Mobile Ad hoc Networks for Collaborative and Mission-critical
Mobile Scenarios: a Practical Study

Gianluca Bertelli, Massimiliano de Leoni, Massimo Mecella
Dipartimento di Informatica e Sistemistica
SAPIENZA - Universita di Roma
Via Ariosto 25, 00185 Roma, ITALY
{bertelli,deleoni,mecella}dis.uniromal.it

Justin Dean
Information Technology Division
US Naval Research Lab
Washington, DC, 20375-5000, USA
jdean@itd.nrl.navy.mil

Abstract

Nowadays Mobile Ad hoc NETworks (MANETSs) are pro-
posed in many collaborative and mobile scenarios. De-
spite the effort of the research community on algorithms
and implementations mainly targeted to laptops, very few
implementations exist for commercial PDAs (i.e., equipped
with Windows Mobile). In this work, a practical study
on one of the few available and running implementation
has been conducted, with the aim of providing a toolkit
for researchers, engineers and practitioners willing to use
MANETS in their scenarios/systems/applications.

1. Introduction

A Mobile Ad hoc NETwork (MANET) is a peer-to-peer
network of mobile nodes capable to communicate with each
other without an underlying infrastructure. Nodes can com-
municate with their own neighbors (i.e., nodes in radio-
range) directly by wireless links. Anyway, non-neighboring
nodes can equally communicate by using other intermedi-
ate nodes as relays which forward packets toward destina-
tions [1]. The lack of a fixed infrastructure makes this kind
of network suitable in all scenarios where it is needed to
deploy quickly a network but the presence of access points
is not guaranteed. Examples are military applications, and
more recently, cooperative systems for emergency manage-
ment [3] or pervasive healthcare, as well as many other sce-
narios, which require highly dynamic node mobility.

As an example, let us consider a scenario of emergency
management: each team member (e.g., a fire brigade op-
erator, a Civil Protection operator, etc.) is equipped with
handheld devices (PDAs) and communication technologies

(e.g., WiFlI for constituting a MANET), and, through the in-
terplay with the software running on the device, can execute
specific actions. The team member and his device offers
a service towards the other members, and a Process Man-
agement System (PMS) coordinates the actions of all the
services, according to a certain process [S]. In this sce-
nario as well as in any scenario of distributed and mobile
collaboration on MANETS, we believe that the communi-
cation layer is very important. According to the classifi-
cation proposed in [7], coordination can be viewed as be-
ing divided into three layers, each depending on those be-
low: communication, collaboration and coordination. The
lowest layer allows information sharing; collaboration per-
mits participants to collectively establish the shared goals;
the latter ensures to enact collaborative actions to achieve
shared goals as efficiently as possible. Therefore in order
to design and deploy a really-working coordination sys-
tem, we need to provide at low level a MANET communi-
cation layer that is robust and reliable. Moreover, we need
to know what Quality of Service (QoS, e.g, the through-
put) such MANET communication layer can really furnish.
Indeed, if we did not consider actual provided QoS but
we base on only simulated/theoretically-calculated values,
we would build up coordination systems that are not really
working.

In most of MANET scenarios (such as emergency man-
agement ones), nodes may be both (ultra-mobile) laptop
and PDAs. Since we believe that de-facto PDA standard
is Windows Mobile (due to the widespread availability of
this operating system on commercial devices), we argue that
it would be worthy to perform QoS evaluation of possible
MANET communication layers on such an operating system.
But currently many of available MANET implementations
for PDAs are running only on Linux-based hacked PDAs
and not at all on Windows Mobile. Among the few im-

plementations working on both on Windows-based laptops
and PDAs, which are described in Section 2, we tested in
this work the US Naval Research Lab one.

We did not test through simulations, as many of other ap-
proaches do, since it would not return actual results. Con-
versely we performed emulation, by letting PDAs really ex-
change packets. Clearly on-field tests would be the better
solution, but they require many people moving around in
large areas and repeatability of the experiments would be
compromised. Therefore emulation is considered an accept-
able trade-off, in which the mobility is “synthetic” but the
devices (and whatever running onto) are real (to be com-
pared vs. simulation, in which both mobility and devices
are synthetic). An important concern is that since all nodes
are in the same laboratory room, the interference among
nodes might be quite enough. Nevertheless, we discovered
and proofed a relationship between laboratory results and
on-the-spot ones, thus being able to derive on-the-spot per-
formance levels from those got in the laboratory.

The aim of this work is to present the conducted exper-
iments on MANETSs of Windows-based PDAs, based on the
US Naval Research Lab implementation, in order to derive
lessons learned and guidelines useful to researchers, en-
gineers and practitioners when developing mobile collab-
orative applications on ad hoc networks. Section 2 pro-
vides some background material and compares with rele-
vant work. Section 3 describes some technical aspects of
the specific implementation, whereas Section 4 shows the
test bed, as well as the obtained results. Section 5 concludes
the paper, analyzing results and providing some guidelines.

2. Background

2.1. MANET Routing Protocols and Imple-
mentations

Routing protocols, especially in a MANET where a node
has a mobility property, can be divided in (i) topology-based
or (ii) position-based. A position-based routing needs in-
formation about the current physical position of a node,
that can be acquired through a “localization service” (e.g.,
a GPS). Only very recently, such localization services are
becoming easily available on PDAs, although the research
community has already defined some protocols of this type
since long time (e.g., [8, 2]). Topology based protocols use
information about the existent link beetween each node in
the network. These protocols can be classificated by the
“time of route calculation: (i) proactive, (ii) reactive and
(iii) hybrid.

A proactive approach to MANET routing seeks to main-
tain a constantly updated topology understanding. The
whole network should, in theory, be known to all nodes.
This results in a constant overhead of routing traffic, but
no initial delay in communication. Example protocols are
OLSR and DSDV [11].

Reactive protocols seek to set up routes on-demand. If
a node wants to initiate a communication with a node to

which it has no route, the routing protocol will try to estab-
lish such a route. DSR [6], AODV ! and DYMO ? are all
reactive protocols. Finally hybrid protocols use both proac-
tive and reactive approaches, as ZRP 3.

Out of these routing protocols, some implementations
exist, mainly for laptops, and only a few of them works on
PDAs. Protocols that require special equipment on board
of devices or on the field, such as position-based proto-
cols, were discarded in our study because we aim at us-
ing off-the-shelf devices and at operating with no existing
infrastructures (e.g., in emergency management). More-
over, we notice that reactive protocols in general have worse
performance than proactive ones in term of reactiveness to
changes in the topology, conversely proactive protocols re-
quire more bandwidth [10].

A working implementation of AODV is WINAODV
[12]; DYMO is the most recent project and hence it is still
in the standardization stage; an implementation for PDAs
does not exist yet. Three OLSR working implementations
are available. The OLSRD * has a strong development com-
munity and it can be extended through plug-ins. The “OL-
SRD for Windows 2000 and PocketPc” implementation is
the porting of the laptop OLSR version to mobile devices.
But these two projects seem not to be working properly on
the latest Windows CE version (Windows Mobile 6). The
NRL (US Naval Research Lab) implementation 6 offers
QoS functionalities, appears as a mature project, works on
Unix/Windows/WinCE and also on some network simula-
tors (e.g., ns-2).

2.2. Emulation vs. Simulation

Both simulation and emulation provide a controllable en-
vironment which enables several experiments in a cheaper
fashion with respect to field tests. Simulator and emulator
do not exclude each other. Simulation can be used at ear-
lier stage: it enables to test algorithms and evaluate their
performance before starting actually implementing on real
hardware or devices.

Simulations are not intended to “replicate” all features
of real hardware or software components, although every
reproduced aspect has to keep the same performance levels
of the one that is simulated. Even if application code written
on top of the simulators can be quickly written and perfor-
mances easily evaluated, it must be thrown out and rewritten
when developers want to migrate on real architectures.

The emulators’ approach is quite different: during em-
ulation, some software or hardware pieces are not real
whereas others are exactly the ones on actual systems. All
emulators share the same idea: software systems are not

"'http://www.fags.org/rfcs/rfc3561.html
’http://tools.ietf.org/
html/draft-ietf-manet-dymo-02
3http://www.tools.ietf.org/id/
draft-ietf-manet-zone-zrp-04.txt
4http://www.olsr.org
Shttp://www.grc.upv.es/calafate/olsr/olsr.htm
Shttp://cs.itd.nrl.navy.mil/work/olsr/index.php

aware about working on an emulated layer (at all or par-
tially); the software running on emulators can be deployed
on actual systems with very few or no changes. On the other
hand, performance levels may be worse.

In our study, we used an emulator, namely OCTOPUS [4],
which keeps a virtual map with the position of virtual nodes.
Each virtual node in OCTOPUS is bound to a real device.
During the experiments, all real devices were deployed in
a real MANET. The same network comprised also a dual-
core workstation where OCTOPUS was running. During em-
ulations, when a device builds a route to a certain node, it
broadcasts an appropriate packet in the network; all broad-
casted packets are captured by OCTOPUS, which forwards it
to all virtual neighbors, according to the maintained virtual
map. In turn the virtual neighbor that is on the best path
to get to the destination replies. Every node is unaware that
neighbors are virtual: the MANET routing algorithm and im-
plementation are not changed to work in the emulated en-
vironment. Afterwards, communication takes place directly
without passing any longer through OCTOPUS (till the next
phase in which a new path should be calculated, in which
again broadcasting is done through OCTOPUS).

The first difference with real scenarios is that route re-
quests are passing through OCTOPUS. But since route re-
quest packets are sensibly less than data packets, the perfor-
mance decrease is really slightly.

Finally OCTOPUS enable clients to interactively influ-
ence changes in topology, upon firing of events which were
not defined before the start of the emulation. Other emula-
tors defines in batch mode, i.e., when emulation is not yet
started, which and when events fire. A deeper comparison
of different emulators for MANETS can be found in [4].

3. NRL Implementation of OLSR Protocol

NRLOLSR is a research oriented OLSR implementation,
evolved from OLSR draft version 3. It is written in C++
according to an object oriented paradigm, built on top of
the NRL protolib library 7 for system portability.

Protolib works with Linux, Windows, WinCE, OpenZa-
urus, ns-2, Opnet; it can works also with IPv6. It pro-
vides a system independent interface, so NRLOLSR does
not make any direct system calls to the device operating
system. Timers, socket calls, route table management, ad-
dress handling are all managed through protolib calls. To
work with WinCE, protolib uses the RawEther component
to handle raw message and get access to the network inter-
face card.

The core OLSR code is used for all supported sys-
tems. Porting NRLOLSR to a new system only requires
re-defining existing protolib function calls.

NRLOLSR has non-standard command line options for
research purposes, such as “shortest path first route calcula-
tions”, fuzzy and slowdown options, etc. Moreover, it uses a
link-local multicast address instead of broadcast by default.

Thttp://cs.itd.nrl.navy.mil/work/protolib/

Figure 1. MAC interference among a chain of
nodes. The solid-line circle denotes a nodes
valid transmission range. The dotted-line
circle denotes a nodes interference range.
Node 4’s transmission will corrupt node 1’s
transmissions to node 2

4. Testing MANETSs

In our tests all the devices are in the same room, which
means that they are in a medium sharing context. An
802.11 compliant device can not receive and/or transmit
simultaneously. If multiple devices are in the same trans-
mission range, only one at a time will be able to transmit
data. Therefore the whole bandwidth is shared amongst
all the devices in the same transmission range. In a sim-
ple chain topology in which all devices are far away from
each other at the maximum transmission range, (Figure 1)
packets travel along a chain of intermediate nodes towards
the destinations. The successive packets of a single greedy
connection interfere with each other as they move down the
chain, forcing contention in the MAC protocol. This kind
of topology is the basic block of many other configurations
and it is affected by the ad hoc problems (hidden and ex-
posed terminal).

4.1. From Laboratory Tests to On-field
Results

Let Q fic1a(n) be the throughput in a real field for a chain
of n links (i.e., n + 1 nodes). We want to define a method in
order to compute it starting from Qq(n), which is com-
puted from the corresponding virtual chain; it is virtual,
since topology is kept by OCTOPUS, where all the com-
munication happens inside the laboratory. Hence, as said
before, there is an higher interference.

Here, we aim at finding a function Conv(n), such that:

Qfiela(n) = Conv(n) - Quap(n) (1)

in order to derive on-field performance. We rely on the fol-
lowing assumptions:

1. Every node is placed at a maximum coverage distance
from the previous and the next node in the chain, such
as in Figure 1. From other studies (e.g., [9]) we know
that every node is able to communicate only with the
previous and the next, whereas it can interfere also
with any other node located at a distance less or equal
to the double of the maximum coverage distance.

2. The first node in the chain wishes to communicate
with the last one (e.g, by sending a file). The mes-
sage is split into several packets, which pass one by
one through all intermediate nodes in the chain.

3. Time is divided in slots. In the beginning of each slot
all nodes, but the last one, try to send to the following
in the chain a packet that they are in charge of.

4. Communications happen on the TCP/IP stack. Hence,
every node that has not delivered a packet has to trans-
mit it again.

As reported in the Appendix, the following statement is
valid, where symbol | | denotes the truncation to the closest
lower integer:

Statement. Let us consider a chain formed by (n+1) nodes
connected through n links. On the basis of assumptions

2
above, function Conv(n) = (| %] + 1) 2, for some .
4.2. The Test-bed

The used devices are all off-the-shelf, certified for the
802.11b standard. In particular, iPAQ 5550 (running Pock-
etPC 2003 - WinCE 4.2) and ASUS P527 (running Win-
dows Mobile 6.0 - WinCE 5.0) are used. The environment
is completed with some laptop running Microsoft Windows
XP (SP2), some of them in the Tablet edition. In such lap-
tops, the Microsoft PDA emulator is executed, as we aim at
considering only MANETSs of PDAs.

We build the ad hoc network with 802.11b, and we con-
nect all the devices without any encryption and RTS/CTS
ability turned off. One more workstation (equipped with
a wireless card) is is running the OCTOPUS emulator and
is the default gateway for the sub-net mask 192.168.0.128
on each device, so that every node sends its packets to the
OCTOPUS machine. Each device is running the NRLOLSR
protocol implementation specific for its operating system
(WinCE or Windows XP).

We investigate on three kinds of tests: the performance
of chain topology; some tuning related to the protocol; some
tests with moving devices.

Performance of the chain topology. The aim of this test
is to get the maximum transfer rate on a line of nodes. To
obtain the measurements an application for Windows CE

450

400

350 \

300 \
250 \
200 \

150

Throughput (Kbytes/s)

100

50

1 2 3 4 5 G 7 8§
Thenumber of chain links

‘— Laboratory Throughput — On-the-spot Throughtput‘

Figure 2. Test results for a chain-MANET, in
the laboratory and estimated on-the-spot re-
sults

was built (using the .NET Compact Framework 2.0), which
according to a client/server paradigm transfers a file from
the head to the tail node (on top of TCP/IP) and reports the
elapsed time.

All the devices use the routing protocol with the default
settings and HELLO_INTERVAL set to 0.5 seconds; the
broadcast address is set to 192.168.0.254. OCTOPUS em-
ulates the chain topology and grabs all the packets sent to
192.168.0.254. Each host knows only the two neighboring
nodes, as correctly in the OCTOPUS configuration, therefore
it sends periodic HELLO messages to the broadcast address
declaring only these two hosts as neighbors. When a node
wants to communicate to another node it sends packets di-
rectly to it if this is in his neighborhood, otherwise it sends
packets following the routing path. The test was ran five
times for each configuration. Both real and emulated de-
vices were used; each reported value is the mean value of
the five attempts.

Figure 2 represents the results of the tests. The trend
is compliant with what we are arguing in the statement of
Section 4.1; specifically, through interpolation we discover
that « = 385 and 3 = 1.21. The red curve shows the
predicted on-field performance obtained with the equation
10. It is clear that in the real field, where the devices are not
all on the same transmission range, the throughput falls in
the chart region between the two curves.

Tuning of the protocol. There are a lot of parameters of
NRLOLSR that can be changed but only few of them have
a strong impact on the protocol effectiveness. We focus on
the HELLO_INTERVAL that is the most important value
because it influences the mobility reactivity and the over-
head of the protocol. We test how increasing or decreasing
this parameter could affect the topology as seen by a node,
and hence the reactivity of the network. As every mobility
pattern can be stepwise considered as a crossing of chain of

20,000
18,000 +——
16,000
14,000
12,000

& 10000

8,000 S —
6,000
4,000 —
2,000
0,000

HELLO_INTERVAL

Figure 3. Time elapsed to establish a direct
communication in a chain of five nodes

nodes, we investigate a single chain, by considering it as a
“building block”™.

The scenario is as shown in Figure 1: the nodes in the
chain are fixed and stable, each node knows only two neigh-
bors; at time ¢ node 1 enters in the range of node 2; we take
the time elapsed between 7 and the first application message
from 6 received by 1. To do this a client/server application
that continuously sends UDP messages from the head node
to the tail node was built; this indeed introduce a small delay
that can be ignored.

This interval is referred to as FPT (First Packet Time)
and it can be broken as follows:

FPT = 2 - chain_time + build_route_time (2)

where chain_time is the time used by the packet to travel
along all the chain and to come back, and build_route_time
is the fraction of time that is necessary to the head node to
build the new routing table and choose the correct path for
the packet. To catch the exact time, in this test, the head
node and the entering node are laptop instead of PDAs, so it
easy to use a network sniffer software (that is not available
on PDAs). Again the mobility emulation is provided by the
OCTOPUS machine.

Figure 3 shows the trend of FPT vs. decreasing the
HELLO_INTERVAL. Each reported value is the mean value
of eight runs. The curve decreases linearly except on the last
point, where the interval is set to 0.1 second. For interval
leq 0.1 second the FPT increases. This result (a minimum
around 0.5s) is due to the inability of the devices to follow
the network load. The value of the minimum depends upon
the CPU, the RAM, in general upon the hardware configu-
ration of the PDA, so with more powerful devices the FPT
can be faster.

All these values have to be considered for one single
traffic flow, so in a real scenarios where the traffic is very
high and there are multiple flows, it is important to choose
an interval value that allows fast topology reactivity (minor
FPTs) and that does not overload too much the devices.

Tests with moving devices. This kind of test is necessary
to determine whether or not the NRLOLSR implementation

is suitable for a real environment. In a real field it is impor-
tant not to break the communication among the movements
of the nodes. If a team member is transmitting information
to another team member, and one of them runs away, with-
out exiting from the MANET, all the data must be delivered
successfully.

To replicate such a scenario, we investigate three topolo-
gies, as shown in Figure 4, where the dashed line shows the
path of a running device. The topologies are designed in
order to have (i) the moving node always connected at least
another node, and (7i) each node is connected in some ways
to at least another one, i.e., there are not disconnected node
(no partitions in the MANET).

A WinCE application is used that continually sends
TCP/IP packets of 1000 bytes between the node S and the
node D, storing on both sides the sent/received bytes. To
reach a higher number of nodes, five real PDAs and five
emulated PDAs are used to perform the test. The test was
ran five times for each topology and every run was 300 sec-
onds long.

The results are good enough, for each topology and for
each run the communication never breaks down, and there
is no packet loss. This can be explained on the basis of the
TCP/IP protocol, the movement’s pattern and speed.

It is clear that there are multiple time slots where the
moving node has not a route to D because is leaving or en-
tering a node range, and it is computing the new routing
table. During this time the TCP connection is in a wait-
ing state, retransmission occurs, and a countdown starts. If
the node computes the route before the TCP timeout goes
off, the connection is woken up and so the communication
can go on. It is important to note that with UDP it is not
the same, because the connection does not go into a waiting
state (no retransmission) but it continues to send datagram
that go all lost until the new route is built.

In order not to incur in the TCP timeout, the speed of
the movement is crucial: a too fast node cannot establish
and maintain communication. On the topology that we have
investigated the maximum reachable speed in order to per-
form a correct communication (without any losses) is more
or less 18 m/s.

5. Guidelines and Conclusions

The results presented in this paper should be used as a
toolkit for researchers, engineers and practitioners willing
to use MANETS in their scenarios/systems/applications.

In particular, Figure 2 allows to carefully take into ac-
count the throughput that a MANET of real devices can
nowadays support. Surely, on the basis of the previous dis-
cussions, whichever configuration of a MANET will present
a performance that lies in the area between the two lines,
being one the possible worst case and the other the possible
best case. The result is very important when designing ap-
plications and middleware on top of MANETs of PDAs, as
for example it stems that for more than 5 devices we have
a throughput of about 50 Kbytes/s. Depending on your ap-

/ \ /N /N /N / \\
® | \ \ I
S \ /N N NN
(a)
(b)
///—\\\
V2 N
/ @) N
/ \\
/ S
[o @
\ D /
\ / (c)
AN @) 7
N o //

Figure 4. Dynamic topologies for testing
TCP/IP disconnections

plication (e.g., exchanging an image — a map in a scenario
of emergency management — of 2 Mbytes takes approx. 40
seconds) this could be fine, or conversely an optimized use
of the bandwidth should be carefully designed in the appli-
cation since the early stage, in order not to have unsatisfac-
tory results.

Analogously, the results of Figure 3 help in designing
applications in very dynamic MANETS (a lot of entering and
exiting of devices), which require very frequent exchanges
of messages, thus overloading the bandwidth, vs. applica-
tions that may adopt greater values of HELLO_INTERVAL
being less reactive to changes.

Finally, the results of the tests of moving nodes, allow us
to affirm that it is possible to build up reliable MANETSs with
nodes moving around, but if the nodes are held by humans
walking and/or running (18 m/s are approx. 65 km/h). But
if the nodes are moving on top of vehicles (such as cars on
an highway), these values put serious doubts on the viability
of the connection.

Just to make a final consideration (again with the aim of
showing how the results of this paper are an useful toolkit),
we can argue that current implementations of MANET rout-
ing protocols running on WinCE (and therefore on most
of commercial embedded devices) are not appropriate for
VANETSs (Vehicular Ad hoc NETworks) and for the so-
called Automotive Cooperative Systems. Indeed cars in
an highway are in general faster and the topology changes
more frequently than what we have shown, therefore future
research in engineered solutions for this specific scenarios
are needed.

In conclusion we can argue that more research and devel-
opment are needed on engineered algorithms for MANETS
of real mobile devices (e.g., PDAs). The implementations

and experimentations conducted so far have missed an im-
portant category of devices (the one of which MANETSs are
really interesting and useful), which require specific studies
and developments due to the performance constraints pre-
sented by such devices.

Acknowledgements. This work has been partly supported by the European Com-
mission through the project FP6-2005-IST-5-034749 WORKPAD. The authors would
like to thank Thomas F. Divine and PCAUSA for providing RAWETHER for WinCE
to the group of SAPIENZA — Universita di Roma.

References

[1] D.P. Agrawal and Q. A. Zeng. Introduction to Wireless and
Mobile Systems. Thomson Brooks/Cole, 2003.

[2] S. Basagni, I. Chlamtac, V. R. Syrotiuk, and B. A. Wood-
ward. A Distance Routing Effect Algorithm for Mobility
(DREAM). In Proc. 4th ACM/IEEE International Confer-
ence on Mobile Computing and Networking (MobiCom ’98),
pages 76-84. ACM, 1998.

[3] T. Catarci, M. de Leoni, A. Marrella, M. Mecella, G. Vetere,
B. Salvatore, S. Dustdar, L. Juszczyk, A. Manzoor, and H.-
L. Truong. Pervasive Software Environments for Supporting
Disaster Responses. IEEE Internet Computing, 12(1):26—
37, 2008.

[4] F. D’Aprano, M. de Leoni, and M. Mecella. Emulating mo-
bile ad-hoc networks of hand-held devices. the octopus vir-
tual environment. In Proc. of the ACM Workshop on System
Evaluation for Mobile Platform: Metrics, Methods, Tools
and Platforms (MobiEval) at Mobisys 2007, 2007.

[5] M. de Leoni, M. Mecella, and G. De Giacomo. Highly Dy-
namic Adaptation in Process Management Systems Through
Execution Monitoring. In Proc. 5th International Confer-
ence on Business Process Management (BPM 2007), pages
182-197, 2007.

[6] D.B. Johnson, D. A. Maltz, and J. Broch. Ad Hoc Network-
ing, chapter DSR: The Dynamic Source Routing Protocol
for Multi-Hop Wireless Ad Hoc Networks, pages 139-172.
Addison-Wesley, 2001.

[7] M. Klein. Coordination Science: Challenges and Directions.
In Proc. Workshop on Coordination Technology for Collab-
orative Applications - Organizations, Processes, and Agents
(ASIAN), 1996.

[8] Y.-B. Ko and N. H. Vaidya. Location-Aided Routing (LAR)
in Mobile Ad hoc Networks. Wireless Networks, 6:307-321,
2000.

[9] J. Li, C. Blake, D. S. J. De Couto, H. I. Lee, and R. Morris.
Capacity of Ad Hoc Wireless Networks. In Proc. 7th Inter-
national Conference on Mobile Computing and Networking
(MOBICOM 2001), pages 61-69, 2001.

[10] S. Papanastasiou, L. Mackenzie, M. Ould-Khaoua, and
V. Charissis. On the Interaction of TCP and Routing Pro-
tocols in MANETs. In Proc. International Conference on
Internet and Web Applications and Services/Advanced In-
ternational Conference on (AICT-ICIW °06), page 62, 2006.

[11] C.E. Perkins and P. Bhagwat. Highly Dynamic Destination-
Sequenced Distance-Vector Routing (DSDV) for Mobile
Computers. In Proc. SIGCOMM 94, 1994.

[12] D. West. An Implementation and Evaluation of the Ad-Hoc
On-Demand Distance Vector Routing Protocol for Windows
CE. M.sc. thesis in computer science, University of Dublin,
September 2003.

Appendix — Proof of the Statement in Sec-
tion 4.1

From the first assumption, we can say that, if the i-th
node successes in transmitting, then (¢ — 1)-th, (i — 2)-th,
(¢ + 1)-th and (i + 2)-th cannot.

Let us name the following events: (i) D,, be the event of
delivering a packet in a chain of n links and (ii) S’ be the
event of delivering at the ¢-th attempt.

Let us name T ,, as the probabilistic event of delivering
a packet in a network of n links (i.e., n + 1 nodes) after ¢
retransmissions 8.

For all n the probability of delivering after one attempt is
the same as the probability of deliver a packet: P(T}) =
P(D,,). Conversely, probability P(T3,) is equal to the
probability of not delivering at the first P(—S}) and of de-
livering at the second attempt P(S?2):

P(Ty,) = P(S2N=SL) = P(S2) - P(=S)SE) ()

Since, for all 4, events S are independent and P(S!) =
P(D,,), Equation 3 becomes:

P(Ty,,) = P(S}) - P(=S,) = P(Dy) - (1 — P(D,))

In general, the probability of delivering a packet to the des-
tination node after ¢ retransmissions is:

P(T;,) = P(Si) - P(=S5 D). ...
= P(Dy) - (1= P(Dy))"!

'P(_‘S}z) = 4)

We can compute the average number of retransmissions,
according to Equation 4 as follows:

_ s -1 _ 1 ©)
=301 P(Da) - (1= P(Dn))' ™! = 5y

In a laboratory, all nodes are in the same radio range.
Therefore, independently on the nodes number,

P(D!) =1/n (6)

On the field, we have to distinguish on the basis of
the number of links. Up to 2 links (i.e., 3 nodes), all
nodes interfere and, hence, just one node out of 2 or 3
can deliver a packet in a time slot. So, P(D{ield) =1and
P(D;Md) = 1/2. For links n = 3, 4, 5, two nodes success:
P(D{*4) = 2/n. For links n = 6,7, 8, there are 3 nodes
delivering: P(D}?*!) = 3/n. Hence, in general we can

state: L J 1
. L
P(Dzzeld) _ L3 -) (7)

By applying Equations 6 and 7 to Equation 5, we derive the
number of retransmission needed for delivering a packet :

I = et ®
T (n) = n.

8Please note this is different with respect to St since T, i,n implies
deliver did not success up to the ¢ — 1-th attempt

Fixing the number of packets to be delivered, we can define
a function f that expresses the throughput in function of
the number of sent packets. If we have a chain of n links
and we want to deliver a single packet from the first to the
last node in the chain, then we have altogether to send the
number n of links times the expected value for each link 7,.
Therefore:

Qualn) = ST om) = f(2)
Qpicta(n) = F(THUn) - n) = (257

From our laboratory experiments described in Section 4.2,
as well as from other theoretical results [9]), we can state
f(n?) = -%. By considering it and Equations 9, the fol-
lowing holds:

Qiab(n) Qficra(n) } _ (n
Fn2) ~ f(#il) = Qrictd(n) = Quan(n) (L3J+1)

B
2

(10)

