
Coordinating Mobile Actors in Pervasive and Mobile Scenarios:
An AI-based Approach

Massimiliano de Leoni, Andrea Marrella,
Massimo Mecella, Stefano Valentini

Dipartimento di Informatica e Sistemistica
SAPIENZA – Università di Roma, ITALY
<lastname>@dis.uniroma1.it

Sebastian Sardina
Department of Computer Science
RMIT University, AUSTRALIA

sebastian.sardina@rmit.edu.au

Abstract

Process Management Systems (PMSs) can be used not
only in classical business scenarios, but also in highly dy-
namic and uncertain environments, for example, in sup-
porting operators during Emergency Management for co-
ordinating their activities. In such challenging situations,
processes should be adapted in order to cope with anoma-
lous situations, including connection anomalies and task
faults. This requires the provision of intelligent supportfor
the planning and enactment of complex processes, that al-
lows to capture the knowledge about the dynamic context of
a process. In this paper, we show how this knowledge, to-
gether with information about the capabilities of the avail-
able actors, may be specified and used to not only to support
the selection of an appropriate set of agents to fill the roles
in a given task, but also to solve the problem of adaptiv-
ity. The paper describes a first prototype of a PMS based
on well-known Artificial Intelligence Techniques and how it
can be extended to tackle adaptation.

Keywords Process Management Systems, AI-based coor-
dination, Emergency Management

1 Introduction

Nowadays, process management systems (PMSs, [11,
16]) are widely used for the management of “adminis-
trative” processes characterized by clear and well-defined
structure. Besides such scenarios, which present mainly
static characteristics (i.e., deviations are not the rule,but
the exception), PMSs can also be used in mobile and
highly dynamic situations, for instance, to coordinate
operators/devices/robots/sensors [1].

Let us consider just for example a scenario for emer-
gency management. There, a PMS can be used to coor-
dinate the activities of a emergency operators within teams.
There, the members of a team are equipped with PDAs and
are coordinated through a PMS residing on a leader device

(usually an ultra-mobile laptop). In such a PMS, process
schemas (in the form of Activity Diagrams) are defined,
describing different aspects, such as tasks/activities, con-
trol and data flow, tasks assignment to services, etc. Every
task gets associated to a set of conditions which ought to be
true for the task to be performed; conditions are defined on
control and data flow (e.g., a previous task has to be com-
pleted or a variable needs to be assigned a specific range of
values). Devices communicate among themselves through
ad hoc networks; and in order to carry on the whole pro-
cess, such devices need to be continually connected to the
PMS. However, this cannot be guaranteed: the environment
is highly dynamic and the movement of nodes (that is, de-
vices and the related operators) around the affected area to
carry out assigned tasks can cause disconnections and, thus,
unavailability of nodes. This means that in highly dynamic
scenarios processes can be easily invalidated, since the ex-
ecution environment may change continuously because of
frequent unforeseeable events and, thus, the process cannot
carried on. Because of all this, some type ofprocess adap-
tivity is desirable in such scenarios. But what does “adap-
tivity” mean? Adaptivity can be seen as the ability of the
PMS to reduce the gap from thevirtual reality, the (ideal-
ized) model of reality that is used by the PMS to deliberate,
and thephysical reality, the real world with the actual val-
ues of conditions and outcomes. For instance in scenarios of
emergency management, PMS may restructure by including
a followX task to be assigned to a certain service in order
to avoid theX ’s disconnection.

The reduction of such gap requires sufficient knowledge
of both kinds of realities (virtual and physical). Such knowl-
edge, determined and harvested by the services performing
the process’ tasks, would allow the sensing of deviations
and the adaptation of the process for the final goal.

In [5], a general framework has been proposed to address
the task of automatically adapting a process when a gap is
sensed between the virtual and physical realities. As dis-
cussed there, other systems aim at addressing the critical
issue of automatic adaptation. Here, we report on our ongo-

ing efforts to operationalize such framework by making use
of the INDIGOLOG agent architecture [2, 3, 15] developed
at the University of Toronto’s Cognitive Robotics Group.1

In particular, in this paper we describe the architecture of
a preliminary version and show its applicability through an
example stemming from emergency management. We note
that while the paper develops all the required features for
carrying out processes, it does not handle adaptivity as of
yet, although it is arranged for this purpose.

The paper is organized as follows. Section 2 provides
a background overview of the machinery to be used for
representing and reasoning about processes and exogenous
events, namely the Situation Calculus and the INDIGOLOG

high-level programming language. Section 3 presents the
general conceptual framework to address adaptivity in dy-
namic scenarios; whereas Section 4 shows how these con-
ceptual models can be formalized within the Situation Cal-
culus. Section 5 describes the conceptual architecture of the
PMS component inside the INDIGOLOG module. Section 6
shows its applicability in the specific domain of emergency
management. Finally, Section 7 concludes the paper by ex-
plaining how we intend to extend the current version in or-
der to handle adaptivity.

2 Preliminaries

In this section we briefly introduce the framework used
to to formalize the adaptivity in PMSs. The situation calcu-
lus is a logic formalism designed for representing and rea-
soning about dynamical domains [13]. In the situation cal-
culus, a dynamic world is modeled as progressing through
a series ofsituationsas a result of variousactionsbeing
performed. A situation represents a history of actions oc-
currences. The constantS0 denotes the initial situation,
and a special binary function symboldo(�; s) denotes the
next situation after performing the action� in the situations. A special binary relationPoss(�; s) is used to denote
that action� is executable in situations. Statements whose
truth value may change are modeled by means ofrelational
fluentsandfunctional fluents, predicates and functions, re-
spectively, which take a situation as their final argument
(e.g.,Holding(x; s) andColor(x; s)). So, fluents may be
thought of as “properties” or “features” of the world whose
values may vary across situations. Changes in fluents (re-
sulting from actions occurrences) are specified through the
so-calledsuccessor state axioms. The successor state axiom
for a particular fluentF captures the effects and non-effect
of actions onF and has the following form:F (~x; do(�; s)) � �F (~x; �; s);
where�F (~x; �; s) is a formula fully capturing the truth-
value of fluentF on objects~x when action� is performed
in situations (~x, �, ands are all free-variables in�F).

1INDIGOLOGis freely availablewww.cs.toronto.edu/cogrobo.

Within this language, one can formulate action theories
that describe how the world changes as the result of the
available actions. For example, basic action theories [13],
include domain-independent foundational axioms that de-
scribe the structure of the situations, one successor state
axiom per fluent, one precondition axiom per action, and
initial state axioms that describe what is true initially.

On top of these theories of actions, one can define com-
plex control behavior by means of high-level programs ex-
pressed in GOLOG-like programming languages [13]. In
particular, we shall use here INDIGOLOG [14], an agent ar-
chitecture completely implemented in Prolog. We chose
INDIGOLOG for several reasons. First, it includes primi-
tives for expressing concurrency. Second, it allows agent
planning to beinterleavedwith agent acting, giving rise
to the so-called incremental executions. GOLOG, in con-
trast, searches for a whole legal execution before executing
even the first action, something unfeasible for our applica-
tion where agents execute complex and long tasks. In fact,
our agents must do some planning, then execute some of
the plan constructed, then engage in some more planning,
and so on. Third, the execution of INDIGOLOG programs
allows for the agent to performsensingof the environment
it is acting on, and adapt their executions accordingly. Fi-
nally, INDIGOLOG’s execution scheme accommodates the
occurrence of exogenous events-actions. In our domain,
other agents or entities may perform actions that are out-
side the control of our agents, who in turn need to diagnose,
incorporate, and reason about such exogenous actions. In
fact, when exogenous actions occur, plans may no longer
be valid. It may hence be necessary to monitor the execu-
tion of plans, and perform re-planning or plan repair when
exogenous events turn these plans unsuccessful.

In Section 4, thus, we shall show how to represent pro-
cesses in our PMS by means of INDIGOLOG programs.

3 General Framework

The general framework which we shall introduce in this
paper is based on theexecution monitoringscheme as de-
scribed in [10, 4] for situation calculus agents. As we
will later describe in more details, when using INDIGOLOG

for process management, we take tasks to be predefined
sequences of actions (see later) and processes to be IN-
DIGOLOG programs. After each action, the PMS may need
to align the internal world representation (i.e., the virtual
reality) with the external one (i.e., the physical reality).

Before a process starts, PMS takes the initial context
from the real environment and builds the corresponding ini-
tial situationS0, by means of first-order logic formulas. It
also builds the programÆ0 corresponding to the process to
be carried on. Then, at each execution step, PMS, which has
a complete knowledge of the internal world (i.e., its virtual
reality), assigns a task to a service. The only “assignable”
tasks are those whose preconditions are fulfilled. A service

2

Figure 1. Execution Monitoring.

can collect data required needed to execute the task assigned
from PMS. When a service finishes executing a task, it alerts
PMS of that.

The execution of the PMS can be interrupted by themon-
itor module when a misalignment between the virtual and
the physical realities is discovered. In that case, the monitor
adaptsthe (current) program to deal with such discrepancy.

In Figure 1, the overall framework is depicted. At each
step, the PMS advances the processÆ in situations by ex-
ecuting an action, resulting then in a new situations0 with
the processÆ0 remaining to be executed. Boths0 and Æ0
are given as input to the monitor, which also collects data
from the environment throughsensors.2 If a discrepancy be-
tween the virtual reality as represented bys0 and the phys-
ical reality is sensed, then the monitor changess0 to s00, by
generating a sequence of actions that explains the changes
perceived in the environment, thus re-aligning the virtual
and physical realities. Notice, however, that the processÆ0
may fail to execute successfully (i.e., assign all tasks as re-
quired) in the new (unexpected) situations00. If so, the mon-
itor adapts also the (current) process by performing suitable
recovery changes and generating then a new processÆ00. At
this point, the PMS is resumed and the execution continues
with program-processÆ00 in situations00.
4 Formalization

In this section, we show how to formalize the gen-
eral framework proposed above in the Situation Calculus-
based INDIGOLOG language. First of all, we shall use
somedomain-independentandsituation-independentpred-
icates to denote the various objects of interest present in our
framework, namely:� Servie(a): a is a service able to execute tasks;

2Here, we refer assensorsnot only proper sensors (e.g., the ones de-
ployed in sensor networks), but also any software or hardware component
enabling to retrieve contextual information. For instance, it may range
from GIS clients to specific hardware that makes available the communi-
cation distance of a device to its neighbors. [6]

� Task(x): x is a task;� Capability(b): b is a capability;� Require(x; b): the taskx requires the capabilityb;� Provide(a; b): the servicea provides the capabilityb;
Every task realization is the sequence of four actions, all
performed by PMS. We formalize as follows:� assign(a; x): taskx is assigned to servicea;� start(a; x; p): a should start executing taskx with

variablep as support information;� stop(a; x; q): servicea has successfully finished taskx with outputq;� release(a; x): taskx is realeased from servicea.

The valuep andq denote arbitrary sets of input/output,
which depend on the specific task; if no input or output is
needed,p andq are;.

Then, for each specific domain, we have several fluents
representing the relevant properties of world. The frame-
work assumes the presence of a process designer respon-
sible for defining the INDIGOLOG program and the corre-
sponding action theory. In particular, a specific definitionof
domain-dependent fluentAvailable(a; s) needs to be pro-
vided, capturing the fact that the PMS can assign a task to
servicea in situations. Though necessary, it is generally
not enough for a service to be “free” for the PMS to be
able to assign a task to it—other domain properties must
also hold. For instance, in the emergency management on
MANET scenario, a service has to not only be free, but also
be connected to the device holding the PMS. Because of
this, we take relationAvailable(a; s) not to be a fluent per-
se, but an abbreviation of the following form:8a; s:Available(a; s) def= Free(a; s) ^ (a; s): (1)

where (a; s) is meant to capture the (extra) domain con-
straints that need to be met fora to beavailableto the PMS,
besides being “free.”

Finally, if services can only handle at most one task at the
time, then we would also include the following successor
state axiom for fluentFree(a; s):8a; s:F ree(a; do(�; s)) �(9x)� = release(a; x) _Free(a; s) ^ (8x)� 6= assign(a; x): (2)

In words, servicea is consideredfreeafter action� has been
executed in situations if and only if� is the action of releas-
ing servicea or servicea was already free in the previous
situation and� does not assign any task toa.

3

Figure 2. Architecture of the PMS.

5 Architecture

This section aims at describing the internal structure of
PMS. Figure 2 shows its conceptual architecture. At the
beginning, a responsible person designs an Activity Dia-
gram through aProcess Designertool. Such a tool trans-
lates the Activity Diagram in a XML format file. Then, such
a XML file is loaded into PMS. TheXML-to-INDIGOLOG

Parsercomponent translates this specification in aDomain
Program, the INDIGOLOG program corresponding to the
designed process, and a set ofDomain Axioms, which is
the action theory comprising the initial situation, the setof
available actions with their pre- and post-conditions.

When the program is translated in the Domain Program
and Axioms, a component namedCommunication Manager
(CM) starts up all ofdevice managers, which are basically
some drivers for making communicate PMS with the ser-
vices and sensors installed on devices. For each real world
device PMS holds a device manager. After this initialization
process, CM activates the INDIGOLOG Engine, which is in
charge of executing INDIGOLOG programs. Then, CM en-
ters into a passive mode where it is is listening for messages
arriving from the devices through the device managers. In
general, a message can be a exogenous event harvested by a
certain sensor installed on a given device as well as a mes-
sage notifying the beginning or the completion of a certain
task. When CM judges a message as significant, it forwards

it to INDIGOLOG, such as, the signalling of the completion
of a certain task or the sudden unavailability of a given de-
vice.

The Communication Manager can be invoked by the IN-
DIGOLOG Engine whenever it produces an action for execu-
tion. CM picks a service judged as the best for the execution
and forwards the request to the appropriate device holding
that service.

In sum, CM is responsible of deciding which device
should be performing certain actions, instructing the ap-
propriate device managers to communicate with the device
services and collecting the corresponding sensing outcome.
The INDIGOLOG Engine is intended to execute asense-
think-actinterleaved loop [8]. The cycle repeats at all times
the following three steps:

1. check for exogenous events that have occurred;

2. calculate the next program step; and

3. if the step involves an action,executethe action, in-
structing the Communication Manager.

The INDIGOLOG Engine relies on two further modules
namedTransition SystemandTemporal Projector. The for-
mer is used to compute the evolution of INDIGOLOG pro-
grams according to the statements’ semantic., whereas the
latter is in charge of holding the current situations through-
out the execution, making possible to evaluate the fluent val-
ues

The last module that is worth mentioning is theExe-
cution Monitor (MON), which get notifications of exoge-
nous events from the Communication Manager. It decides
whether adaptation is needed and adapts accordingly the
process. Clearly, in this preliminary version, MON is just a
stub, since adaptation is not implemented. Section 7 illus-
trates how MON is envisioned in the final version.

6 A Running Example

Figure 3 depicts a process example stemming from [1]
as an informal Activity Diagram. The process consists of
two concurrent branches; the final task isSend data with
gprswhich can be executed only when both of branches are
successfully completed. The left branch comprises three
concurrent execution of therescuetasks followed by three
concurrent execution of the sequence of taskevacuationand
census. When aevacuationtask terminates, the following
taskcensuscan be started. Similarly, the right branch be-
gins with the concurrent execution of three sequences of
tasksphotoandsurvey. When every survey task is termi-
nated, taskevaluate photoshall be executed. Then, a condi-
tion is evaluated on the current state at a decision point. If
the condition holds, the right branch is considered as con-
cluded. Otherwise, the whole branch is repeated, including
the testing condition at the decision point.

4

Figure 3. The Activity Diagram representing a
process to be executed.

Figure 6 describes the program as computed by the
XML-to-I NDIGOLOG parser.

The program defines a sub-routinemanageTaskwhich
handles the whole cycle of a task, since it is assigned until
it is realized. ThemanageTask routine picks a servicea
providing every capability required by task X and assigns
X to a, which is notified about that. Then, the INDIGOLOG

engine waits for the notification coming from Communica-
tion Manager thata is willing to begin the X’s execution.
Upon arriving of such a notification, it executesstart in-
ternally and acknowledgesa so thata can begin the execu-
tion. Finally, it waits for the notification thatn terminated
the execution. Upon receiving it, it executes thestop and
release statements to change fluents to makea available
again in order thata can receive another task assignment.

In order to model the action assignment, the IN-
DIGOLOG implementation introduces the statement
pick(serv, prog), which is a concrete implemen-
tation of the�x:Æ(x) construct. We use such construct
to “select” a serviceserv such that programprog can
successfully execute. At this stage, it uses a trivial approach
by taking the first (any) available service. Nevertheless, we
aim at implementing a smarter approach by considering
logging information of past executions of similar tasks and
by balancing the load among all available services [12, 9].

proc(manageTask(X,D,I,O),
pick(b,[?(Require(X,b) = TRUE),
pick(a,[?(and(Provided(a,b) = TRUE,

Available(a) = TRUE)),
assign(X,D,a),
<wait for the notification of the task X start>,
start(X,D,a,I,O),
<wait for the notification of the task X end>,
stop(X,D,a),
release(X,D,a)

])
])

).

proc(mainControl(1), [
itconc([

[itconc([% Left branch
[manageTask(rescue,id_8,loc,[])],
[manageTask(rescue,id_9,loc,[])],
[manageTask(rescue,id_10,loc,[])]

]),
itconc([

[manageTask(evacuation,id_11,loc,[]),
manageTask(census,id_12,loc,text)],
[manageTask(evacuation,id_13,loc,[]),
manageTask(census,id_14,loc,text)],
[manageTask(evacuation,id_15,loc,[]),
manageTask(census,id_16,loc,text)]

])
],
[while(or(nophoto(id_2)+ % Right branch

nophoto(id_3)+nophoto(id_4)<20,
evaluation(id_7)=false),
[itconc([

[manageTask(photo,id_2,loc,numphoto),
manageTask(survey,id_5,loc,questionnaire)],
[manageTask(photo,id_4,loc,numphoto),
manageTask(survey,id_18,loc,questionnaire)],
[manageTask(photo,id_3,loc,numphoto),
manageTask(survey,id_6,loc,questionnaire)]
]),
manageTask(evaluatephoto,id_7,loc,evaluation)]

)]
]),
manageTask(senddata,id_17,info,sendOK) % Last Step

]).

Figure 4. The INDIGOLOG program of the ex-
ample in Figure 3

Notice that if thepick construct is not able to find any
service, then the INDIGOLOG program remains “blocked”,
waiting for a proper service selection that would allow
programprog to be executed.

ProceduremainControl is the starting point of the
process. Every process task execution corresponds to an
invocation of themanageTask routine. The concurrency
in the execution of tasks is granted by the special construct
itconc(A,B) that executes programsA andB concur-
rently in a (fair) round-robin manner. The branch on the
right in the activity diagram of the examples basically a
while cycle. The cycle body is repeated while either the
number of photos taken by thephoto task instances whose
identifier is id2, id4 and id3 is less than 20 or the photos
quality is not judged good enough. Predicatesnophoto(�)
andevaluation(�) are automatically updated by the Com-
munication Manager upon receiving such an information
from services through the respective Device Managers.

5

7 Conclusions

In this paper, we have introduced a novel approach to
tackle the issue of automatically adapting business pro-
cesses in highly dynamic environments. Other PMSs rely
on the existence of a domain expert who is responsible of
changing the process at hand in order to deal with excep-
tional events. In highly dynamic scenarios, exogenous un-
foreseen events are quite frequent and certainly not excep-
tions. As a consequence, the task of manually handling the
changes would become too difficult, if not unfeasible. The
solution we are proposing and working on, which has al-
ready been partially operationalized, relies on well-known
techniques and frameworks in Artificial Intelligence, such
as the Situation Calculus and automated planning.

Currently, we are working on the adaptation process. Re-
call that theExecution Monitormeant to sense thereal val-
ues of fluents to recognize anygap between the expected
and the real states. If a gap is indeed sensed (i.e., at least
one has changed to an unexpected value), the monitor has
to “adapt” the INDIGOLOG program that is currently repre-
senting the process.

Adaptation amounts to finding a linear program (i.e., one
without concurrency) that is meant to be “appended” before
the current INDIGOLOG program remaining to be executed.
This new linear program is meant to resolve thegapthat was
just sensed, by restoring the value of the affected fluents. In
that way, the remaining of the original program is again able
to execute.

More concretely, letÆ0 be the process/program still to be
carried on, and let� be the formula representing the state
that has to be restored for the correct execution ofÆ0. For
example, for simplicity, formula� may state theexpected
value of each fluent. Then, within INDIGOLOG, we can for-
malize the adaptation process by making the PMS change
the current programÆ0 to programÆ00 = �[(� a:a)�; ?�℄; Æ0.
The INDIGOLOG search operator�Æ provides a mecha-
nism for off-line lookahead so as to find a complete execu-
tion of programÆ. ThoughÆ can be any INDIGOLOG pro-
gram, we can always consider the caseÆ = (� a:a)�; ?�. It
would mean we are requiring INDIGOLOG to perform first-
principle planning: find a sequence of actions that would
make� true.

While the current implementation of INDIGOLOG does
not handle such off-line task in any specialized way, one can
imagine using any of the current state-of-the-art classical
planners [7] to implement our particular adaptive process.
This is indeed the direction we are currently following.

Acknowledgements.The work at SAPIENZA has been supported
by the European Commission through the project FP6-2005-IST-
5-034749 WORKPAD. The last author was supported by the Aus-
tralian Research Council and AOS under the grant LP0560702,
and the National Science and Engineering Research Council of
Canada under a PDF fellowship.

References

[1] T. Catarci, M. de Leoni, A. Marrella, M. Mecella, B. Sal-
vatore, G. Vetere, S. Dustdar, L. Juszczyk, A. Manzoor, and
H. Truong. Pervasive Software Environments for Supporting
Disaster Responses.IEEE Internet Computing, 12:26–37,
2008.

[2] G. De Giacomo and H. Levesque. An incremental in-
terpreter for high-level programs with sensing. In H. J.
Levesque and F. Pirri, editors,Logical foundation for cog-
nitive agents: Contributions in honor of Ray Reiter, pages
86–102. Springer, Berlin, 1999.

[3] G. De Giacomo, H. J. Levesque, and S. Sardina. Incremental
execution of guarded theories.ACM Transactions on Com-
putational Logic (TOCL), 2(4):495–525, October 2001.

[4] G. De Giacomo, R. Reiter, and M. Soutchanski. Execution
monitoring of high-level robot programs. InProc. of KR-98,
pages 453–465, 1998.

[5] M. de Leoni, M. Mecella, and G. De Giacomo. Highly dy-
namic adaptation in process management systems through
execution monitoring. InBPM, pages 182–197, 2007.

[6] M. de Leoni, M. Mecella, and R. Russo. A Bayesian Ap-
proach for Disconnection Management in Mobile Ad-hoc
Networks. InProc. 4th International Workshop on Interdis-
ciplinary Aspects of Coordination Applied to Pervasive En-
vironments: Models and Applications (CoMA) (at WETICE
2007), 2007.

[7] M. Ghallab, D. Nau, and P. Traverso.Automated Planning:
Theory and Practice. Morgan Kaufmann, 2004.

[8] R. Kowalski. Using Meta-logic to Reconcile Reactive with
Rational Agents. pages 227–242, 1995.

[9] A. Kumar, W. van der Aalst, and H. Verbeek. Dynamic work
distribution in workflow management systems: How to bal-
ance quality and performance.Journal of Management In-
formation Systems, 18(3), 2002.

[10] Y. Lespéerance and H. Ng. Integrating Planning into Reac-
tive High-level Robot Programs, 2000.

[11] F. Leymann and D. Roller.Production Workflow: Concepts
and Techniques. Prentice Hall PTR, 1999.

[12] H. A. Reijers, M. H. Jansen-Vullers, M. zur Muehlen, and
W. Appl. Workflow management systems + swarm intelli-
gence = dynamic task assignment for emergency manage-
ment applications. InBPM, pages 125–140, 2007.

[13] R. Reiter. Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. MIT
Press, 2001.

[14] S. Sardina, G. De Giacomo, Y. Lespénce, and H. Levesque.
On the semantics of deliberation in IndiGolog – from theory
to implementation. 41(2–4):259–299, August 2004.

[15] S. Sardina and S. Vassos. The Wumpus World in IndiGolog:
A preliminary report. In L. Morgenstern and M. Pagnucco,
editors, Proceedings of the Workshop on Non-monotonic
Reasoning, Action and Change at IJCAI (NRAC-05), pages
90–95, 2005.

[16] W. van der Aalst and K. van Hee.Workflow Management.
Models, Methods, and Systems. MIT Press, 2004.

6

