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Abstract

Mobile Ad-hoc Networks are used in many scenarios
(e.g., emergency management) for supporting collaborative
work of operators. But this requires either(i) continuous
connections, or at least(ii) the possibility to foresee that a
device is going out to disconnect (e.g., in order to locally
cache important data needed for the following activities,
etc.). Therefore a basic problem is how to predict possible
disconnections of devices, in order to let upper layers ap-
propriately address connection anomalies (e.g., either tak-
ing global remedial actions to maintain the network con-
nected, or local ones to let the disconnecting device to go on
for some time with its own work). In this paper we present
a bayesian approach to predict disconnections inMANETs,
and validating experimental results that shows the viability
of the approach.

1. Introduction

A Mobile Ad hoc NETwork (MANET) is a peer-to-peer
(P2P) network of mobile nodes capable to communicate
with each other without an underlying infrastructure. Nodes
can communicate with their own neighbors (i.e., nodes
in radio-range) directly by wireless links. Anyway, non-
neighbor nodes can equally communicate by using other in-
termediate nodes as relays which forward packets toward
destinations [1]. The lack of a fixed infrastructure makes
this kind of network suitable in all scenarios where it is
needed to deploy quickly a network but the presence of ac-
cess points is not guaranteed. Examples are military appli-
cations, and more recently, cooperative systems for emer-
gency management [5].

Coordination and data exchange requires nodes are
aware on when they are going to disconnect from the re-
maining of theMANET (i.e., there is not any neighbor within
which the node is connected – inside the radio-range). In-
deed, if nodes are alerted about probable disconnections,

some remedial actions can be enacted:

local disconnection management– the node can take au-
tonomous – not requiring coordination with other
nodes – remedial actions, e.g., to cache some data that
are needed for the following tasks to be carried out
while disconnected, or to disseminate to other nodes
critical information he is storing that are crucial for the
other nodes (so to let them working);

global disconnection management– the nodes together
coordinate, e.g., through an appropriate process man-
agement system [8] to be hosted on a “leader device”,
such that they arrange themselves in a new configura-
tion in which no node is disconnected.

Therefore the basic problem to be addressed for build-
ing whichever coordination middleware on top ofMANETs
is the one of predicting disconnections of devices. In this
paper we deal with such a problem, and we propose a novel
and effective technique based on a bayesian approach.

The remainder of this paper is as follows. In Section
2 we describe the proposed technique, which is then vali-
dated through a set of experiments presented in Section 3.
Section 4 describes relevant work, in order to highlight the
novelty of our approach, and Section 5 concludes the paper
by remarking how this technique is at the basis of the de-
velopment of a coordination middleware forMANET we are
currently developing.

2. Bayesian Filtering for Disconnection Predic-
tion

Our predictive technique is based on some assumptions:

1. Each device is equipped with specific hardware that al-
lows it to know itsdistancefrom the surrounding con-
nected (i.e., within radio range) devices. This is not a
very strong assumption, as either devices are equipped
with GPS or specific techniques and methods (e.g.,



TDOA - time difference of arrival, SNR - signal noise
ratio, the Cricket compass, etc.) are easily available.

2. There are no landmarks (i.e., static devices with GPS)
in the MANET; we are indeed interested in very dy-
namic MANETs, in which neither the availability of
landmarks is supposed.

3. At start-up, all devices are connected (i.e., for each de-
vice there is a path - possibly multi-hop - to any other
device). The reader should note that we are not requir-
ing that each device is within the radio range of (i.e.,
one hop connection to) any other device (tight connec-
tion), but we require only alooseconnection (guar-
anteed by appropriate routing protocols, e.g., DSR,
AODV, etc.).

4. A specific device in theMANET, referred to ascoor-
dinator, is in charge of centrally predicting disconnec-
tions. As all devices can communicate at start-up and
the ultimate goal of our work is to maintain such con-
nection through prediction, it is possible to centrally
collect all information from all devices;

The predictive technique is essentially as follows: at a
given time instantti the coordinator device collects all dis-
tance information from the other devices (for assumptions
(1) and(3)); on the basis of such information the coordina-
tor build a probableconnection graph, that is the probable
graph at the next time instantti+1 in which the predicted
connected devices are highlighted. On the basis of such a
prediction, the coordinator layer will take appropriate ac-
tions (which are no further considered in the following of
this paper).

2.1. Bayesian Filtering

Bayes filters [3] probabilistically estimate/predict the
current state of a system from noisy observations. Bayes
filters represent the state at timet by a random variable
Θt. At each point in time, a probability distributionBelt(θ)
overΘt, calledbelief, represents the uncertainty. Bayes fil-
ters aim to sequentially estimate such beliefs over the state
space conditioned on all information contained in the sen-
sor data. To illustrate, let’s assume that the sensor data
consists of a sequence of time-indexed sensor observations
z1, z2, ...., zn. TheBeli(θ) is then defined by the posterior
density over the random variableΘt conditioned on all sen-
sor data available at timet:

Belt(θ) = p(θ|z1, z2, ...zt) (1)

Generally speaking the complexity of computing such
posterior density grows exponentially over time because the
number of the observations increases over time; to make the
computation tractable is necessary to make the following
two assumptions:

timer : a timer expiring each TT seconds.
iBuffer[x,y] : a bi-dimensional squared matrix storing distance among

couples of nodes X and Y
bayesianBuffer[x,y]: a bi-dimensional square matrix storing a triple 

(alpha, beta, distance) for each couple of nodes X and Y

upon delivering of a tuple (i,j,dist) from i
ibuffer[i,j] := dist

upon expiring of timer
copy ibuffer to localbuffer
foreach (i,j) in ibuffer /* empty intermediate buffer */

ibuffer[i,j] := RADIO_RANGE
foreach i,j in localbuffer

if (localbuffer[i,j] = RADIO_RANGE)
observation :=1

else
observation := ( iBuffer[i,j] - bayesianBuffer[i,j].distance ) / RADIO_RANGE
observation := (observation + 1) /2

end if
bayesianBuffer[i,j].distance := localbuffer[i,j]
bayesianBuffer[i,j].alpha := u * bayesianBuffer[i,j].alpha + observation
bayesianBuffer[i,j].beta := u * bayesianBuffer[i,j].beta + (1 – observation)

end foreach

Figure 1. The pseudo-code of proposed algo-
rithm.

1. the system’s dynamic is markovian i.e., the observa-
tions are statistically independent;

2. the devices are the only subjects that are capable to
change the environment.

On the basis of the previous two assumptions the equation
in a time instantt can be expressed as the combination of
a prediction factorBelt−1(θ) (the equation in the previous
time instant) and a update factor that on the basis of the
observation in the time instantt, realizes the update of the
prediction factor.

In our approach the random variableΘt belongs to [0,1]
and we use the Beta(α,β) function as abelief distribution
to model the behaviour of the system, according to the fol-
lowing equation:

Belt(θ) = Beta(αt, βt, θ) (2)

whereα andβ represent the state of the system and vary
according to the following equations:

{
αt+1 = αt + zt

βt+1 = βt + zt
(3)

In our approach, the observationzt represents the varia-
tion of the relative distance between nodes(i,j) normalized
with respect to radio range in the period[t-1,t] . It is used to
update the two parametersα andβ of the Beta function ac-
cording to equation 3. The evaluatedBeta(α, β) function
predicts the value ofθ(i,j)

t+1 estimating the relative distance
that will be covered by the nodes(i,j) in the next time pe-
riod [t,t+1] .



2.2. Prediction of the Distances

Our approach relies on clock cycles whose periods are
T . The pseudo-code for the monitor is described in Fig-
ure 1. We assume the access of shared data structures to be
appropriately synchronized.

For each ordered couple(i, j) of nodes, in then-th cy-
cle, monitor stores two float parameters,α

(i,j)
n andβ

(i,j)
n ,

and the last observed distanced
(i,j)
n−1. If a nodek comes in

the MANET in the m-th clock cycle,∀ nodej already in
MANET we initializeα

(k,j)
m = β

(k,j)
m = 1 so to get uniform

distribution in[0, 1], i.e., every distanced(k,j)
m gets the same

probability.
For each periodT , each generic nodei sends to the mon-

itor a set of tuples(i, j, dj) wherej is the unique name of
a neighboring node anddj is the distance toj. Coordina-
tor collects continuously such tuples(i, j, dj) coming from
nodes in an intermediate buffer. Please observe that clocks
of generic nodes are not synchronized but they can shift at
mostT/2.

Monitor performs prediction according to the same clock
T : at the genericn-th clock cycle upon timer expiring, it
copies the tuples(i, j, dj

n) from the intermediate buffer to
another one and, then, it empties the former buffer to get
updated values. In the clock cycle, for each collected tu-
ple (i, j, dj) monitor updates the parameters as follow by a
bayesian filter:

{
α

(i,j)
n+1 = uα

(i,j)
n + o

(i,j)
n

β
(i,j)
n+1 = uβ

(i,j)
n + (1− o

(i,j)
n )

whereo
(i,j)
n is an observation andu ∈ [0, 1] is a constant

value in order to weight observations so less as they are old.
The value for observation can be computed from the relative
distance variation betweeni andj, scaled with radio-range:

∆dr(i,j)
n =

d
(i,j)
n − d

(i,j)
n−1

radio range
(4)

whereradio range is the maximum distance where two
nodes can communicate with each other.

It is straightforward to prove∆dr
(i,j)
n to range in[−1, 1]

interval. This range is not suitable for bayesian filter since
observations should be between 0 and 1. So we map the
value in Equation 4 onto the suitable range [0,1] as follow1:

o(i,j)
n =

∆dr
(i,j)
n + 1
2

=
d
(i,j)
n − d

(i,j)
n−1

2 ∗ radio range
+

1
2

(5)

In sum, our bayesian approach estimates the relative per-
centage of radio-range which nodes walk in a timeT about
a nodei with respect toj. This percentage is mapped onto a

1If a node has entered in this cycle we assumeo
(i,j)
n = 0.5, i.e., it is

not moving.

[0,1] range so that values greater than0.5 mean nodes drift
apart and smaller values mean nodes move closer. If the
value0.5 is estimated, then nodei is estimated not to move
with respect toj.

Possiblyo
(i,j)
n can miss in the cyclen. It could miss

because the distance betweeni and j is greater than
radio-range or the packet sent byi is lost or delivered
late(MANETs are quite unreliable). In these cases we as-
sumeo

(i,j)
n = 1, meaning nodes will not be in radio-range

in the next clock cycle.
The parametersα and β are the inputs for

Beta-distribution Beta(α, β) where the expectation

θ
(i,j)
n+1 = E

(
Beta(α(i,j)

n+1, β
(i,j)
n+1)

)
+ 1

)
is the variation of

the distance betweeni and j in radio-range percentage
which will be estimated in(n + 1)-th clock cycle.

By taking into account Equation 5 we can estimate dis-
tance between nodesi andj at the beginning of(n + 1)-
th cycle. That can be done from such an equation where
the observation termo(i,j)

n is replaced with the valueθ(i,j)
n+1

estimated from observations. So, distance is estimable as
follow:

d̃
(i,j)
n+1 = d

(i,j)
n + ∆̃d

(i,j)

n

= d
(i,j)
n + (2θ(i,j) − 1) ∗ radio range

(6)

From a theoretical viewpointo(i,j)
n = o

(j,i)
n andd

(i,j)
n =

d
(j,i)
n ; so, it should bẽd(i,j)

n+1 = d̃
(j,i)
n+1. For all practical pur-

poses, we have to considerd̃
(i,j)
n+1 6= d̃

(j,i)
n+1 since clocks are

not synchronized and, therefore, information can miss or
differ (because collected in different moments).

Therefore, estimated distancẽdi,j
n+1 is computed by con-

sidering bothd̃(j,i)
n+1 andd̃

(i,j)
n+1, through different weights:

d̃i,j
n+1 = rel(i,j) ∗ d̃

(i,j)
n+1 + rel(j,i) ∗ d̃

(j,i)
n+1

where rel(i,j) is a factor for estimation reliabil-
ity and it is inversely proportional toσ(i,j) =√

V ar(Beta
(
α(i,j), β(i,j))

)
:

rel(i,j) =
1

σ(i,j)

1
σ(i,j) + 1

σ(j,i)

=
σ(j,i)

σ(i,j) + σ(j,i)
.

2.3. Connected Components Computation

Disconnection prediction depends on a parameterγ
which stands for the fraction of the radio-range the predic-
tive technique doesn’t signal a disconnection anomaly2. Let
beP (disc

(i,j)
n+1) = P (d̃(i,j)

n+1 ≥ γradio range) ; two nodesi

2As an example, in IEEE 802.11 with 100 meters of radio-range, if
γ equal to 0.3 means that for a communication distance of 70 meters the
prediction algorithm signals a probable disconnection.



andj are predicted going to disconnect if and only if

rel(i,j) ∗ P (disc
(i,j)
n+1) + rel(j,i) ∗ P (disc

(j,i)
n+1) >

1
2

(7)

i.e. two nodesi and j are estimated disconnecting
if it is more probable their distance to be greater than
γradio range rather than distance to be smaller than such
a value. We have judged useless to let1

2 parametric: smaller
values would cause prediction to be more conservative. In-
deed, we can tune conservativeness by loweringγ (i.e. the
fraction of radio-range which disconnections are not pre-
dicted in). If we consider Equation 6, then:

P (disc
(i,j)
n+1) = P ( d

(i,j)
n

radio range
+ (2θ(i,j) − 1) ≥ γ)

= P (θ(i,j) ≥ 1+γ
2
− d

(i,j)
n

2∗radio range
)

(8)

Where the last term in the Equation 8 is directly computable
from the estimated beta distribution:

P (θ(i,j) > k) =
∫ 1

k

Beta
(
α(i,j), β(i,j)

)

Once the link losses are predicted, we can compute eas-
ily connected components (i.e., sets of nodes that are pre-
dicted to be connected). On the basis of the connected
components, disconnection anomalies are identified by the
monitor and notified either to the nodes (if a local manage-
ment strategy is adopted) or to the upper layers of the co-
ordination middleware (if a global management strategy is
adopted). Connected components are computable through
“The Mobile Gamblers Ruin Algorithm” described in [9],
where an edge between couples of nodes in the connection
graph exists if the Equation 7 is false.

If we compare this approach to the one in [9], its ad-
vantages are threefold. Firstly, we estimate future distances
between couple of devices (and, thus, disconnections) by
considering the distance trend (∆d), whereas the other ap-
proach estimates distance as the weighted mean of older dis-
tances. Secondly, we consider both distances collected byi
aboutj and byj abouti where the previous approach takes
into account just one, assuming both of them equal (indeed
they may be different). Finally, the previous approach con-
siders only the expected value, instead of the overall distri-
bution of possible values. So, it would return, in the extreme
case, the same probability for the uniform distribution be-
tween [0,1] and for the Beta degenerating in the Dirac im-
pulse centered in 0.5. Clearly, the disconnection probability
for uniform distribution is higher than for Dirac impulse. In
the bayesian approach introduced here, we improve predic-
tions, since we consider the whole distribution of possible
values.

3. The Experimentation

The test bed setting. We implemented the bayesian al-
gorithm on actual devices since it is the best way to check

Ethernet LAN

Laptop
(Mobile Node)

PDAs
(Mobile Nodes)

Laptop
(Coordinator)

Access
Point

Octopus Server

Tablet
(Mobile Node)

Tablet
(Mobile Node)

Figure 2. The test bed setting.

and verify whether the algorithm is practically feasible. We
coded in MS Visual C# .NET as it enables to write appli-
cations once and deploy them on any device for which a
.NET Framework exists for (PCs and PDAs included). Of
course, field testing may be expensive both in terms of re-
sources and time: several persons are required to deploy in
a wide area and this might need time (and, thus, cost) to
prepare them. Furthermore, field testings do not provide a
controlled environment and it should be used just as final
user validation of the system. We usedOCTOPUS [6] an
emulator specifically targeted forMANET. OCTOPUSkeeps
a virtual map with virtual nodes which are bound to actual
devices. Devices andOCTOPUSare deployed on the same
LAN. When a node wants to send packets to another, those
are actually captured byOCTOPUSwhich plays the gateway
rule. OCTOPUSanalyzes the map and, if the sender and re-
ceiver are in radio-range, it forwards to the destination. The
goodOCTOPUS’ feature is that software on board of devices
is not aware about the presence of an emulator. The test bed
is show in Figure 2 and consists of ten machines (PCs and
PDAs). One of them hostsOCTOPUSwith the virtual map
and, so, it does not represent a real mobile node. All ma-
chines, except the first one, are bounded to different virtual
nodes of the virtual map.

The virtual map is 400x300 meter wide and the radio
range is set up as 100 meters. At the beginning, nodes
are located into the virtual map in a random fashion but,
anyway, so to form one connected component. Afterwards,
eachS seconds, every node chooses a point (X,Y ) in the
map and begin heading towards at a speed ofV m/s. Both
S andV are Gaussian random variables: the mean and vari-
ance are, respectively, 450 and 40 seconds forS and 3 and
1.5 m/s forV . The couple (X,Y ) is chosen uniformly at
random in the virtual map. Of course, the devices used
in tests do not actually move. In our emulated environ-
ment nodes move only in the virtual map. For this purpose,
devices send particular commands to a specificOCTOPUS
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Figure 3. The smallest and largest measured
error in percentage, changing clock periods.

socket in order to instruct it to move corresponding nodes
in the map.

Results. The first set of experiments has been intended to
verify which error in percentage is obtained for different
values of clock periodT . The error is here defined as the
gap between estimated̃dn distances at(n−1)-th clock cycle
and actual measuresdn at n-th cycle. The value is scaled

with respect to radio-range: |
fdn−dn|

radio range .
The Figure 3 shows the outcomes for clock periods equal

to 15, 20, 30 and 45 seconds. We usedu = 0.5 and we
performed ten running tests for each clock period. Every
test has been 30 minutes long. The results show, of course,
the error percentage is as larger as clock period increases.
Probably the most reasonable value for real scenarios is 30-
45 seconds (smaller values are not practically feasible since
the MANET would be probably overloaded by “distance”
messages). Please consider the greatest clock period we
tested: the error ranges between24.34% and26.8% (i.e.,
roughly 25 meters). These values are good: indeed, if we
setγ = 0.75 (i.e., disconnections are predicted when nodes
are more than 75 far), we would be sure to predict every ac-
tual disconnections. Moreover, forγ = 0.75 the algorithm
does not appear so conservative even if we could get false
negatives.

Afterwards, in a second test set, we fixed clock period to
30 seconds, testing foru equal0.01, 0.05, 0.1, 0.2, . . . ,0.8.
We even tripled the frequency which nodes start moving
with. The outcomes are depicted in Figure 4 where x-axis
corresponds tou values and y-axis to the error percentage.
The trend is parabolic: the minimum is obtained foru = 0.3
where error is 17.44% and the maximum is foru = 0.8
where error is 21.54%. Little values foru means that the
past is scarcely considered whereas large values means the
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Figure 4. The measured error in percentage,
changing the weight of past observations.

past is strongly taken into account. This matches our expec-
tation: we get the best result for intermediate values. That
is to say the best tuning is obtained whether we consider the
past neither too little nor too much.

4. Related Work

Much research on mobility prediction has been carried
on (and still it is in progress) for cellular phone systems [11,
2]. These approaches are based on Markov models, which
predict a mobile user future on the basis of its current and
past locations. The targeted issue of these approaches is to
predict whether a mobile user is leaving a cell (crossing cell
boundaries) and which new cell it is going into. Such an
information is then used for channel reservation in the cell
a mobile user is going to enter. Anticipating reservation
should lower the probability of a call to be dropped during
handoff3 caused by the absence of free channel for the call
in the new cell.

In order to make these predictions, proposed algorithms
generally include a combination of timing, speed, move-
ment information, and distance information between base
stations and mobile users. All communications between the
backbone systems, which calculate the prediction, and mo-
bile users occur through base stations, which are the centers
of star topologies. In such systems, the wireless-network
topology does not change over time. Communications be-
tween a base station and all mobile users in the cell are al-
ways one-hop, and communications between mobile users
do not occur directly but through base stations.

3In cellular telecommunications, the termhandoff refers to the process
of transferring an ongoing call or data session from one channel connected
to a core network or cell to another



Our scenario is different:MANETs can be arranged in
several network topologies that change over time together
with multihop path among mobile devices. Furthermore,
MANETs have no fixed infrastructures (i.e., base stations).
Our approach takes into account such network peculiarities.
It does employ a centralized model to predict connection
(and disconnection) of devices from the rest of theMANETs
and to overcome disconnections (through the functionalities
of the coordinator), but these operations are enacted differ-
ently compared to the approaches used in cellular-network
systems; indeed, it takes into account the knowledge of all
distances among mobile users, not only those between base
stations and mobile devices.

In the literature some approaches are investigated to pre-
dict the state of connectivity of the nodes of aMANET;
in [12] the MANET is considered as a combination of clus-
ters of nodes and it is studied the impact (i.e., the perfor-
mances) of two well defined mobility prediction schemes on
the temporal stability of such clusters; unlike our approach
the authors uses pre-existing predictive models while the
the novelty of our approach consists in the formalization of
a new model based on Bayesian filtering techniques.

Our research group has already worked on disconnec-
tions prediction inMANET [9]. The technique described in
the present paper relies on a more complete and efficient
statistical approach based on Bayes’ filters. A deeper dis-
cussion of the enhancements of this new approach has been
previously presented in Section 2.3.

Bayesian filters can be used in all fields where the en-
tities of a system cannot directly know its (dynamic) state
and they are forced to learn it by an estimation from sam-
ples. In [4], it is used to predict the behaviour (regarding
security aspects) of nodes in aMANET in order to make a
reputation system (applyed to peer-to-peer mobile ad-hoc
network) both robust against false ratings and efficient at
detecting misbehavior. In [10] the bayesian approach is
used in its various formalizations (kalman, particles filters,
etc.) for the problem of robot location estimation. In par-
ticular it assumes no location sensor to take perfect mea-
surements and that enables its use independently from the
type of sensors and from the used technology (e.g., GPS,
infrared, etc.). Then, for each pointpi and each robotri,
the technique gives the probability forri to stay inpi. This
approach cannot be easily used to compute when nodes are
going to disconnect.

5. Conclusions

In this paper we have proposed and experimented a novel
techniques for predicting disconnections inMANETs. This
is a basic problem when building coordination middleware
for mobile scenarios, as we argue that whichever kind of
remedial action (either local or global) need to be enforced
in advance with respect to the effective disconnection, and
therefore such a disconnection needs to be predicted.

This work is the basis of the development
of a coordination system forMANETs in emer-
gency management – cfr. the WORKPAD project
(http://www.workpad-project.eu ) we are
currently involved, as our plans are to build a global
management approach in which, after predicting discon-
nections, the coordination middleware instructs devices on
how to arrange differently their tasks in order to keep the
MANET connected. We plan to use executing monitoring
techniques [7] for building such a layer.
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