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Abstract

Current mobile and pervasive technologies (e.g.,
PDAs, GPRS/UMTS and WiFI connections, etc.) en-
able the development of adaptive peer-to-peer software
infrastructures for supporting collaborative work of hu-
man operators in emergency/disaster scenarios. In
this paper, we present a novel architecture, named
MOBIDIS (Mobile @ DIS), currently under develop-
ment in the context of an IST research project, in which
operators, equipped with hand-held devices, are coordi-
nated by a workflow management system able to adap-
tively change the process schema in order to cope with
anomalies. Some preliminary experimental results are
also presented.

1. Introduction

The widespread availability of network-enabled
hand-held devices (e.g., PDAs with WiFi - the 802.11x-
based standard - capabilities) has made the develop-
ment of pervasive computing environments an emerg-
ing reality. This in turn enables building an adap-
tive peer-to-peer software infrastructure for support-
ing collaborative work of human operators in emer-
gency/disaster scenarios. Each team member is
equipped with hand-held devices (PDAs) and com-
munication technologies, and should carry on specific
tasks. In such a way we can see the whole team as
carrying on a process.

The team constitutes a manet (Mobile Ad hoc
NETwork, [1]) in which the team leader’s device coor-
dinates the other team members devices. In manets,
mobile devices communicate one with another via wire-
less links without relying on an underlying infrastruc-
ture: each device acts as an endpoint and as a router
forwarding messages to devices within radio range.
manets are a sound alternative to infrastructure-based
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Figure 1. Critical situation and adaptive man-
agement

networks whenever an infrastructure is no longer avail-
able, or can’t be used, as in emergency scenarios [7].

As an example, after a disastrous event (e.g., an
earthquake) a team is sent to the disaster area. Team
members, equipped with mobile devices need to docu-
ment damage directly on a situation map so that fol-
lowing activities can be scheduled (e.g., reconstruction
jobs). In this situation, matching new pictures with
previous ones might be useful. So, the device with the
high-resolution camera and the device with the older
stored pictures must be connected. But in a scenario
such as the one in Figure 1, the camera-equipped de-
vice’s movement might result in its disconnection from
the other devices. A pervasive architecture should be
able to predict such situations in order to alert the coor-
dination layer. The coordination layer, in turn, would
direct a “bridge” device (member called bridge in the
figure) to follow the device that’s going out of range,



maintaining the connectivity and ensuring a path be-
tween the devices.

The purpose of this paper is to focus on the coor-
dination layer of our pervasive architecture (initially
proposed in [5, 7]). Coordination layer’s purpose is to
coordinate actors belonging to the same team in order
to carry on processes by assigning to specific actors
specific tasks to be carry out through specific appli-
cations running on hand-held devices. All such appli-
cations typically require continuous inter-device con-
nections (e.g., for data/information sharing, activity
scheduling and coordination, etc.) and, as argued, this
matter is not generally guaranteed in manets, due to
the high mobility of the nodes in the network. So the
system has to be adaptive, able to adapt correctly pro-
cesses to changing contexts where they are carried on.

2. Related Work

In recent years, research in the manet area has
mainly focused on the development of appropriate rout-
ing protocols, security and reliability of the communi-
cations, methods for energy preservation, and other is-
sues on the lower four ISO/OSI layers [3–5]. Effective
routing in ad hoc networks is still an actively-addressed
open problem, with some interesting proposals pre-
sented in the literature (e.g., DSR - Dynamic Source
Routing, AODV - Ad hoc On demand Distance Vector,
Z–RP - Zone Routing Protocol, etc.). Researchers in
this area assert that a sound technical basis for manets
exists and it is thus time to start thinking about how
to support applications based on manets.

The computerized facilitation or automation of a
process, in whole or part, is named workflow. A Work-
flow Management System (WfMS) is a system that
completely defines, manages and executes workflows
[2]. A workflow process definition (workflow schema)
is made up of a set of tasks, atomic piece of work, to
be performed according to a specified scheduling (i.e.,
routing or control flow), by actors, such as humans and
software applications/services. Each task needs an ac-
tor covering a given set of roles which define organiza-
tional requirements and needed skills [8]. A process is
said to be well-structured if it is only involves the six
well-behaved control structures, i.e., sequence, selec-
tion, parallel, loop, begin and end structures and each
split is complemented by a join [2].

The critical issue of current WfMSs is the lack of
support for adaptiveness; most of WFMSs (both com-
mercial products and academic prototypes) handling
adaptiveness assume the presence of an expert who de-
cides which changes have to be applied to workflow
schemas. But in manet environments the assumption

of an expert whose only purpose is disconnection han-
dling is not acceptable. So, we must investigate how
automatically decide, first, the inadequacy of a process
instance, and, then, which changes on the correspond-
ing workflow definition must be applied to handle dis-
connections.

In general the issue of adaptive workflow manage-
ment [9] is still open. Relevant work are the e-Flow
system [10], in which the issue of manually modify-
ing workflow schemas is addressed, together with auto-
matically migrating active process instances to the new
schema. AGENTWORK [11] is one of the few exam-
ples of workflow system where adaption is not manual,
but automatic, on the basis of a rule-base approach.

But in manets, the adaption should be carried out
in a very frequently changing environment due to the
manet peculiarities. On the contrary, previous ap-
proaches are targeted to Web-based workflows (par-
ticularly workflow schemas composed by different Web
services), in which modifications of the schemas are less
frequent, but the number of running instances is very
high.

A lot of relevant research work and projects about
the issue of supporting collaborative work in emergency
situations, by using pervasive and mobile technology,
can be found in literature. For example, SHARE1

develops advanced mobile services to support rescue
forces during their operation. The goal of EGERIS2

is to provide Civil Protection organizations (and dif-
ferent actors in Emergency Management) with infor-
mation and communication technologies that improve
their overall efficiency during the preparedness and the
response phases of a crisis. In all presented works, the
peer-to-peer paradigm is not used, but we believe that
such a paradigm together with service-oriented archi-
tectures (SOA) and manets are fundamental for sup-
porting collaborative work in emergency and disaster
scenarios.

3. A Pervasive Architecture for MANET

In this section, we report our approach to the
workflow management on manets. We assume
each device includes hardware that lets it know its
“communication” distance from devices within ra-
dio range. This isn’t a very strong assumption,
because specific techniques and methods are eas-
ily available (e.g., TDOA - time difference of arrival,
SNR - signal-to-noise ratio, GPS hardware, etc.). At
start-up, all devices are connected (that is, each de-
vice has a path, possibly multihop, to any other de-

1SHARE FP6-004218 project: http://www.ist-share.org.
2EGERIS IST-2000-28345 project: http://www.egeris.org.
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Figure 2. The proposed architecture for supporting cooperative work on MANETs

vice). Each device doesn’t have to be within range of
all other devices; that is, a tight (one-hop) connection
is not required. Many routing protocols, as those ones
described in Section 2, guarantee that each device re-
quires only a loose connection.

The proposed approach combines local connection
management among devices with global management
of both network topology and task assignment. Lo-
cal connection management consists of monitoring and
checking one-hop communications between a device
and its neighbors. It’s realized as special services run-
ning on hand-held devices that implement techniques
for estimating and calculating distances and relative
positions between a specific device and its direct neigh-
bors. Global management maintains a consistent state
of the network and of each peer in the network. It
manages the network topology (and its predicted next
states) and the tasks each peer is in charge of, as
well as services that peers offer (that is, it provides
a service registry). On the basis of that informa-
tion, the coordinator applies algorithms for choosing
a bridge and/or executes workflow task reassignment
when needed. Figure 2 shows the proposed architec-
ture: each device has a wireless stack consisting of
a wireless network interface (the wireless channel and
LPC MAC modules) and the hardware for calculating
distances from neighbors (distance calculator module).
On top, a Network Service Interface [5,6] offers to up-
per layers the basic services for sending and receiving
messages (through multihop paths) to and from other
devices, by abstracting over the specific routing proto-
cols.

Offered services (i.e., specific applications support-
ing tasks of the devices’ human users) are accessible
to other devices and can be coordinated and composed

cooperatively. Some of these services are applications
that don’t require human intervention (for example, an
image-processing utility). Others act as proxies for hu-
mans (for example, the service for instructing human
users to follow a peer is a simple GUI that alerts the
user by displaying a pop-up window on his/her device
and emitting a signal).

In contrast, the coordinator device presents the Pre-
dictive Layer on top of the Network Service Interface,
signalling any probable disconnection to the upper Co-
ordination Layer. The Predictive Layer implements a
probabilistic technique which can predict if all devices
will still be connected in the next instant. For details
about the predictive algorithm (together with its ex-
perimental results), please see [7].

The coordination layer manages situations when a
peer is going to disconnect, by applying algorithms for
choosing a bridge, and by executing workflow schema
restructuring and workflow task reassignment when
needed (e.g., it assigns the activity “follow peer X”
to the selected bridge).

4. Adaptive Coordination Layer

4.1. Collaborative Process Model

The first critical issue to build a WfMS is choos-
ing a model to describe processes and theirs possible
structure. For our goals, we have decided to use di-
rected graph as process model and to handle only well-
structured processes [2]. The most important nodes of
process graph are tasks, atomic piece of work. Each
task, identified by name, can have related a recovery
task, when it is possible to achieve its logical undo or
at least to minimize effect of its execution. A service is



associated to each task. The actors willing to perform
the task have to provide that service. Moreover, each
task node holds a reference to next node in the graph to
be reached when its execution completes. An example
of graph process model is depicted in Figure 3(a).

 

Activity A2 Activity A3 

Activity A1

Activity A5

SPLIT 

JOIN 

Activity A4 

(a) Graph model (b) Process tree

Figure 3. Example of Graph Process Model
and corresponding Process Tree

The adaptive WfMS we have designed needs some
information at run-time: (i) the knowledge of the set
of actors joined in every instant to the team; (ii) the
set of services offered by each actor, so to establish
which task each actor can perform; (iii) the state of
every task of each process instance. The “bridging”
actions needed to keep the manet connected can be
seen as supporting tasks associated to primary ones
(i.e., tasks defined originally in the process schema),
added or deleted during the execution of the process
instance.

4.2. Bridge and Priority Algorithms

When a peer is going to disconnect, the coordina-
tion layer has to apply a specific algorithm for choos-
ing a possible bridge. The algorithm prefers as possible
bridges the neighbors that are not performing tasks.
Indeed, if the selected neighbor carries out a task, such
a task is rolled-back and productivity decreases. If each
neighbor is carrying out a task, then it is chosen the one
performing the task with the lowest priority3. If two
or more actors perform tasks with the same lowest pri-
ority, the one is preferred with the smallest number of
neighbors. The bridge role likely leads to movement of
the node and this might cause new disconnections. By

3Indeed, rolling-back task with the lowest priority should
bound inefficiency.

selecting a node with the lowest number of neighbors,
the probability of new disconnections is minimized. In
the end, the nearest neighbor is preferred.

An important issue of the bridge algorithm is com-
puting task priorities. In our model, priority is com-
puted at design-time and is then updated at run-time
(after process restructuring). The priority has to reflect
the process structure (causal dependency): the purpose
is to assign higher priority to those tasks whose com-
pletion lets a greater number of tasks to be enabled for
possible execution.

The algorithm for computing priorities is based on
a n-ary tree, named process tree, that can be built iter-
atively. A well-structured process is decomposable in
parts. Each one in turn can be considered as a well-
structured process; therefore, each part can be further
decomposed in smaller parts and so on up to elemen-
tary ones, the tasks. Each tree node is a process (ele-
mentary or not) whose children are nodes representing
the parts it can be decomposed in. Let’s consider the
process tree depicted in Figure 3(b) which corresponds
to process in Figure 3(a). If a single arrow exists be-
tween two sibling A and B nodes, it means that the
process is decomposed into a sequence of two parts A
and B. If a double arrow exists between two siblings A
and B, it means that the process is decomposed such
that A and B are performed in parallel or any arbitrary
order. In the end, if there is no arrow between two sib-
lings A and B, that means process is decomposed such
that there is a selection in carrying out between A and
B, according to some conditions (the process instance
in Figure 3(a) does not contain such a situation).

Starting from the process tree, it’s possible to assign
to each node a weight. Initially, a weight equal to 1 is
assigned to every leaf node. For each non-leaf node P
a weight is assigned according to how P is decomposed
in. If P is a sequence-type node, then its weight is ob-
tained as the sum of its children nodes’ weights; if P
is a parallel-type node, then its weight is obtained as
the sum of its children nodes’ weights plus 1; finally, if
P is a selective-type node, then its weight is the max-
imum value, taken from weights of its children nodes,
plus 1. After, a weight adjustment is required: for each
sequence-type node Ni, if its left child node Nileft

has a
weight less than Ni, then Nileft

’s weight is increased in
the quantity Ni.weight − Nileft

.weight, as well as all
nodes belonging to the sub-tree whose root is Nileft

.
The algorithm computes finally node weights, that is
priorities of the process parts which nodes correspond
to. Specifically, leaves’ weights are the priorities of el-
ementary processes, i.e. tasks. In Figure 3(b), node
labels are weights which algorithm computes.



4.3. Process Schema Restructuring

We can now describe the restructuring rules for pro-
cess schemas. Mainly, these rules are applied when a
task needs a supporting counterpart.

Let’s consider a generic t task and suppose t’s per-
forming actor a is going to disconnect. In this case,
“follow a” supporting task is needed for t, so it can
progress. Please note that, anyway, t task is performed
by a and it is not deferred to a bridge node; the bridge
is used only to keep connectivity of a with the manet.

Let f be this supporting task. The f introduction
requires process schema restructuring. Restructured
schema is obtained by adding f in parallel with task t.
Since f ’s completion enables as many tasks as t’s one,
f ’s priority is set equal to t’s one.

The introduction of a supporting task causes prior-
ities to change only for tasks coming before the intro-
duction point.

5. Experimental Results

In order to carry out experiments and to test our
pervasive architecture, we developed an emulation sys-
tem based on NS2. More details are given in [12].

Experiments in this context are influenced by the
initial positions of nodes and objects, and by the graphs
of the processes. In our preliminary experiments,
nodes, obstacles and other objects were manually put
in the map at design-time by using the GUI of the em-
ulation system, and process schemas were chosen with
both loops and AND/OR splits.

The purpose of the first part of experiments is to
tune some parameters of the algorithms. Once param-
eters has been tuned, we have performed more deep
experiments. Details are presented in [12].

The first tuned parameter is the polling time, i.e.,
the shortest time between two corrective actions; an
higher value means more reactivity in doing corrective
actions. The second parameter is β, i.e., the fraction
of the radio-range the predictive technique doesn’t sig-
nal a disconnection anomaly. As an example, in IEEE
802.11 with 100 meters of radio-range, β equal to 0.3
means that for a communication distance of 70 meters
the prediction algorithm signals a probable disconnec-
tion.

β 0.3 0.5 0.7
polling time 3 sec 1% 0.09% 0.02%
polling time 5 sec 32% 4% 0,88%

Table 1. Experimental results.

The choices for parameter tuning are depicted in
Table 1, varying polling time between 3 and 5 seconds
and β between 0.3 and 0.7.

Preliminary, let’s note that processes, in our experi-
ments, are carried out for each value of each parameter;
this is as a manet node, once disconnected, is supposed
to move in a random way inside the map, and eventu-
ally it comes back in the manet. Therefore, the in-
teresting result to be evaluated is how much processes
stall during their execution. A process is considered
stalled if it cannot progress; this happens if next tasks
need to be performed only by nodes that are currently
disconnected from the manet. The process will be able
to progress when and only when at least one of those
nodes comes back in the manet.

Values shown in Table 1 are the ratio between the
stalling time and the total time (stalling time + effec-
tive execution time). Smaller values of β or greater
polling time means less, respectively in number and
in frequency, corrective actions, that is more move-
ment freedom. A few freedom brings to a greater num-
ber of rollback actions and, so, to inefficiency in pro-
cess progress. The most free experimental situation (β
and polling time equal, respectively, to 0.3 and 5 sec.)
shows stalling time to be unacceptably around a third
of total time. This result does not depend on the sce-
nario, as a mean value has been brought out on various
settings for nodes and schemas.

The result suggests that less frequent the corrective
actions are, the higher the stalling time is. So the ex-
treme circumstance is when corrective actions are so
much infrequent that they are absent. In that case,
corresponding to no disconnection handling, the pro-
cess stalling time should be inclined to total time and,
so, to process starvation.

6. Conclusion and Future Work

In this paper, we have presented a novel pervasive
architecture suitable in emergency scenarios for work-
flow management on manets, that through (i) a ba-
sic predictive layer for disconnection anomalies, and
(ii) an adaptive coordination layer, is able to change
the process schemas when disconnection anomalies are
raised. We discussed the basic techniques developed
and some preliminary experimental results.

In future work, we are going to further refine such
basic techniques. Moreover, we are going to address the
issue of the approach’s fault tolerance: currently our
approach doesn’t cope with sudden downs of devices,
which might be frequent in emergency scenarios and
are critical if they affect the coordinator node.

We also plan to evolve the coordination layer from



a centralized to a distributed one (i.e., having a sub-
set of devices act as coordinators). At the moment,
the centralized architecture might be a bottleneck, but
the current dimensions of a typical manet for the con-
sidered scenarios (tens of devices) don’t pose critical
scalability issues.

Finally, our results are based on synthetic data, and
thus are only a preliminary validation of our approach.
Future work will be devoted to validate our approach
in real scenarios.
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