
Extending Process Logs with Events from
Supplementary Sources

Felix Mannhardt1,2, Massimiliano de Leoni3,1⋆, Hajo A. Reijers1,2

1 Eindhoven University of Technology, Eindhoven, The Netherlands
2 Perceptive Software, Apeldoorn, The Netherlands

3 University of Padua, Padua, Italy
{f.mannhardt,m.d.leoni,h.a.reijers}@tue.nl

Summary. Since organizations typically use more than a single IT sys-
tem, information about the execution of a process is rarely available in
a single event log. More commonly, data is scattered across different lo-
cations and unlinked by common case identifiers. We present a method
to extend an incomplete main event log with events from supplementary
data sources, even though the latter lack references to the cases recorded
in the main event log. We establish this correlation by using the control-
flow, time, resource, and data perspectives of a process model, as well
as alignment diagnostics. We evaluate our approach on a real-life event
log and discuss the reliability of the correlation under different circum-
stances. Our evaluation shows that it is possible to correlate a large
portion of the events by using our method.

Key words: Process Mining, Event Correlation, Data Petri Nets, Process Logs

1 Introduction

Information about the execution of processes is stored in event logs of informa-
tion systems that support, monitor or enact business processes in organizations.
Such event logs contain recorded sequences of events (i.e. traces). Each trace
typically records the execution of a process instance (i.e. case). As organizations
typically use multiple information systems, the information about a single case
may be recorded across several event logs that are stored in different locations.
We consider one of those logs as the main event log, for example the event log
written by a central process management system (PMS), while the other event
logs are seen as supplementary sources. In such a set-up, insufficient information
may be available to link the supplementary events to cases in the main event
log. Most existing process mining techniques require a single event log with the
events grouped by cases as input [1] and, as a result, cannot make use of such
unlinked data. Clearly, it would be beneficial to include supplementary events
⋆ The work of Dr. de Leoni is supported by the Eurostars - Eureka project PROMPT

(E!6696)

2 F. Mannhardt et al.

in an analysis as the events or the corresponding data may help to get a better
understanding of the overall business process.

The goal of this research is to correlate unlinked events from supplementary
data sources, i.e. events that have been recorded by additional systems, to the
traces of the main event log. The setting for our approach is that of large orga-
nizations where various semi-autonomous units need to cooperate while using a
heterogeneous set of information systems, e.g. hospitals, banks, car manufactur-
ers. We assume that supplementary events do not contain data that allows them
to be trivially associated to a single trace in the main event log. So, simple re-
lational methods that exploit direct dependencies between data cannot be used
to solve the problem. Furthermore, we assume that an expert provides domain
knowledge about the entire process in form of a process model, as to identify
opportunities to link the various events.

Main

Event Log

Process

Model

Alignment

Supplementary

Events

Extended

Event Log

A

B

Fig. 1. Overview of the proposed approach

We propose an approach that
uses an alignment of the pro-
cess model and the main event
log to correlate supplementary
events to the correct traces of the
main event log (cf. [2]). Fig. 1
gives an overview about the pro-
posed technique. We use existing
techniques to compute alignments for the first step (A): The alignments indicate
which traces of the main event log have missing events according to the process
model. We assume that those missing events may be found in a set of supplemen-
tary events by leveraging on information about the control-flow, time, resource,
and data perspective of the process model as captured in the alignment. We use
this information in a second step (B) to correlate supplementary events to traces
in the main event log.

For example, a PMS handling credit requests may require the execution of
a financial check activity if the amount of the credit exceeds e10,000. The
financial check activity is handled by a financial system and its execution is
recorded yet disconnected from the event log of the PMS. Our approach uses the
constraint regarding the credit amount to correlate the correct events, e.g. the
supplementary financial check events will only be correlated to traces referring
to credit requests of more than e10,000.

In the literature, a few techniques have already been proposed to solve similar
problems. In [3] a genetic approach, based on an artificial immune system, is used
to merge multiple traces that most likely belong to the same case. While this
work displays similarities to ours, it does not use an existing process model as
input. As such, it cannot exploit available expert knowledge. Moreover, being
a genetic approach it is likely to be slow when applied to a large data set. In
fact, [3] reports an execution time of up to 10 minutes on a small data set of
8,500 traces. The approach in [4] tries to group events that belong to a case from
a relational database of an ERP system by using the foreign-key relations in such
databases. The work [5] describes a method to correlate events based an common

Extending Process Logs with Events from Supplementary Sources 3

attributes in the setting of web service interactions. The common assumption
in [4, 5] is that there is a conceptual diagram (e.g. ER model) that can be used
to link events from different sources. These approaches would not be applicable
in our setting, as we explicitly assume that no such relation is defined. In [6]
the input is a stream of events without case identifiers that are clustered into
traces by using sequence partitioning. This technique builds only on the event
name, does not make use of other data associated to the event and, therefore,
only returns traces of events without data attributes. The approach presented
in [7] can be used to build an event log with uniform event names out of two
event logs recording executions of the same process, where events referring to
the same activity have different names. This work differs from ours as traces in
the first event log are not extended with events from the second event log.

This paper contributes a new technique that addresses the problem of dis-
connected data sources for event data. The technique employs both an align-
ment of observed event data with a process model and constraints defined by
the control-flow, time, resource, and data perspectives of the process model to
correlate events.

The remainder of the paper is organized as follows. Sect. 2 introduces pre-
liminaries such as process models and event logs. In Sect. 3 the technique is
presented. A short evaluation using a real-life event log is discussed in Sect. 4.
Finally, Sect. 5 concludes with a summary and sketches future work.

2 Preliminaries

We introduce preliminaries such as Petri net with data (DPN-net), Event-Log
and Alignment that are needed to describe our approach.

A DPN-net extends a Petri net [8] with transitions that can write vari-
ables [2]. Transitions perform write operations on a set of given variables and
may define a data-dependent guard. Transitions can fire only if all their input
places are marked and their guard is satisfied. A guard can be formulated as an
expression over the process variables. We denote with Formulas(X) the universe
of such expressions defined over a set X of variables.

Definition 1 (DPN-net). A DPN-net N = (P, T, F, V, U,Val ,W,G) is defined
as:

– a Petri net (P, T, F);
– a set V of variables;
– a set U of variable values;
– a function Val : V → 2U that defines the values admissible for each variable

v ∈ V , i.e. Val(v) is the domain of variable v;
– a write function W : T → 2V that labels each transition with a set of write op-

erations, i.e. with the set of variables whose value needs to be written/updated;
– a guard function G : T → Formulas(V ∪ {v′ | v ∈ V }) that associates each

transition with a different guard.2

2 If a transition t should be associated with no guard, we set G(t) = true.

4 F. Mannhardt et al.

Start

End

Create Fine Send Fine Notification

Appeal to

Prefecture

Inv3

Inv5

Inv4

Appeal to

 Judge

Send for CCInv1 Send Appeal

Receive ResultNotify Offender

Payment Add Penalty

Inv2

Payment Payment

Inv6

Amount

Points

Payment

Expenses

Dismissal

ToPay

Fig. 2. DPN-net of the road traffic fine management process [2]

Table 1. Guards of the road traffic fine management DPN-net.
Transition(s) Guard
Send for CC ToPay’ = Amount + Expenses - Payment ∧ ToPay’ > 0
Inv2, Inv3 Payment = Amount + Expenses
Inv1 (Dismissal != NIL) ∨ (Payment = Amount ∧ Points = 0)
Receive Result, Inv5 Dismissal = NIL
Inv4 Dismissal = #
Inv6 Dismissal = G

When a variable v ∈ V appears in a guard G(t), it refers to the value just before
the occurrence of t. If v ∈ W (t), it can also appear as v′ and refer to the value
after the occurrence of t. Constraints on the resource and time perspective of
a process can be encoded by using variables, write operations and guards of a
DPN-net as shown in [2].

In the following we give an example of a DPN-net adapted from [2], which
models the handling of road traffic fines by the local police in Italy.

Example 1. The DPN-net of this example is shown in Fig. 2, whereas Table 1
shows the guards associated with the DPN-net transitions. The process starts
with recording the Amount that needs to be paid and possibly any Points to
be deducted from the driver’s license. Throughout the process the offender can
pay the full fine or parts of it; the actual payment is recorded in the Payment
variable. Whenever the fine is sent to the offender, additional postal Expenses
need to be paid. Moreover, if the offender does not pay the fine timely, a penalty
amount can be added to the fine. The offender can appeal against the fine, both
through a judge or the prefecture. The result is recorded in the variable Dismissal
and used to decide whether the process may stop. Finally, if the fine is not paid
in full, the amount ToPay is send for credit collection (transition Send for CC).

Given a set X, B(X) denotes the set of all multi-sets over a set X. The
set of possible states of N is formed by all pairs (M,A) where M ∈ B(P) is

Extending Process Logs with Events from Supplementary Sources 5

Table 2. Alignment of a log trace the road fines management DPN-net
Event-Log Trace Process
Create Fine {Amount = 36.0, Create Fine {Amount = 36.0,

Payment = 0.0,Points = 0} Payment = 0.0,Points = 0}
≫ Send Fine {Expenses = 10.0}
Notification Notification
Payment {Payment = 46.0} Payment {Payment = 46.0}
≫ Inv3

a marking of Petri net (P, T, F), i.e. a multi-set of the places in P , and A is a
function that associates a value with each variable, i.e. A : V → U ∪ {⊥}, with
A(v) ∈ Val(v) ∪ {⊥} for each v ∈ V . A special value ⊥ is assigned to variables
that have not been initialized.

A transition firing s is a pair (t, w) ∈ T × (V ̸→ U).3 We introduce the
following functions to easily access the components of a transition firing s =
(t, w): #vars(s) = w and #act(s) = t. Function #vars is also overloaded such that
#vars(s, v) = w(v) if v ∈ dom(#vars(s)), or #vars(s, v) = ⊥ if v ̸∈ dom(#vars(s)).
We denote the set of possible transition firings, both valid and invalid, for a
DPN-net N as SN , i.e. SN = T × (V ̸→ U). A sequence σ ∈ S∗N is called a
process trace. Each DPN-net defines two special markings MI ,MF : the initial
and final marking. The initial state of a DPN-net is (MI , AI) with AI(v) = ⊥
for each v ∈ V . A non-empty set of final states exists and includes every state
(M,A) with M = MF . In any state, zero or more transitions of a DPN-net may
be able to fire (i.e., occur). In the remainder, PN,MI ,MF

denotes the set of valid
process traces of a DPN-net N , i.e. the sequence of transition firings that, from
the initial marking MI , lead to final marking MF . Readers are referred to [2] for
more details.

Definition 2 (Event & Event Log). Let N = (P, T, F, V, U,Val ,W,G) be
a DPN-net and let SN be the set of possible transition firings of N . An event
sL ∈ SN is the recording of a transition firing. A log trace σL ∈ S∗N is a sequence
of events. An event log over N is a multi-set of traces: L ∈ B(S∗N).

Each event writes a value for a special variable time ∈ V that indicates the
timestamp of its occurrence; we use #time(sL) = #vars(sL, time) to easily access
the timestamp of any event sL. We assume that L only contains events that are
part of the DPN-net N . Any event referring to a transition that is not part of
the process model is filtered out.

We can relate a trace σL of an event log L to a process model N by computing
an alignment that shows where the trace deviates from the allowed behavior
according to the process model. Such an alignment relates “moves” in the firing
sequences of the trace to “moves” in firing sequences of the model. In case a
“move” cannot be related, we explicitly denote such “no moves” by ≫. Table 2
shows such an alignment between a log trace and the DPN-net from Example 1.

Definition 3 (Alignment). Let N = (P, T, F, V, U,Val ,W,G) be a DPN-net
with initial marking MI and final marking MF . Let S≫N = SN ∪ {≫}. A legal

3 We use ̸→ to denote a partial function.

6 F. Mannhardt et al.

move in an alignment is represented by a pair (sL, sM) ∈ (S≫N ×S≫N)\{(≫,≫)}
such that

– (sL, sM) is a move in log if sL ∈ SN and sM =≫,
– (sL, sM) is a move in model if sL =≫ and sM ∈ SN ,
– (sL, sM) is a move in both with correct write operations if sL ∈ SN , sM ∈ SN

and #act(sL) = #act(sM) and ∀v ∈ V #vars(sL, v) = #vars(sM , v),
– (sL, sM) is a move in both with incorrect write operations if sL ∈ SN , sM ∈

SN and #act(sL) = #act(sM) and ∃v ∈ V #vars(sL, v) ̸= #vars(sM , v),

All other moves are considered as illegal. AN = {(sL, sM) ∈ (S≫N ×S≫N)\{(≫,≫
)} | sL =≫ ∨sM =≫ ∨#act(sL) = #act(sM)} is the set of all legal moves. The
alignment of two execution traces σ′, σ′′ ∈ S∗N is a sequence γ ∈ A∗N such that,
ignoring all occurrences of ≫, the projection on the first element yields σ′ and
the projection on the second yields σ′′. An alignment is a complete alignment of
a log trace σL and a DPN-net N , if σ′ = σL and σ′′ ∈ PN,MI ,MF .

Given an alignment γ of a log trace σL and a process trace σP , γ|L = σL

and γ|P = σP are referred to as the log and the process projection of γ. Each
alignment is associated with a cost that accounts for deviations; the cost of an
alignment is the sum of the cost of its constituent moves. The cost of moves is
defined by a process analyst since it depends on the specific domain. It can be
abstracted as a cost-function κ : AN → R+

0 , which associates a non-negative
cost to each potential move.

Work [2] reports on a technique to compute a so-called optimal alignment,
i.e. one of the alignments with the lowest cost. Given a log trace and a DPN-
net, this technique returns a complete alignment such that any other possible
complete alignment has the same or higher cost.

3 Extending Process Logs based on Alignments

This section describes our technique to extend process logs with events that are
extracted from additional sources. The main input of the algorithm is (1.) a
DPN-net N = (P, T, F, V, U,Val ,W,G) with a given initial and final marking,
(2.) an event log L ∈ B(S∗N) that records the firings of transitions belonging
to some set T ′ ⊂ T and (3.) a multiset of events C ∈ B(SN), called event
candidates, which records the firings of transitions belonging to some set T \ T ′.
Our technique aims to extend log traces in σL ∈ L by adding events in C to
σL in the most likely position, while guaranteeing that the alignment is still a
complete one. The event candidates are assumed to not contain data that allows
to trivially associate them to a trace of L (such as a trace identifier compatible
with those in L).

The alignment of any log trace σL ∈ L with N may contain a number of
moves in model, each of which indicates a transition firing that was not recorded
in σL but should have been observed. This missing transition firing can have
two causes. The first is that it did not happen in reality at all (e.g., a process

Extending Process Logs with Events from Supplementary Sources 7

participant did not execute the expected activity deliberately or by mistake); the
second reason is that it did happen but was not recorded in σL. Our technique
elaborates a basic idea according to which a missing event (i.e. a recording
of a transition firing) can possibly be found among the event candidates, if it
occurred. Often, this is not as easy as it may seem. On the one hand, many
event candidates may be found suitable; therefore, additional criteria need to
be considered to restrict them further. On the other hand, no single candidate
may be found at other times because, for example, the transition did not fire
in reality. To give the reader an idea on how we restrict the number of suitable
event candidates, we restrict the suitable event candidates in three steps:

1. Compute the event set C1 ⊆ C of the events that relate to the correct missing
activity;

2. Compute the event set C2 ⊆ C1 that contains events that have compatible
timestamps with the missing event;

3. Compute the event set C3 ⊆ C2 with events that are conforming to all data
requirements of the DPN-net and, thus, are allowed to be performed in that
position in the trace.

In the following we describe our technique, shown in Algorithm 1, stepwise.
First, we compute an optimal alignment of each trace σL ∈ L and N and add
them to a set I, using, e.g., the technique discussed in [2]. Variable k denotes
the maximum number of event candidates that can be associated with a model
move in order for a candidate to be chosen in that set. Initially, k is set to 1,
which indicates that no event candidate is selected if there are potentially more
than 1. The idea is that, if there are more suitable candidates, each has a lower

Algorithm 1: extendLogTraces
Input: DPN-net (N), Initial and Final Marking (MI ,MF), Event Log (L), Event

Candidates (C), Matching Limit (lM)
Result: Extended Event Log (LC)

1 I ←
∪

σL∈L align(N,MI ,MF , σL)

2 k ← 1
3 while k ≤ lM and C ̸= ∅ do
4 foreach γ ← ⟨(s1L, s1M), . . . , (snL, snM)⟩ ∈ I do
5 foreach (siL, siM) ∈ γ, s.t. siL =≫ do
6 C1 ← {sC ∈ C | #act(sC) = #act(s

i
M)}

7 tE ← earliestTimeN(γ, siM)

8 tL ← latestTimeN(γ, siM)

9 C2 ← {sC ∈ C1 | tE < #time(sC) < tL}
10 C3 ← {sC ∈ C2 | replaceMove(γ, i, (sC , sC))|P ∈ PN,MI,MF

}
11 if 1 ≤ |C3| ≤ k then
12 sL ← selectEvent(

tE+tL
2 , C3)

13 C ← C \ {sL}
14 I ← (I \ γ) ∪ replaceMove(γ, i, (sL, sL))

15 end
16 end
17 end
18 k ← 2k

19 end
20 return

∪
γ∈I γ|L

8 F. Mannhardt et al.

probability to be the right one. Therefore, we only allow to associate a candidate
with a move in model if it is the only candidate. At each step of the iteration,
we double this number (see line 18). This relaxation of the constraint continues
until the user-defined matching limit lM is reached or all event candidates have
been matched.

As described before, the set of matching events for each move in model
(≫, sim) of every alignment γ ∈ I is refined stepwise. From line 6 to line 10,
we compute the set C1, C2, C3 introduced above. As mentioned after Defini-
tion 2, each event e is associated with the timestamp #time(e) of its occur-
rence. To determine whether an event candidate should be retained for a model
move (≫, sim), we determine the earliest time and latest time in which tran-
sition firing sim can occur (lines 7-8). The earliest time is the largest times-
tamp in the process projection of γ that refers to transitions that in DPN-net
N = (P, T, F, V, U,Val ,W,G) comes before #act(s

i
M). We call such a set4:

preSN (γ, s) = {s′ ∈ γ|P | #time(s
′
) < #time(s)

∧ ∃p ∈ •
#act(s), #act(s

′
) ∈ •

p}.

Given a user-defined time interval bE , the earliest time function is defined as
follows:5

earliestTimeN (γ, s
i
M) =

{
#time(first(γ|L))− bE if preSN (γ, siM) = ∅
max

s
j
M

∈ preSN (γ,si
M

)
(#time(s

j
M)) else.

The latest time is the earliest timestamp in the process project of γ. Space
limitation prevents us from discussing the latest time in detail. However, the
latest timestamp refers to the smallest timestamp in the process projection of γ
that refers to transitions that in DPN-net N = (P, T, F, V, U,Val ,W,G) comes
after #act(s

i
M).

In sum, the subset C1 of C has been computed by considering the control-
flow perspective, whereas subset C2 of C1 (and of C) has been determined by
considering the time perspective. To reduce the set of possible candidate of C
further, the data perspective is also taken into account. A candidate sC in C2

is also part of C3 if we can replace the i-th move (in model) in alignment γ
with (sC , sC)

6 and the resulting alignment is such that the process projection
is still a valid process trace. This guarantees that event sC at the i-th position
conforms to the data, time and resource-perspective constraints as defined by
the DPN-net N . Therefore, C3 is the final set of event candidates.

As mentioned before, if the number of candidates is fewer than k, one is
chosen. Otherwise, no candidate is chosen; possibly, one will be chosen at one of
the subsequent iterations with increased k. The reason why we decide to use an
incrementing k is related to fact that, first, we want to associate event candidates
4 The preset of a transition t is the set of its input places: •t = {p ∈ P | (p, t) ∈ F}.

The preset of a place p is the set of its input transitions: •p = {t ∈ T | (t, p) ∈ F}.
5 We use first(σ) to indicate the first element of the sequence σ.
6 The replacement operation is represented in the algorithm as function
replaceMove(γ, i,move) that return a variation of the alignment γ where the i-th
move is replaced by move

Extending Process Logs with Events from Supplementary Sources 9

with traces that have higher certainty to represent the correct matching. In this
way, the event candidate set becomes smaller, which also decreases the level of
uncertainty for those matching that were not sufficiently certain beforehand.

If one candidate needs to be chosen, we select the one sL closer to the middle
point between the earliest and latest time (line 12).7 We use the middle point
assuming that the waiting time between events is similar for each event. Event
sL is removed from the event candidates (line 13) and alignment is substituted
by one in which the i-th move is replaced with (sL, sL) (line 14).

We conclude by sketching an informal discussion about the computational
complexity of Algorithm 1. In the worst case, the while loop is repeated log(lM)
times; internally, the double for-each loop is repeated as many times as the
overall number of model moves, which are of the same order of magnitude as
the number of events in the event log. Each iteration of the double for-each loop
is composed by steps that are either linear in the length of the alignments (e.g.,
line 7) or in the size of the event-candidate set (e.g., line 6, 9 or 10). In light of
this, computing the set I of alignments is dominating the worst-case complexity:
as discussed in [2], computing optimal alignments is, in the worst case, double
exponential in the size of the log trace and number of variables and guards.

4 Evaluation

We implemented the approach as a plug-in for the open-source process mining
framework ProM8. This section reports on the evaluation on a real-life case
study about the process to manage road-traffic fines by an Italian local police.
The process follows the process model discussed in Example 1. The event log
contained 543,583 events grouped into 145,800 traces, out of which 76,600 are
recorded process executions that are compliant with the process model.

The process is managed through a single information system and, hence, a
single event log has been extracted from the transactional database underneath.
To validate our technique, we assumed four scenarios:

A: Send Fine (Compliant). An independent system records the execution of
transition Send Fine. The execution of the other process transitions is sup-
ported by a process management system. The latter generates an event log,
whereas the former system only logs events without any reference to the trace
to which they would belong in the event log. All events from non-compliant
traces have been removed.

B: Send Fine. As above, but without removing non-compliant executions.
C: Send for CC (Compliant). The same as in A, but assuming that transition

Send for CC was logged in a different system, instead of Send Fine.
D: Send for CC. As above, but without removing non-compliant executions.
7
selectEvent(C, t) denotes the operation of returning the event in a set C with the
closest timestamp to t.

8
http://www.promtools.org

10 F. Mannhardt et al.

Table 3. Extending an event log in different scenarios
Scenario |C| lM % Perfectly % Approx. % Wrongly % Ignored

A: Send Fine (Compliant) 33178
512 22.0 13.9 1.5 62.6
1024 34.0 30.3 3.1 32.2
2048 38.6 44.8 5.2 11.3

B: Send Fine 101950
512 5.1 5.1 0.4 89.5
1024 11.6 15.5 0.8 72.1
2048 14.1 31.5 1.7 52.8

C: Send for CC (Compliant) 28049
512 29.1 4.3 0 66.6
1024 51.8 6.1 0 42.1
2048 69.6 12.4 0 18.1

D: Send for CC 54232
512 20.8 3.6 3.8 71.7
1024 29.9 4.7 5.6 59.8
2048 40.3 6.9 7.3 45.5

We applied our technique to the four scenarios. For each scenario, we split the
original event log L into an event set C and a new event log L′ with the remaining
events. We defined the cost function for the alignment such that a move in model
step with events in C is cheaper than any other deviation. Then, we applied our
algorithm in this way obtaining a new event log L′′. Our goal is to correlate the
events in C to the correct traces in L′. In the optimal case the returned event
log L′′ is equal to L. We evaluate the performance of our approach by using the
following four types of correlations:

Perfectly correlated. Events are perfectly correlated, if every variable (including
time) takes on the same value as in the respective event in the original trace.

Approximately correlated. Events are approximately correlated, if the original
event refers to the same transition and the position in the extended trace
is the same as in the original trace, but at least one variable has a different
value from the one assigned in the original trace.

Wrongly correlated. Events are wrongly correlated, in case the event was not
recorded at the same position in the original trace.

Ignored. All events that remain in the candidate set C and, thus, are not corre-
lated to any trace are ignored.

For the evaluation, we express those criteria relative to the number of events in
the candidate set C. If all events were perfectly correlated, the returned event
log L′′ would be indistinguishable from the original event log L. In reality, the
correlation cannot be always perfect. However, for some analyzes, approximately
correlated events are still valuable, as they are indistinguishable from the original
events according to the process model. For example, the exact time that Send
for CC was executed does not matter for some purposes. It is also possible that
an event is correlated to a trace that originally did not contain such event. We
do aim to minimize the amount of such wrongly correlated events.

The results of the experiments are shown in Table 3 for three different match-
ing limits lM : 512, 1024 and 2048. Looking at the % Perfectly column, the per-
centage of perfectly correlated events, we can see that our approach performs
better on perfectly fitting event logs, but still is able to extend up to 40% of the
traces in scenario D. Moreover, in scenario C, with a perfectly fitting log there
are no wrongly correlated events in contrast to up to 7.3 % wrongly correlated
events in scenario D with a non-perfect log. This could be expected: the problem
of having wrongly correlated events tends to occur more often if deviations exists

Extending Process Logs with Events from Supplementary Sources 11

between the observed behavior and what the process model allows for, e.g. an
event has not occured. For example, if an original trace in scenario D does not
contain the event Send for CC even though the fine is unpaid, then the align-
ment will contain a move in model step for Send for CC and an event may get
wrongly correlated.

It is noteworthy that the match limit lM can be used to steer the reliability
of the result. For lower values of lM fewer events are approximately and wrongly
correlated, at the price of an increase in ignored events that are not correlated.
Comparing scenario A and scenario B, we noticed the fact that both the per-
centage of approximately and wrongly correlated events is higher in scenario A,
even though only compliant traces have been considered. Moreover, in scenario
B more events are ignored, i.e. 55.8 % in comparison to 11.3 % in scenario A,
both for lM = 2048. This observation can be explained by the larger candidate
set in scenario B and the choice of the matching limit. For lower values of lM
fewer events are approximately and wrongly correlated, at the price of an increase
in ignored events that are not correlated. Using the same matching limit, it is
likely that more events are ignored for a larger candidate set and, conversely,
fewer events are approximately or wrongly correlated.

Overall, the approach seems of value. If the process executions are always
conformant to the model, log traces are extended with the events referring to
the right transition firings (i.e. events) 80% of the time, although the variable
assignments are not always perfect (i.e. approximate correlations). If the process
executions are not always conformant, the accuracy of the matching degrades yet
roughly 50% of the event candidates are perfectly or approximately correlated.

Please note that matching the right events is not straightforward for this
event log. For instance, if a trace is extended with an event at the time 9/9/2014
instead of the correct time 8/9/2014, or with an amount of e81 instead of e80,
we would already consider it as approximate matching, although from a domain
viewpoint the difference could be negligible. Especially small time deviations
happen often for this particular event log, as there are hundreds of traces con-
cerning the same type of infringement, thus, requiring the same amount to be
paid by the offender. There is not enough information in the event log to dis-
tinguish between any two of these traces, if they are being executed within the
same time frame.

Regarding the execution time to extend the event logs with the set of event
candidates, each scenario did not take more than 10 minutes, which we believe
to be reasonable given the large sizes of the candidate sets, the number of traces,
and the complexity of the approach.

5 Conclusion

In this paper we proposed a novel technique to extend process logs with events
from supplementary sources that cannot be trivially linked to specific traces in a
main event log. The problem of disconnected event sources is relevant in practice,
as organizations typically use multiple information systems, which record events

12 F. Mannhardt et al.

in separate event logs. We use an alignment of a process model and a main event
log so that we can leverage on the control-flow, data, and time perspective of
the process model to correlate events to a specific case. Our approach ensures
that the supplementary events are correlated to traces of the main event log
without violating the constraints on the different perspectives. We assume that
supplementary events do not contain data that allows to easily associated them
to a trace of the main event log.

A few approaches have been proposed in the literature to solve similar prob-
lems, but to the best of our knowledge no other research work makes use of the
diverse perspectives of a user-supplied process model. A prototype of the tech-
nique has been realized in the ProM framework as LogEnhancement package.
The evaluation shows promising results for a challenging real-life event log.

We acknowledge that our current evaluation is far from complete. For in-
stance, we have only limited ourselves to remove events referring to one single
transition type, such as Send Fine or Send for CC. It would be interesting to
evaluate the correlation accuracy when an increasing number of transition types
is removed. Similarly, we also aim to verify the approach in more real-life cases
to reduce the subjectivity of the results. We aim to have a more thorough eval-
uation in the near future. For example, we would like to directly compare our
technique with the approach proposed in [3]. However, our preliminary evalua-
tion shows that the approach seems to be relevant in real business cases, such
as the road-traffic process, which we used for our evaluation. Finally, we want
to build on estimations of activity durations and use it to further restrict the
possible event candidates based on timestamps.

References

1. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement
of Business Processes. Springer (2011)

2. Mannhardt, F., de Leoni, M., Reijers, H.A. van der Aalst, W.M.P.: Balanced Multi-
Perspective Checking of Process Conformance. Technical report, BPM Center Re-
port BPM-14-07, BPMcenter.org (2014)

3. Claes, J., Poels, G.: Merging computer log files for process mining: An artificial
immune system technique. In: Business Process Management Workshops. Volume 99
of LNBIP. Springer (2012) 99–110

4. Nooijen, E.H., Dongen, B.F., Fahland, D.: Automatic discovery of data-centric and
artifact-centric processes. In: Business Process Management Workshops. Volume
132 of LNBIP. Springer (2013) 316–327

5. Motahari-Nezhad, H., Saint-Paul, R., Casati, F., Benatallah, B.: Event correlation
for process discovery from web service interaction logs. The VLDB Journal 20(3)
(2011) 417–444

6. Walicki, M., Ferreira, D.R.: Sequence partitioning for process mining with unlabeled
event logs. Data & Knowledge Engineering 70(10) (2011) 821 – 841

7. Zhu, X., Song, S., Wang, J., Yu, P.S., Sun, J.: Matching heterogeneous events with
patterns. In: Proceedings of the 2014 30th IEEE International Conference on Data
Engineering, ICDE 2014, IEEE (2014) 376–387

8. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge University Press (1995)

