aware Process Models

Massimiliano de Leoni'*, Jorge Munoz-GamaZ?**, Josep Carmona?, and
Wil ML.P. van der Aalst!

! Eindhoven University of Technology, Eindhoven (The Netherlands)
2 Universitat Politecnica de Catalunya, Barcelona (Spain)

m.d.leoni@tue.nl, jmunoz@cs.upc.edu, jcarmonal@cs.upc.edu,
w.m.p.v.d.aalst@tue.nl

Abstract. Process mining techniques relate observed behavior to modeled be-
havior, e.g., the automatic discovery of a Petri net based on an event log. Process
mining is not limited to process discovery and also includes conformance check-
ing. Conformance checking techniques are used for evaluating the quality of dis-
covered process models and to diagnose deviations from some normative model
(e.g., to check compliance). Existing conformance checking approaches typically
focus on the control-flow, thus being unable to diagnose deviations concerning
data. This paper proposes a technique to check the conformance of data-aware
process models. We use so-called Petri nets with Data to model data variables,
guards, and read/write actions. Data-aware conformance checking problem may
be very time consuming and sometimes even intractable when there are many
transitions and data variables. Therefore, we propose a technique to decompose
large data-aware conformance checking problems into smaller problems that can
be solved more efficiently. We provide a general correctness result showing that
decomposition does not influence the outcome of conformance checking. The
approach is supported through ProM plug-ins and experimental results show sig-
nificant performance improvements. Experiments have also been conducted with
a real-life case study, thus showing that the approach is also relevant in real busi-
ness settings.

Keywords: Process Mining, Conformance Checking, Divide-and-Conquer Tech-
niques, Multi-Perspective Process Modelling

1 Introduction

Nowadays, most organizations document and analyze their processes in some form,
and with it, the practical relevance of process mining is increasing as more and more
event data becomes available. Process mining techniques aim to discover, monitor and
improve real processes by extracting knowledge from event logs. The two most promi-
nent process mining tasks are: (i) process discovery: learning a process model from
example behavior recorded in an event log, and (ii) conformance checking: diagnosing

* When conducting most of this research work, Dr. de Leoni was also affiliated with University
of Padua and financially supported by the Eurostars - Eureka project PROMPT (E!6696).
** Supported by FPU Grant (AP2009-4959) and project FORMALISM (TIN-2007-66523)

. Interest (1)

0.1 Amount < Interest < 0.2 Amount Decision (D)

Negative
Decision

Positive
Vefication

Register
Negative
Request (g)

X X0

Open Credit

(h)

Assessment

(c)

Credit
Request

(@)

Verify
(b)

I

Register
Negative
Verification (d)|"

Positive
Decision

Negative
‘ Verification

" - Decision = Negative

Renegotiate
Request(f)

Amount (A) "'te.... Therenegotiated amountis

" - smaller than the original
amount

Verification (V)

Fig. 1: Example of a (simplified) process to request loans. The dotted arcs going from
a transition to a variable denote write operations; the arcs towards a transition denote
read operations, i.e. the transition requires accessing the current variables’ value. In the
paper, each transition is abbreviated into a lower-case letter (e.g. @) and each variable
is represented as a upper-case letter (e.g. A). The abbreviations are shown in brackets
after the name of the transitions or variable names.

and quantifying discrepancies between observed behavior and modeled behavior [1].
Models that faithfully conform the reality are necessary to obtain trustful analysis and
simulation results, for certification and regulation purposes, or simply to gain insight
into the process.

Most of the work done in conformance checking in the literature focuses on the
control-flow of the underlying process, i.e. the ordering of activities. There are various
approaches to compute the fraction of events or traces in the log that can be replayed
by the model [2,3].

In a data-aware process model, each case, i.e. a process instance, is characterized
by its case variables. Paths taken during the execution may be governed by guards and
conditions defined over such variables. A process model specifies the set of variables
and their possible values, guards, and write/read actions. Since existing conformance
checking techniques typically completely abstract from data, resources, and time, many
deviations remain undetected. Therefore, the event log may record executions of process
instances that appear fully conforming, even when it is not the case. Rigorous analysis
of the data perspective is needed to reveal such deviations.

Let us consider the process that is modeled as BPMN diagram in Figure 1. It mod-
els the handling of loans requests from customers. It is deliberately oversimplified to
be able to explain the concepts more easily. The process starts with a credit request
where the requestor provides some documents to demonstrate the capability of paying
the loan back. These documents are verified and the interest amount is also computed.
If the verification step is negative, a negative decision is made, the requestor is informed
and, finally, the negative outcome of the request is stored in the system. If verification

is positive, an assessment is made to take a final decision. Independently of the assess-
ment’s decision, the requestor is informed. Moreover, even if the verification is negative,
the requestor can renegotiate the loan (e.g. to have lower interests) by providing further
documents or by asking for a smaller amount. In this case, the verification-assessment
part is repeated. If both the decision and verification are positive and the requestor is
not willing to renegotiate, the credit is opened. Let us consider the following trace:?

gex = ((a,0,{(A,4000)}), (b, {(A,4000)}, {(I,450), (V. false)}), (¢, {(V, false)},
{(D,true)}), (e, 0,0), (f, { (A, 4000)}, {(A4, 5000)}), (b,{(A4,5000)},{(,450),
(V,false)}), (d, {(V,false)}, {(D,false)}), (e, 0, 0), (h, {(D, true)}, 0))

Seen from a control-flow perspective only (i.e. only considering the activities’ order-
ing), the trace seems to be fully conforming. Nonetheless, a number of deviations can
be noticed if the data perspective is considered. First of all, if activity c is executed,
previously activity b could not have resulted in a negative verification, i.e. V' is set to
false. Second, activity f cannot write value 5000 to variable A, as this new value is
larger than the previous value, i.e. 4000. Furthermore, if the decision and verification
are both negative, i.e. both V are D are set to false, then h cannot be executed at the
end.

The identification of non-conforming traces clearly has value in itself. Nonetheless,
organizations are often interested in explanations that can steer measures to improve
the quality of the process. Alignments aim to support more refined conformance check-
ing. An alignment aligns a case in the event log with an execution path of the process
model as good as possible. If the case deviates from the model, then it is not possible
to perfectly align with the model and a best matching scenario is selected. Note that
for the same deviation, multiple explanations can be given. For instance, the problem
that h was executed when it was not supposed to happen can be explained in two ways:
(1) h should not have occurred because V' and D are both set to false (“control-flow is
wrong”’) and (2) V and D should both have been set to true because h occurs (“‘data-flow
is wrong”). In order to decide for the most reasonable explanation, costs are assigned
to deviations and we aim to find the explanation with the lowest cost. For instance, if
assigning a wrong value to V' and D is less severe than executing h wrongly, the sec-
ond explanation is preferred. The seminal work in [3] only considers alignments in the
control-flow part, thus ignoring the data-perspective aspect of conformance.

As we detail in Section 2.4, finding an alignment of an event log and a data-aware
process model is undecidable in the general case. However, to make the problem decid-
able, works [4,5] put forward the limitation that guards need to be linear (in)equations.
Readers are also referred to them for a state-of-the-art analysis of data-aware confor-
mance checking. These works also show that, even with that limitation, the problem
of finding an alignment of an event log can become intractable since the problem’s
complexity is exponential on the size of the model, i.e. the number of activities and data
variables. In this paper, while keeping the limitations mentioned above, we aim to speed

3 Notation (act,,w) is used to denote the occurrence of activity act that writes and reads
variables according to functions w and r, e.g., (b, {(A4,4000)}, {(I, 450), (V,false)}) is an
event corresponding to the occurrence of activity b while reading value 4000 for variable A
and writing values 450 and false to variables I and V respectively. (e, (), #) corresponds to the
occurrence of activity e without reading/writing any variables.

,_
<

control-flow control-flow =
log model =
—e P
— i L
®—— [conformance L] M
omplete | —— R L =« Y
log p— [3] L
— L — M [6,7.8]|=
oi— - -
—%— multi-perspective multi-perspective L« M
—e log model =
_—— =
\ 0:’— f > i
—=— |conformance i — .. -
A —— 25 '"i L M .
— | ¥ -
L == M =

Fig. 2: Positioning the contribution of this paper with respect to the state of the art: the
gray area identifies the novelty of the proposed technique.

up the computation of alignments by using a divide-and-conquer approach. The data-
aware process model is split into smaller partly overlapping model fragments. For each
model fragment a sublog is created by projecting the initial event log onto the activities
used in the fragment. Given the exponential nature of conformance checking, this may
significantly reduce the computation time. If the decomposition is done properly, then
any trace that fits into the overall model also fits all of the smaller model fragments
and vice versa. Figure 2 positions the contribution of this paper with respect to the
state-of-the-art alignment-based techniques. The top part identifies the alignment-based
conformance checking that considers the control flow, only. The bottom part refers to
the alignment-based conformance checking techniques that account for data, as well.
Regarding the control-flow only, several approaches have been proposed to decompose
process mining problems, both for discovery and conformance checking. As described
in [6], it is possible to decompose process mining problems in a variety of ways. Spe-
cial cases of this more general theory are passages [7] and SESE-based decomposition
[8]. However, these approaches are limited to control-flow. Indeed, some techniques
exist that also consider the data aspects (i.e. [4,5]) but without exploiting the possibility
of decomposing the data-aware model. In this paper, we extend the control-flow ap-
proaches mentioned above to also take data into account, which coincides with the gray
area in Figure 2. Finally, the work in [9] (and similar) for data-aware conformance on
declarative models is orthogonal to the contributions listed in Figure 2, that are focused
on procedural models.

The decomposed data-aware conformance checking approach presented in this pa-
per has been implemented as plug-ins for the ProM framework. We conducted exper-
iments related to a real-life case study as well as with several synthetic event logs.
Experimental results show that data-aware decomposition may indeed be used to sig-
nificantly reduce the time needed for conformance checking and that the problem is
practically relevant since models of real processes can actually be decomposed.

Preliminaries are presented in Section 2. Section 3 introduces our approach for data-
aware decomposition. Section 4 describes different algorithms for instantiating the gen-

eral results presented in Section 3. Section 5 reports on experimental results. Section 6
concludes the paper.

2 Preliminaries

2.1 System Nets

Petri nets and their semantics are defined as usual: a Petri net is a tuple (P, T, F') with
P the set of places, T the set of transitions, PNT = (,and F C (P x T)U (T x P) the
flow relation. A place p is an input place of a transition ¢ iff (p, t) € F’; similarly, p is an
output place of ¢ iff (¢,p) € F. The marking of a Petri net is a multiset of tokens, i.e.,
M € B(P). For some multiset M € B(P), M (p) denotes the number of times element
p appears in M. The standard set operators can be extended to multisets, M; & My is
the union of two multisets.

Firing a transition ¢ in a marking M consumes one token from each of its input
places and produces one token in each of its output places. Furthermore, transition ¢
is enabled and may fire in M if there are enough tokens in its input places for the
consumptions to be possible, i.e. iff for each input place s of t, M(s) > 1. Some of
the transitions corresponds to piece of work in the process; each of those transitions are
associated with a label that indicates the activity that it represents.

Definition 1 (Labeled Petri net). A labeled Petri net PN = (P, T, F\l) is a Petri net
(P, T, F) with labeling function | € T + Uy where Uy is some universe of activity
labels.*

Transitions without a label are invisible transitions, also known as 7-transitions. They
are introduced for routing purposes but they do not represent actual pieces of work. As
such, their execution is not recorded in the event logs.

Definition 2 (System Net). A system net SN = (PN, M1, Mpina1) is a triplet where
PN = (P,T,F,l) is a labeled Petri net, M;n;; € B(P) is the initial marking, and
Mgna, € B(P) is the final marking. Ugy is the universe of system nets.

Definition 3 (System Net Notations). Let SN = (PN, My, M ﬁnal) € Ugy be a
system net with PN = (P, T, F1).
- T,(SN) = dom(l) is the set of visible transitions in SN,
A, (SN) = rng(l) is the set of corresponding observable activities in SN,
TyH(SN) = {t € T,(SN) | Vyer,(sny I(t) = I(t') = t = 1"} is the set of unique
visible transitions in SN (i.e., there are no other transitions having the same visible
label), and
- A¥(SN) = {i(t) | t € T} (SN)} is the set of corresponding unique observable
activities in SN.

In the remainder, for the formal definitions and proved theorems in Section 3, we
need to introduce the concept of union of two nets. For this, we need to merge labeling
functions. For any two partial functions f; € X; /4 Yj and fy € Xo A Yo f3 =

* Symbol - is used to denote partial functions.

ra

.~ mr Negative Request
\j/)

Open Credit Loan

Inform Reques

Register Negative
Verification

N
N
N
‘ - Renegotiate

Credit Request\ \
N

Fig. 3: Pictorial representation of a Petri net with Data that models the process earlier
described in terms of BPMN diagram (cf. Figure 1). Places, transitions and variables
are represented as circles, rectangles and triangles, respectively. The dotted arcs going
from a transition to a variable denote the writing operations; the reverse arcs denote the
read operations, i.e. the transition requires accessing the current variables’ value.

f1 ® fo is the union of the two functions. f3 € (X; U X2) 4 (Y1 UY3), dom(fs3)
dom(f1) U dom(fa), fs(x) = fa(z) if z € dom(fz), and f3(x) = fi(z) if =
dom(f1) \ dom(f2).
Definition 4 (Union of Nets). Ler SN' = (N, M},,,, M}, .,)) € Usy with N' =
(PY, T, F',1') and SN* = (N2, M2,,,, M%) € Usy with N* = (P?,T? F?,1?)
be two system nets.

- B =1 @1 is the union of I, and l,

- NLUN? = (PLUP2,T'UT? F' U F?13) is the union of N* and N?, and

- SN'USN? = (N*UN? M}, & M2, Mf, & M2) is the union of system

nets SN* and SN*.

m

2.2 Petri nets with Data

A Petri net with Data is a Petri net with any number of variables (see Definitions 5 and
6 below). Petri nets with data can be seen as an abstracted version of high-level/colored
Petri nets [10]. Colored Petri nets are extremely rich in expressiveness; however, many
aspects are unimportant in our setting. Petri nets with data provide precisely the infor-
mation needed for conformance checking of data-aware models and logs.

Definition 5 (Variables and Values). /vy is the universe of variable names. Uy vy is
the universe of values. Uy = Uyn 4 Uy is the universe of variable mappings.

In this type of nets, transitions may read from and/or write to variables. Moreover, tran-
sitions are associated with guards over these variables, which define when these they
can fire. A guard can be any formula over the process variables using relational oper-
ators (<, >, =) as well as logical operators such as conjunction (A), disjunction (V),

and negation (—). A variable v appear as v,. or v,,, denoting the values read and written
by the transition for v. We denote with Formulas(V') the universe of such formulas
defined over a set V' of variables. In the remainder, given a set V' C Uy of variable
names, we denote Vg = {v, : v € V}and Viy = {v,, : v € V}.

Formally, a Petri net with Data (DPN) is defined as follows:

Definition 6 (Petri net with Data). A Petri net with Data DPN = (SN, V, val, init,
read, write, guard) consists of

— a system net SN = (PN, M, Mfina) with PN = (P, T, F,1),

— aset V C Uyy of data variables,

— a function val € V. — P(Uyv) that defines the values admissible for each vari-
able, i.e., val(v) is the set of values that variable v can have,’

— a function init € V. — Uy v that defines the initial value for each variable v such
that init(v) € val(v) (initial values are admissible),

- a read function read € T — P(V) that labels each transition with the set of
variables that it reads,

— a write function write € T — P(V') that labels each transition with the set of
variables that it writes,

— a guard function guard € T — Formulas(Viy U Vg) that associates a guard
with each transition such that, for any t € T and for any v € V, if v, appears in
guard(t) then v € read(t) and if v., appears in guard(t) then v € write(t).

Uppn is the universe of Petri nets with data.

The notion of bindings is essential for the remainder. A binding is a triplet (¢, r, w)
describing the execution of transition ¢ while reading values r and writing values w. A
binding is valid if:

1. r € read(t) — Uyy and w € write(t) — Uyy

2. forany v € read(t): r(v) € val(v), i.e., all values read should be admissible,

3. forany v € write(t): w(v) € val(v), i.e., all values written should be admissible.
4. Guard guard(t) evaluate true.

More specifically, let us introduce variable assignment x;, : (VR U Vi) 4 Uy) which
is defined as follows: for any v € read(t), x(v,) = r(v) and, for any v € write(t),
X(vw) = w(v). A binding (¢, r, w) makes guard(t) evaluate true if the evaluation of
guard(t) wrt. x; returns true.

A marking (M, s) of a Petri net with Data DPN has two components: M € B(P)
is the control-flow marking and s € Uy with dom(s) = V and s(v) € wval(v) for
all v € V is the data marking. The initial marking of a Petri net with Data DPN
i8S (Mpnit, init). Recall that init is a function that defines the initial value for each
variable.

(DPN, (M, s))[b) denotes that a binding b is enabled in marking (1, s), which in-
dicates that each of its input places et contains at least one token (control-flow enabled),
b is valid and and s .q(¢)= 7 (the actual values read match the binding).®

> P(X) is the powerset of X, i.e.,Y € P(X)isand onlyif Y C X.

® flq is the function projected on Q: dom(f[q) = dom(f) N Q and f[g () = f(x) for
x € dom(f]g). Projection can also be used for bags and sequences, e.g., [z3,y, 2%] [y} =
[2%, y] and (y, 2,) [{2 1= (Y5 ¥)-

Table 1: Definitions of the guards of the transitions in Fig. 3. Variables and transition
names are abbreviated as described in Figure 1. Subscripts r and w refer to, respectively,
the values read and written for that given variable.

[Transition |Guard |
Credit Request true

Verify 01-A.<I,<02- A,
Assessment Vr = true

Register Negative Verification|V,. = false A D,, = false
Inform Requester true

Renegotiate Request V. =false A A, < A,
Register Negative Request | D, = false

Open Credit D, =true

An enabled binding b = (¢, r, w) may occur, i.e., one token is removed from each
of the input places et and one token is produced for each of the output places te . More-
over, the variables are updated as specified by w. Formally: M’ = (M \ et) W te is
the control-flow marking resulting from firing enabled transition ¢ in marking M (ab-
stracting from data) and s’ = s ¢ w is the data marking where s'(v) = w(v) forall v €
write(t) and s'(v) = s(v) forallv € V'\ write(t). (DPN, (M, s))[b)(DPN, (M’, s"))
denotes that b is enabled in (M, s) and the occurrence of b results in marking (M’ s').

Figure 3 shows a Petri net with Data DPN,., that models the same process as
represented in Figure 1 as BPMN diagram, and Table 1 illustrates the conditions of the
guards of the transitions of D PN, . The labeling function [is such that the domain of
[is the set of transitions of DPN,, and, for each transition ¢ of DPN,,, I(t) = t. In
other words, the set of activity labels coincides with the set of transitions.

Let 0, = (b1,bs,...,b,) be a sequence of bindings. (DPN, (M, s))[os)(DPN,
(M', s")) denotes that there is a set of markings (Mo, so), (M1, $1), ..., (M, s,) such
that (Mo, 30) = (]\47 S), (M,L, Sn) = (]\4’7 S/), and (DF)ZV7 (Mi; Sz))[bb+1>(DPN, (Mi+17 Si+1))
for 0 < i < n. A marking (M’, s’) is reachable from (M, s) if there exists a o3, such
that (DPN, (M, s))[op)(DPN,(M’,s")).

¢§(DPN) = {0y | 3s (DPN, (Minst, init))[op)(DPN, (Mfpai, s))} is the set of
complete binding sequences, thus describing the behavior of DPN.

Definition 7 (Union of Petri nets with Data). Let DPN* = (SN Ly valt, initt, read®,
write!, guard") and DPN? = (SN2, V2, val?, init?, read?, write?, guard?®) with
ViNnV2=0. DPN' UDPN? = (SN' U SN%, VI U V2 val* & val®, init* & init?,
read?®, write®, guardg) is the union such that
- read®(t) = read' (t), write3(t) = write*(t), and guard®(t) = guard'(t) if t €
T\ 77,
= read®(t) = read?(t), write(t) = write?(t), and guard®(t) = guard®(t) if t €
T*\ T*, and
- read®(t) = read'(t) U read®(t), write®(t) = write*(t) U write’(t), and
guard®(t) = guard' (t) - guard®(t) ift € T* N T2

2.3 Event Logs and Relating Models to Event Logs
Next we introduce event logs and relate them to the observable behavior of a DPN.

Definition 8 (Trace, Event Log with Data). A trace o € (Ua X Uypy X Uyn)* is a
sequence of activities with input and output data. L € B((Ua x Uy X Uyar)*) is an
event log with read and write information, i.e., a multiset of traces with data.

Definition 9 (From Bindings to Traces). Consider a Petri net with Data with transi-
tions T and labeling functionl € T -/ Ua. A binding sequence o, € (T X Uy X
Uvynr)* can be converted into a trace o, € (Ua X Uyyr X Uy)* by removing the
bindings that correspond to unlabeled transitions and by mapping the labeled transi-
tions onto their corresponding label. [(o) denotes the corresponding trace o.

Note that we overload the labeling function to binding sequences, o,, = [(0y,). This
is used to define ¢(DPN): the set of all visible traces.

Definition 10 (Observable Behavior of a Petri net with Data). Ler DPN be a Petri
net with Data. (DPN | (M, s))[o, > (DPN, (M’, s")) if and only if there is a sequence
op such that (DPN, (M, s))[ow)(DPN, (M’ s")) and o, = l(0p). (DPN) = {l(o}) |
op € ¢5(DPN)} is the set of visible traces starting in (Mn;, init) and ending in
(Mfinal, 8) for some data marking s.

Definition 11 (Perfectly Fitting with Data). A trace 0 € (Ua X Uy X Uynr)* is
perfectly fitting DPN € Uppn if 0 € ¢(DPN). An event log L € B((Ua X Uy %
Uy)*) is perfectly fitting DPN if all of its traces are perfectly fitting.

Later, we will need to project binding sequences and traces onto subsets of tran-
sitions/activities and variables. Therefore, we introduce a generic projection operator
Iy v (o) that removes transitions/activities not in Y and variables not in V.

Definition 12 (Projection). Let X be a set of transitions or activities (i.e., X C T or
X C Uyp) Let Y C X be a subset and V. C Uy a subset of variable names. Let
0 € (X xUym X Uym)* be a binding sequence or a trace with data. Iy (o) €
Y x (VA Uyv) x (VA Uyvy))* is the projection of o onto transitions/activities Y
and variables V. Bindings/events unrelated to transitions/activities in Y are removed
completely. Moreover, for the remaining bindings/events all read and write variables
not in'V are removed. Iy (L) = [IIy,y (o) | o € L] lifts the projection operator to
the level of logs.

2.4 Alignments

Conformance checking requires an alignment of event log L and process model DPN,
that is the alignment of each single trace ¢ € L and process model DPN.

The events in the event log need to be related to transitions in the model, and vice
versa. Such an alignment shows how the event log can be replayed on the process model.
Building this alignment is far from trivial, since the log may deviate from the model at
an arbitrary number of places. We need to relate “moves” in the log to “moves” in the
model in order to establish an alignment between a process model and an event log. It
may be that some of the moves in the log cannot be mimicked by the model and vice
versa. We denote such “no moves” by >>. An alignment is a sequence of moves:

Table 2: Examples of complete alignments of o¢yqmpie and N. For readability, the read
operations are omitted. Of course, read operations for any variable must match the most
recent value for that variable. Any move is highlighted with a gray color if it contains
deviations, i.e. it is not a move in both without incorrect read/write operations.

(@) ()
Event-Log Trace Process Event-Log Trace Process
(a, {(A,4000)}) (a, {(A,4000)}) (a, {(A,4000)}) (a, {(A,5100)})
(b, {(1,450),(V,false)}) | (b, {(1,450),(V.true)}) (b, {(1,450),(V.,false) })| (b, {(1,511),(V,true)})
(c, {(D;true)}) (c, {(D;true)}) (c, {(D,true) }) (c, {(D,true)})
(e,) (e, 0) (e, 0) (e, 0)
(£, {(A,5000)}) (£, {(A,3000)}) (£, {(A,5000)}) (£, {(A,5000)})
(b, {(1,450),(V,false)}) | (b, {(1,450),(V.false)})| [(b, {(1;450),(V;false)})|(b, {(L511),(V.false)})
d, {(D.false)}) d, {(D,false)}) (d, {(D,false)}) (d, {(D,false)})
(e, 0) (e, 0) (e, 0) (e, 0)
(h, 0) > (h, 0) >
> (g, 0) > (80
Definition 13 (Legal alignment moves). Let DPN = (SN, V,val, init,

read, write, guard) be a Petri net with Data, with SN = (PN, Mipnit, Mpna) and
PN = (P, T, F,1). Let S;, = Ua XUy XUy be the universe of events. Let Sppn =
T x Uyn x Uy be the universe of bindings of DPN. Let be S3p = Sppn U {>>}
and S7 = Sp U {>}.
A legal move in an alignment is represented by a pair (sp,sp) € (ST X Sopn) \
{(>,>)} such that
— (s1,sp) is amove in log if s;, € St and sy =,
- (8L, sm) is a move in model if s;, => and s); € Sppn,
- (s, sum) is a move in both without incorrect read/write operations if s); = (¢, 7, w) €
Sppn and sp, = (l(t), T, w) € S,
- (sr, sar) is a move in both with incorrect read/write operations if sy = (¢, 7, w) €
Sppn and s, = (I(t),r',w') € Sp, and r # 1’ or w # W',
All other moves are considered as illegal.

Definition 14 (Alignments). Ler DPN = (SN, V,val,init, read, write, guard) be a
Petri net with Data and o € (S)* be an event-log trace. Let Appn be the set of legal
moves for DPN. A complete alignment of oy, and DPN is a sequence v € Appn”*
such that, ignoring all occurrences of >, the projection on the first element yields oy,
and the projection on the second yields a op € ¢s(DPN).

Table 2 shows two complete alignments of the process model in Figure 3 and the
log trace o, from Section 1.

In order to define the severity of a deviation, we introduce a cost function on legal
moves: kK € Appy — Rg . This cost function can be used to favor one type of expla-
nation for deviations over others. The cost of each legal move depends on the specific
model and process domain and, hence, the cost function s needs to be defined specifi-
cally for each setting. The cost of an alignment -y is the sum of the cost of all individual
moves composing it: K(v) = 3", .,)eq £(SL, SM).

However, we do not aim to find just any complete alignment. Our goal is to find a
complete alignment of o7, and DPN which minimizes the cost: an optimal alignment.

Let I';, n be the (infinite)set of all complete alignments of o7, and DPN. The align-
menty € I,, ppn is an optimal alignment if, for all ' € I, n, K(y) < K(v'). Note
that an optimal alignment does not need to be unique, i.e. multiple complete alignments
with the same minimal cost may exist.

Let us consider again our example introduced above. Let us assume to have a cost
function x*® such that k*(s,sp) = 1if (sp,sa) is a visible move in process or a
move in log (i.e. s =>> and s,s corresponds to a labeled transition or, conversely,
sy =>>>, respectively) or a move in both with incorrect read/write operations and
k*(sr,snm) = 0 in case of move in both without incorrect read/write operations or
a move in model corresponding to an unlabeled transition. The alignment in Table 2a
has a cost of 6 whereas the alignment in Table 2b has a cost 8.7 It follows that the former
is a better alignment. As a matter of fact, it is also an optimal alignment, although it is
not the only one. For instance, any variation of such an alignment where the move
for f is of the form (now including read operations) ((f, {(A4,4000)}, {(A4,5000)})
(f,{(A,4000)},{(A,z)})})) with 2250 < 2 < 4000 corresponds to an optimal align-
ment, as well.

In Section 1, we have mentioned that the data-aware conformance checking is un-
decidable in the general case. This is caused by the fact that Petri nets with Data are
Turing-complete. Therefore, it is not decidable to verify whether a sequence of valid
bindings exists that takes from the initial marking to any final marking (M finai, 5). As
a consequence, for instance, it is not possible to find an alignment of a Petri net with
Data and the empty log trace. As mentioned in Section 1, the problem becomes decid-
able (with an exponential complexity) if guards are restricted to linear (in)equalities.

3 Valid Decomposition of Data-aware Models

In [6] the author defines valid decomposition in terms of Petri nets: the overall system
net SN is decomposed into a collection of subnets { SN, SN2, ..., SN™} such that the
union of these subnets yields the original system net. A decomposition is valid if the
subnets “agree” on the original labeling function (i.e., the same transition always has
the same label), each place resides in just one subnet, and also each invisible transition
resides in just one subnet. Moreover, if there are multiple transitions with the same
label, they should reside in the same subnet. Only unique visible transitions can be
shared among different subnets.

Definition 15 (Valid Decomposition for Petri nets [6]). Let SN € Ugyn be a system
net with labeling function l. D = {SN*', SN?,...,SN™} C Ugy is a valid decompo-
sition if and only if:

- SN = (NivMiim'tv

1 <n,

— ' =1|piforalll <i<n,
PiNPl=0forl1 <i<j<n,
TiNTI CTY(SN)for1 <i<j<n,
rng(1") N rng (1) C TY(SN) for 1 <i < j < n, and

My,.q1) is a system net with N* = (P*,T", F*,1") for all 1 <

7 They also include a cost of two that is accounted for incorrect read operations, not shown in
the alignments, which are caused by incorrect write operations.

= SN =Ui<cicn SN'.
D(SN) is the set of all valid decompositions of SN.

From the definition the following properties follow:

1. each place appears in precisely one of the subnets, i.e., for any p € P: [{1 < i <
n|pe P} =1,

2. each invisible transition appears in precisely one of the subnets, i.e., for any ¢ €
T\T,(SN):|[{1<i<n|teT} =1,

3. all visible transitions with the same label (i.e. the label is not unique) appear in
the same subnet, i.e., for any a € A,(SN) \ AY(SN): {1 < i < n | 3t €
T,(SN)NT: ()} =1,

4. visible transitions having a unique label may appear in multiple subnets, i.e., for
anyt € T*(SN): {1 <i<n|teT'}| >1,and

5. each edge appears in precisely one of the subnets, i.e., for any (z,y) € F: |{1 <
i<nl|(z,y) € F'} =1
As shown in [6], these observations imply that conformance checking can be de-

composed. Any trace that fits the overall process model can be decomposed into smaller
traces that fit the individual model fragments. Moreover, if the smaller traces fit the in-
dividual fragments, then they can be composed into a trace that fits into the overall
process model. This result is the basis for decomposing process mining problems.

Theorem 1 (Conformance Checking Can be Decomposed [6]). Let L € B(A*) be
an event log with A C U4 and let SN € Ugy be a system net. For any valid decompo-
sition D = {SN* SN? ..., SN"} € D(SN): L is perfectly fitting system net SN if
and only if for all 1 < i < n: the projection of L onto A,(SN") is perfectly fitting SN"*.

In this paper, the definition of valid decomposition is extended to cover Petri nets
with data.

Definition 16 (Valid Decomposition for Petri nets with Data). Let DPN € Uppn
be a Petri net with Data. D = {DPN*, DPN? ... DPN"™} C Uppy is a valid de-
composition if and only if:

—foralll < i < n: DPN' = (SNi,Vi,vali,initi,readi,writei,guardi) is a
Petri net with Data, SN* = (PNi,anit,MJénal) € Ugy is a system net, and
PN = (P!, T" F,l') is a labeled Petri net,

- D' ={SN',SN? ... ,SN™} C Usy is a valid decomposition of | J,,, SN',

-VinVi=0for1<i<j<n,

- DPN = U1<i<n ‘DPNl

D(DPN) is the set of all valid decompositions of DPN.

Each variable appears in precisely one of the subnets. Therefore, there cannot be two
fragments that read and or write the same data variables: | J, read’ (t) Uwrite' (t)
Users read’ (t) U write?(t) = @ for 1 < i < j < n. Moreover, two guards in
different fragments cannot refer to the same variable. If a transition ¢ appears in multiple
fragments, then it needs to have a visible unique label as shown in [6]. Such a uniquely
labeled transition ¢ shared among fragments, may use, read, or write different variables
in different fragments. Since DPN = U1 <i<n DPN i, we know that, for all £ in DPN,

guard(t) is the product of all guard®(t) such that t € T*. Without loss of generality

we can assume that the first k fragments share ¢. Hence, guard(t) = guard*(t) - ... -
guard”(t). Hence, in a valid decomposition, the guard of a shared transition can only
be split if the different parts do not depend on one another. Notice that, the splitting
of the data variables is limited by how the variables are used throughout the process,
existing a worst-case where all the data variables are used in all the steps of the process.

Based on these observations, we prove that we can decompose conformance check-
ing also for Petri nets with data.

Theorem 2 (Conformance Checking With Data Can be Decomposed). Let L €
B((Ua x Uyar x Uyn)*) be an event log with information about reads and writes
and let DPN € Uppn be a Petri net with Data. For any valid decomposition D =
{DPN' DPN?,...,DPN"} C Uppy: L is perfectly fitting Petri net with Data DPN
if and only if for all 1 < i < n: Il (gniy,vi(L) is perfectly fitting DPN".

Proof. Let DPN = (SN, V, val, init, read, write, guard) be a Petri net with Data with
SN = (PN, Mipnit, Mfina) and PN = (P,T,F,l). Let D = {DPN', DPN? ...
DPN™} be a valid decomposition of DPN with DPN f= (SN', VY, val®, init", read’,
write’, guard’), SN* = (PN', M,;,, M}, ;) € Usx, and PN* = (P, T*, F*, I').
(=) Let 0, € L be such that there exists a data marking s such that (DPN, (M,
init))[oy> (DPN, (Mfinai, s)). This implies that there exists a corresponding o, with
(DPN, (Min;t, init))[oy) (DPN, (Mfinai, s)) and l(0p) = 0,,. Forall 1 < i < n, we
need to prove that there is a o}, with (DPN", (M}, init"))[o})(DPN*, (M}, ,;, "))
for some s*. This follows trivially because DPN* can mimic any move of DPN with
respect to transitions 7": just take o} = IITi vi(0p). Note that guards can only become
weaker by projection.

(<) Let o, € L.Forall 1 < i < n, let of be such that (DPN", (M}, , init"))[o}h)
(DPN*, (M}, ,;,s")) and I'(0}) = I 4, (sniy,vi (o). The different of sequences can
be stitched together into an overall oy, s.t. (DPN, (Mnit, init))[ow) (DPN, (Mfnai, S))
with s = s' @ s2 @ ... @ s™. This is possible because transitions in one subnet
can only influence other subnets through unique visible transitions and these can only
move synchronously as defined by o,,. Moreover, guards can only be split in indepen-
dent parts (see Definition 16). Suppose that ¢ appears in T; and T}, then guard(t) =
guard® (t) - guard’ (t). Hence, a read/write in subnet 7 cannot limit a read/write in subnet
Jj. Therefore, we can construct o}, and l(0},) = 0. O

4 SESE-based Strategy for Realizing a Valid Decomposition

In this section we present a concrete strategy to instantiate the valid decomposition def-
inition over a Petri net with data presented in the previous section (cf. Def.16). The pro-
posed strategy decomposes the Petri net with data in a number of Single-Entry Single-
Exit (SESE) components, which have recently been shown to create meaningful frag-
ments of a process model [11,8]. SESE decomposition is indicated for well-structured
models, whereas for unstructured models some automatic transformation techniques
can be considered as a pre-processing step [12].

We will now informally describe the necessary notions for understanding the pro-
posed data-oriented SESE-based valid decomposition strategies described below. For

Register Negative Request

Assessment

Credit Request Inform BeGuester

Register Negative
Verification

) Open Credit Loan
a) Petri Net

S1

o

b) Workflow graph and SESEs

Fig. 4: A Petri net modeling the control-flow of the running example, its workflow graph
and the RPST and SESE decomposition.

o—l

Credit Request

Fig. 5: SESE-based decomposition for the running example, with 2-decomposition.

the sake of clarity, we will focus on the control flow to illustrate the concepts, although
the definitions will be extended at the end to also consider data.

Given Petri net PN = (P, T, F,l), its workflow graph is the structural graph
WG = (S, E) with no distinctions between places and transitions, i.e., S = PUT and
FE = F. For instance, Fig. 4(b) shows the workflow graph of the Petri net of Fig. 4(a)
(corresponding with the control-flow part of the running example). Given a subset of
edges B/ C Eof WG, thenodes S[p:={s €S :3s' € S. (s,5') e E'V(s',s) € E'}
can be partitioned into interior and boundary. Interior nodes have no connection with
nodes outside S [/, while boundary nodes do. Furthermore, boundary nodes can be
partitioned into entry (no incoming edge belongs to E), or exit (no outgoing edge be-
longs to E). E' C E is a SESE of W@ iff the subnet derived from E has exactly two
boundary nodes: one entry and one exit. Fig. 4(b) shows all non-trivial SESEs® of the
Petri net of Fig. 4(a). For a formal definition we refer to [11].

The decomposition based on SESEs is a well studied problem in the literature, and
can be computed in linear time. In [13,14], efficient algorithms for constructing the

8 Note that by definition, a single edge is a SESE.

Algorithm 1 SESE-based Decomposition

: Build data workflow graph DWG from F, R, W

: Compute RPST from DWG

: Compute SESE decomposition D from the RPST

: Compute and merge subnets if necessary to preserve valid decomposition.
: return valid decomposition where perspectives are decomposed altogether

| O R S R

Refined Process Structure Tree (RPST), i.e., a hierarchical structure containing all the
canonical SESEs of a model, were presented. Informally, an RPST is a tree where the
nodes are canonical SESEs, such that the parent of a SESE S is the smallest SESE that
contains S. Fig. 4(c) shows the RPST of the workflow graph depicted in Fig. 4(b). By
selecting a particular set of SESEs in the RPST (e.g., k-decomposition [8]), it is possible
to obtain a partitioning of the arcs. We refer the reader to the aforementioned work for
a formal description of the SESE-based decomposition.

To extend the previous definitions to also account for data, one simply has to incor-
porate in the workflow graph the variables and read/write arcs, i.e., the data workflow
graph of a Petri net with Data (((P, T, F, 1), Minit, Mfinar), V, val, init, read, write, guard)
with data arcs R = {(v,t)|v € read(t)} and W = {(¢t,v)|v € write(t)} is DWG =
(S, E)with S = PUT UV and E = F U RUW. The subsequent definitions after this
extension (SESE, RPST) are analogous.

Similar to [8], we propose a SESE decomposition to analyze the conformance of
Petri nets with data, but considering data workflow graph instead. Algorithm 1 de-
scribes the steps necessary to construct a SESE decomposition. The arcs are partitioned
in SESEs by means of creating the RPST from the data workflow graph, and select-
ing a particular set of SESES over it. Once the partitioning is done, a subnet is created
for each part. Subnets contradicting some of the requirements of Def. 16 (e.g. shar-
ing places, invisible or duplicate transitions, variables, or transitions with non-splitting
guards) are merged to preserve the valid decomposition definition.

Figure 5 shows the decomposition for the example of Fig.3, where the RPST is
partitioned using the 2-decomposition algorithm [8], i.e., SESEs of at most 2 arcs’.
To ensure a valid decomposition is obtained, step 4 of Algorithm 1 combines multiple
SESE fragments into larger fragments, which are not necessarily SESEs anymore.

5 Implementation and Experimental Results

The approach discussed in this paper has been implemented as a plug-in for the open-
source ProM framework for process mining.'® Our plug-in requires a Petri Net with
Data and an event log as input and returns as many bags of alignments as the number
of fragments in which the Petri Net with Data has been decomposed. Each bag refers
to a different fragment and shows the alignments of each log trace and that fragment.
A second type of output is also produced in which the alignments’ information is pro-
jected onto the Petri net with Data. Transitions are colored according to the number of

o Although the SESEs have at most two arcs, this is not guaranteed for the final subnets, i.e.,
some subnets are merged to preserve the valid decomposition definition.
Yhttp://www.promtools.org

Fig. 6: Computation time for checking the conformance of the Petri net with Data in
Figure 3 and event logs of different size. The Y axis is on a logarithmic scale.

deviations: if no deviation occurs for a given transition, the respective box in the model
is white-colored. The filling color of a box shades towards red as a larger fraction of
deviations occur for the corresponding transition. Something similar is also done for
variables: the more incorrect read/write operations occur for a variable, the more the
variable is shown with a color close to red. This output is extremely interesting from an
end-user viewpoint as it allows for gaining a helicopter view on the main causes of devi-
ations. Space limitations prevent us from giving more details and showing screenshots
of the output. Interested readers can refer to [15] for further information.

As previously mentioned, the plug-in has been evaluated using a number of syn-
thetic event logs and also a real-life process. The plug-in has been evaluated using the
model in Figure 3 and with a number of event logs that were artificially generated.
In particular, we have generated different event logs with the same number of traces,
5000, but increasing number of events, meaning that, on average, traces were of differ-
ent length. To simulate that, for each simulated process execution, an increasing number
of renegotiations was enforced to happen. Traces were also generated so as to contain
a number of deviations: the event logs were generated in a way that 25% of transitions
fired violating the guards.

Figure 6 shows the results of checking for conformance of the different event logs
and the process model, comparing the SESE-based decomposition with k = 2 with
the case in which no decomposition is made. To check the conformance of each frag-
ment, we used the technique reported in [4]. Each dot in the chart indicates a different
event log with traces of different size. The computation time refers to the conformance
checking of the whole event logs (i.e., 5000 traces). The decomposed net is the same
as in Figure 5. Regarding the cost function, we assign cost 1 to any deviation; however,
this could be customized based on domain knowledge. The results show that, for every
combination of event log and process model, the decomposition significantly reduces
the computation time and the improvement is exponential in the size of the event log.

To assess the practical relevant of the approach, we also performed an evaluation
with a Dutch financial institute. The process model was provided by a process analyst
of the institute and consists of 21 transitions: 13 transitions with unique labels, 3 ac-
tivities labels shared between 2 transitions (i.e. 6 transitions in total), plus 3 invisible

transitions. The model contains twelve process variables, which are read and written
by the activities when being executed. The process model is omitted for space reasons
and shown in [15]. We were also provided with an event log that recorded the execu-
tion of 111 real instances of such a process; overall, the 111 log traces contained 3285
events, which means roughly 29.6 events per trace. We checked the conformance of
this process model and this event log, comparing the results when the model has or
has not been decomposed in small fragments. For conformance checking, here we used
the technique reported in [5] since the provided process model breaks the soundness
assumptions required by [4]. For this experiment round, the additional optimizations
proposed in [5] were deactivated to allow for a fair comparison.

The application of the decomposition approach to this real-life case study has shown
tremendous results: the conformance checking has required 52.94 seconds when the
process model was decomposed using the SESE-based technique presented in Section 4;
conversely, it required 52891 seconds when the model was not decomposed. This indi-
cates that decomposing the process model allowed us to save 99.999% of the computa-
tion time. As a matter of fact, we tried for different values of SESE parameter k& but we
obtained similar results: the computation time did not move away for more than 1 sec-
ond. The reason of this is related to the fact that every decomposition for any value of
k always contained a certain fragment, along with others. Indeed, that fragment could
not be decomposed any further than a given extent. Since the computation time was
mostly due to constructing alignments with that fragment, no significant difference in
computation time could be observed when varying k.

6 Conclusions and Future Work

Conformance checking is becoming more important for two reasons: (1) the volume
of event data available for checking normative models is rapidly growing (the topic
of “Big Data” is on the radar of all larger organizations) and (2) because of a variety
of regulations there is a need to check compliance. Moreover, conformance checking
is also used for the evaluation of process discovery algorithms. Also genetic process
mining algorithms heavily rely on the efficiency of conformance checking techniques.

Thus far, lion’s share of conformance checking techniques has focused on control-
flow and relatively small event logs. As shown in this paper, abstracting from other
perspectives may lead to misleading conformance results that are too optimistic. More-
over, as process models and event logs grow in size, divide-and-conquer approaches
are needed to still be able to check conformance and diagnose problems. Perspectives
such as work distribution, resource allocation, quality of service, temporal constraints,
etc. can all be encoded as data constraints. Hence, there is an urgent need to support
data-aware conformance checking in-the-large.

This paper demonstrates that data-aware decompositions can be used to speed up
conformance checking significantly. The evaluation with a real-life case study has shown
that real data-aware process models can indeed be decomposed, thus obtaining even
tremendous saving of computation time. As future work, we would like to extend our
experimental evaluation with real-life process models of larger sizes. Moreover, we
would like to explore alternative decomposition strategies using properties of the un-
derlying data, and to analyze the impact of different component sizes. This paper only

focuses on fitness aspect of conformance, namely whether a trace can be replayed on a
process model. However, recently, research has also been carried on as regards to dif-
ferent conformance dimensions [16,17], such as whether the model is precise enough
to not allow for too much behavior compared with what observed in reality in the event
log. We plan to use data-aware decomposition approaches to speed up the assessment
of the quality of process models with respect to these other conformance dimensions,
as well.

References

1.

2.

10.
11.
12.

13.

14.

15.

16.

17.

van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Busi-
ness Processes. Springer (2011)

Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on monitoring
real behavior. Information System 33(1) (2008) 64-95

. Adriansyah, A., van Dongen, B.F.,, van der Aalst, W.M.P.: Conformance checking using cost-

based fitness analysis. In: Proceedings of the 15th IEEE International Enterprise Distributed
Object Computing Conference, (EDOC 2011), IEEE Computer Society (2011) 55-64

. de Leoni, M., van der Aalst, WM.P.: Aligning event logs and process models for multi-

perspective conformance checking: An approach based on integer linear programming. In:
Proceedings of the 11th International Conference on Business Process Management, (BPM
2013). Volume 8094 of LNCS., Springer (2013) 113-129

. Mannhardt, F., de Leoni, M., Reijers, H.A. van der Aalst, W.M.P.: Balanced Multi-

Perspective Checking of Process Conformance (2014) BPM Center Report BPM-14-07.

. van der Aalst, WM.P.: Decomposing Petri nets for process mining: A generic approach.

Distributed and Parallel Databases 31(4) (2013) 471-507

. van der Aalst, W.M.P.: Decomposing process mining problems using passages. In: Proceed-

ings of the 33rd International Conference on Application and Theory of Petri (PETRI NETS
2012). Volume 7347 of LNCS., Springer (2012) 72-91

. Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Single-entry single-exit decomposed

conformance checking. Information Systems 46 (2014) 102—-122

. Montali, M., Chesani, F., Mello, P., Maggi, FM.: Towards data-aware constraints in declare.

In Shin, S.Y., Maldonado, J.C., eds.: SAC, ACM (2013) 1391-1396

Jensen, K., Kristensen, L.: Coloured Petri Nets. Springer Verlag (2009)

Polyvyanyy, A.: Structuring process models. PhD thesis, University of Potsdam (2012)
Dumas, M., Garcia-Bafiuelos, L., Polyvyanyy, A.: Unraveling unstructured process models.
In Mendling, J., Weidlich, M., Weske, M., eds.: BPMN. Volume 67 of LNBIP., Springer
(2010) 1-7

Vanhatalo, J., Volzer, H., Koehler, J.: The refined process structure tree. Data Knowl. Eng.
68(9) (2009) 793-818

Polyvyanyy, A., Vanhatalo, J., Volzer, H.: Simplified computation and generalization of the
refined process structure tree. In: 7th International Workshop on Web Services and Formal
Methods. Revised Selected Papers. Volume 6551 of LNCS., Springer (2011) 2541

de Leoni, M., Munoz-Gama, J., Carmona, J., van der Aalst, WM.P.: Decomposing Confor-
mance Checking on Petri Nets with Data. (2014) BPM Center Report BPM-14-06.
Munoz-Gama, J., Carmona, J.: A General Framework for Precision Checking. International
Journal of Innovative Computing, Information and Control (IJICIC) 8(7B) (July 2012) 5317—
5339

De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A multi-dimensional quality
assessment of state-of-the-art process discovery algorithms using real-life event logs. Infor-
mation System 37(7) (2012) 654-676

