
Estimating Activity Start Timestamps in the presence of
Waiting Times via Process Simulation

Claudia Fracca1,2, Massimiliano de Leoni1, Fabio Asnicar2, and Alessandro Turco2

1 University of Padua, Italy
deleoni@math.unipd.it
2 ESTECO SpA, Trieste, Italy

{asnicar, fracca, turco}@esteco.com

Abstract. Process Mining aims to analyze and improve processes to enable or-
ganizations to provide better services or products. The starting point of Process
Mining is an event log that is extracted from the organization’s information sys-
tems that support the process’ executions. Several techniques require event logs to
record the timestamp when process’ activities have started and been completed.
Unfortunately, information systems do not always record the timestamps when
process activities start, preventing the application of these techniques. This paper
reports on a technique based on process simulation that aims to estimate the start
event timestamps when missing. In a nutshell, the idea is to build an accurate
process model from the initial event log without start timestamps, to simulate it
with alternative activity-duration profiles, and to select the model with the profile
that generates the runs that are the closest to the initial log. This activity-duration
profile is used to add the missing, start timestamps to the initial log. Experiments
were conducted with two event logs with start timestamps, and aimed at their re-
discovery: the results show our estimation of the start event timestamps is more
accurate than the state of the art.

Keywords: Start timestamps · Time perspective · Waiting time · Log repair ·
Process simulation.

1 Introduction

Process mining is a research discipline that sits between machine learning and data
mining on the one hand and process modeling and analysis on the other hand. The idea
behind it is to discover, monitor, and improve real processes to provide better services
or products by extracting knowledge from event logs readily available in today’s orga-
nization’s information systems [1]. As briefly elaborated in Section 2, several process
mining techniques need event logs that store both start and complete life-cycle tran-
sitions of activities. These techniques, e.g., [8, 13], specifically rely on knowing the
timestamps when process’ activities were started. Unfortunately, most information sys-
tems that support the process executions only record the completion of the different
process’ phases and activities. As a consequence, event logs often only store the events
when activities are completed, thus missing events when activities started.

Existing techniques naı̈vely estimate the timestamps related to the start of activities
under the assumptions that activity instances start as soon as possible, namely when the

2 Fracca et al.

activities that come before are completed and a suitable resource is available (e.g.,[14]).
This corresponds to assuming no waiting times, and it is often unrealistic in practice [4,
8]: (i) resources work on multiple processes and continuously switch from one to the
other while event logs refer to one process, (ii) take breaks during the working days
(e.g., when tired), (iii) carry on additional duties that lead no trail in the event logs (e.g.,
when answering the phone).

This paper proposes a new technique to estimate the timestamps of the start events,
namely of the events related to the start of activities. The starting point is an event log L
of a given process P , and a simulation model M of P . This simulation model consists
of a model of a process P (e.g., a BPMN model)3 extended with additional information
for the simulation aspects (case inter-arrival time, activity durations, routing probabili-
ties, resource allocation, and utilization, etc.). The simulation model can be constructed
by combining different process mining techniques (see the case studies discussed in
Section 5). In a nutshell, the idea is that event log L is augmented with the missing
start events using n different activity duration profiles, thus obtaining a set of event logs
L1, . . . ,Ln. Using each log Li, it is possible to compute the activity duration probabil-
ities to be included in M, lead to n simulation model M1, . . . ,Mn. Each simulation
model Mi is used to generate a simulated event log Lsim

i . The technique returns the
event log Li with start events such that the corresponding simulation model Mi gener-
ated an event log Lsim

i that is the closest to L with the respect that certain properties,
such as the probability distribution of trace duration.

The technique has been evaluated in two case studies using two event logs about the
process for credential recognition of students in a university and a purchase to pay pro-
cess (cf. Section 5). These event logs contain both start and completion events. For the
evaluation, we removed the start events and aimed to rediscover through our technique.
The evaluation outcome shows that the our technique was able to rediscover start-event
timestamps that were more accurate than what could be achieved by existing techniques
that naı̈vely assume no waiting time.

2 Related Work

Several techniques rely on the availability of the start activity timestamps, namely the
timestamps of the start events. In business process simulation complete and precise
event logs, including information about completion and start of activities, is highly
valuable and necessary as the starting point for many simulation parameters discovery
algorithms, such as techniques for multi-perspective information extraction. For exam-
ple, Martin et al. [13] present a discover technique for the resource availability calendars
and in [8] a technique to detect the presence of multitasking. These techniques start from
event log assuming both start and complete life-cycle transitions of activities. A com-
plete event log is necessary as input also for certain techniques for automated discovery
of business process models, such as in [10], to better distinguish between true concur-
rency and interleaving. The construction of a business simulation model that accurately
model resources also requires the presence of the timestamps of start and completion

3 https://www.bpmn.org/

Estimating Activity Start Timestamps via Simulation 3

events [5, 18]. In particular, Carmargo et al. [5] confirm the difficulty to find real-life
event logs with both start and completion timestamps, thus limiting the applicability
of their simulation model construction. The same applies to techniques to discover the
resource availability calendars [13] or the detection of multitasking [8].

The problem of estimating the start activity timestamps is somehow related to queue
mining, namely assessing the queue lengths and waiting times of process activities [2,
19]. However, queue mining uses stochastic approaches to provide probability distri-
butions, confidence intervals, etc., without focusing on computing punctual values for
each start event. Rogge-Solti and Weske use stochastic Petri nets to determine the prob-
ability distribution of the duration of process instances, but their goal is not to estimate
the start-event timestamps [17]. Techniques to repair, clean, and restore event data be-
fore analysis have been suggested in other works: classical trace alignment algorithms
are used to restore missing events but without restoring their timestamps [6]. In [7],
Denisov et al. propose an alternative technique to restoring missing timestamps, under
the strong assumption, which does not generally hold, that the model is acyclic and
contains no parallelism constructions (e.g., AND splits). Pegoraro et al. have proposed
a repertoire of process mining techniques over missing event data, but they have aimed
at process discovery and conformance checking [15, 16], without focusing on repairing
event logs, and adding the missing start events and their respective timestamps.

3 Preliminaries

An event log and a simulation model are the starting points of our framework to es-
timate the starting timestamps for computing the activity durations. Since we do not
need to make any assumption of the modeling language and the simulation parameters,
we remain very abstract in this respect. A simulation model is a tuple M = (N ,S)
composed by a business process model N (e.g., a BPMN model), and a set S of the
parameters to define the simulation specifications for the different process perspectives
(time, resources, decisions, etc.). Examples of parameters are the case inter-arrival time,
activity durations, routing probabilities, resource allocation, and utilization. Events and
logs are defined as follows.

Definition 1 (Events). Let A be a set of activity labels. Let T be the universe of times-
tamps. Let R be a set of resources. Let I = {start, complete} be the life-cycle
information. An event e ∈ A × T × R × I is a tuple consisting of an activity la-
bel, a timestamp of occurrence, a resource performing the activity, and the life-cycle
information.

In the remainder, given an event e = (a, t, r, i), act(e) = a returns the activity label,
time(e) = t returns the timestamp, res(e) = r returns the resource, and life(e) = i is
the information whether e refers to the starting or completion of an activity.
In practice, several event logs are composed of events where the life-cycle information
is not present. In this case, we assume that those events refer to the completion. The log
might include events not related to starting or completing activities; we ignore those
events. Additional details attached to the events are also ignored. Sometimes events
carry a payload consisting of attributes taking on values; we also ignore these attributes.

4 Fracca et al.

Table 1. A fragment of an event log of a train ticket compensation request procedure.

CASE ID ACTIVITY TIMESTAMP RESOURCE LIFE-CYCLE
123 Check Ticket 16-07-21 00:21 Paul complete
124 Register Request 16-07-21 00:27 Ann start
124 Register Request 16-07-21 00:32 Ann complete
124 Check Ticket 16-07-21 00:40 Paul start
124 Check Ticket 16-07-21 00:49 Paul complete
123 Decide 16-07-21 00:50 Ann start
123 Decide 16-07-21 01:10 Ann complete
124 Decide 16-07-21 01:20 Ann start

Definition 2 (Traces and Event Logs). Let EA the universe of the events defined over
a set A of (labels of) activities. A trace σ = ⟨e1, . . . , em⟩ ∈ E∗A is a sequence of events,
with the constraint that, for all 0 < i < j ≤ m, time(ei) ≤ time(ej). An event log L
is a set of traces, namely L ⊂ E∗A.

In the remainder, we use the shortcut e ∈ L to indicate that there is a trace σ ∈ L such
that e ∈ σ. Also, the subscript A is omitted when it is clear from the context.

Example 1. Consider the fragment of an event log presented in Table 1. This event log
contains information about the handling of a request for compensation of train tick-
ets. The arrival of a ticket compensation request initiates a process instance. After the
request is received, the ticket is checked, and a decision is made. The compensation
request is either rejected or paid. Each case, identified by CASE ID, is composed of a
list of events that has an activity label, a timestamp of occurrence, a resource perform-
ing the activity, and life-cycle information, i.e., starting or completion of activities. As
mentioned before, we assume that the timestamps of the events are ordered within the
case.

Definition 3 (Trace Duration). Let σ = ⟨e1, . . . , em⟩ a trace in an event log L. Let
denote with TD(σ) the trace duration related to the trace σ. A trace duration TD(σ) =
time(em)− time(e1) is the difference between the timestamps of the last and the first
event in the trace σ.

Given an event log L, we aim to compute the probability distribution of trace du-
rations of L as a function D : R+

0 → [0, 1] that best fits the multiset of trace durations
⊎σ∈LTD(σ).4 Note that the domain of function D coincides with the possible trace
durations, namely any non-negative real value.

The discussion of our technique requires the introduction of the concept of the du-
ration of an activity instance, namely the difference between the timestamp of the com-
pletion event and that of the start event:

Definition 4 (Activity Instance Duration). Let σ = ⟨e1, . . . , ei, . . . , em⟩ be a trace in
L. Let ei ∈ σ be an event such that life(ei) = complete. Let ej be the latest, previous
event in σ referring to the starting of the same activity as ei , namely j < i, act(ej) =
act(ei), life(ej) = start, and there is no start event for the same activity between
the j-th and the i-th event, namely ∀k ∈]j, i[. act(ek) ̸= act(ej) ∨ life(ek) ̸= start.

4 Symbol ⊎ indicates the union of elements to form a multiset.

Estimating Activity Start Timestamps via Simulation 5

The duration of the activity instance related to the completion event ei is AD(ei) =
time(ei)− time(ej).

Similarly, the concept of waiting time of an activity instance is necessary hereafter,
intended as the difference between the timestamp of start event e and that of the latest
event that precedes e in the trace:

Definition 5 (Activity Instance Waiting Time). Let σ = ⟨e1, . . . , ei, . . . , em⟩ be a
trace in L. Let ei ∈ σ be an event such that life(ei) = start. Let ej be the lat-
est, previous event in σ referring to the completion of an activity, namely j < i,
life(ej) = complete, and there is no completion event between j and i, namely
∀k ∈]j, i[. life(ek) ̸= complete. The waiting time of the activity instance related
to the start event ei is WD(ei) = time(ei)− time(ej).

Example 2. Considering the example before. Let take case 124 and the event related
to the activity Check Ticket. In this case, the start timestamp is 16-07-21 00:40, and
the completion timestamp is 16-07-21 00:49, and the previously completed timestamp
is 16-07-21 00:32. Therefore, in this case, the activity instance duration is equal to 9
minutes, and the activity instance waiting time is equal to 8 minutes.

Let L be an event log defined over a set A of activities. For each activity a ∈ A, it is pos-
sible to compute the activity-duration probability distribution as the probability dis-
tribution functions dp,a : R+

0 −→ [0, 1] that best fits the multisets ⊎e∈L|act(e)=aAD(e)
of duration of instances of activity a in L. Similarly, the waiting time probability
distribution of a is the distribution dw,a : R+

0 −→ [0, 1] that best fits the multisets
⊎e∈L|act(e)=aWD(e) of waiting times for instances of activity a ins L.

In the remainder, we denote with dist p : A → S, the function that for each activity
a returns dp,a the activity-duration probability distribution in the universe S of proba-
bility distribution functions f : R+

0 −→ [0, 1]. And with dist w : A → S the function
that returns for an activity a the waiting time probability distribution dw,a.

The following definition presents the concept of a previous event in a trace by
control-flow, which, given an event e ∈ σ related to completion, represents the pre-
vious event in σ that also refers to a completion.

Definition 6 (Previous Event in a Trace by Control-Flow). Let σ = ⟨e1, . . . , em⟩
a trace in an event log L. For each ei ∈ σ s.t. life(ei) = complete and ∃ j < i :
life(ej) = complete, the previous event prev tL(ei) in a trace by control-flow related
to the event ei, is defined as follows:

prev tL(ei) = ek s.t. life(ek) = complete and ∀ k < l < i life(el) ̸= complete.

If the event log contains resource information, we can thus define the previous event
prev rL(e) as the completion event with the closest timestamp smaller than time(e),
among those referring to activities performed by the same resource res(e):

Definition 7 (Previous Event Performed by a Resource). Let e an event in the event
log L . Let now assume that life(e) = complete and ∃ ej ∈ L : life(ej) = complete,

6 Fracca et al.

Fig. 1. Schema representing the concepts of previous event in a trace by control-flow and previous
event performed by a resource. For the event e, time(e) is the timestamp related to the event e,
and res(e) = resourceB the resource performing the activity act(e). Looking at the trace
perspective, e1 is the previous event in a trace by control-flow prev tL(e), and e2 the previous
event performed by a resource prev rL(e) with res(e2) = res(e) = resourceB. The green
box represents the timeline range in which the event e could be started.

res(ej) = res(e) and time(ej) < time(e). The previous event performed by the re-
source res(e), is defined as follows:

prev rL(e) = ek s.t. life(ek) =complete, res(ek) = res(e) and

∄ ê ∈ L | res(ê) = res(e),

life(ê) = complete, and

time(prev rL(e)) ≤ time(ê) ≤ time(e).

In Figure 1 a schema representing these two concepts. Note that, given an event e ∈ L,
prev tL(e) and prev rL(e) may not always be defined, e.g. when the current activity
instance is the first one executed by a resource, or when the activity instance is the first
one in a trace, or for the first activity instance recorded in the event log.

Example 3. Considering the example before. Let consider the case 123 and the event
related to the activity Decide with life-cycle information equal to complete. In this
case the event e is the tuple (Decide, 16-07-21 01:10, Ann, complete). For this event
the related prev tL(e) is the tuple (Check Ticket, 16-07-21 00:21, Paul, complete) and
it is the previous event completed in the same trace 123. Therefore time(prev tL(e))
is equal to 16-07-21 00:21. And the related prev rL(e) is (Register Request, 16-07-21
00:32, Ann, complete) and it is the previous completion event performed by the same
resource Ann. Therefore time(prev rL(e)) is equal to 16-07-21 00:32.

The estimation of the timestamp related to the starting of activity requires defining
the minimum timestamp when the activity could have started, considering the different
process constraints, e.g., on resource and control flow. Given an event log L, denoted
the set of completion events in L with EL = {e ∈ L : life(e) = complete}, this
computation is abstracted as a minimum-timestamp oracle mintimeL : EL → T where
T is the universe of timestamps. For each event in e ∈ EL, mintimeL(e) is the earliest
timestamp when the activity instance related to e could have started.

The abstraction as a minimum-timestamp oracle is motivated by the fact this can be
defined in multiple ways, also depending on the information available in the L. As an

Estimating Activity Start Timestamps via Simulation 7

Fig. 2. BPMN model related to the event log in Table 1.

example, if we have both defined for an event e the events prev tL(e) and prev rL(e),
the related mintime res timeL(e) = max(time(prev tL(e)), time(prev rL(e))).
Another example, if it is possible to compute prev tL(e) but we do not have information
about the resource perspective, then mintime timeL(e) = time(prev tL(e)). In the
remainder, when evident from the context, we omit the subscript L.

Example 4. Considering the example before. Let consider the case 123 and the event
related to the activity Decide, therefore e = (Decide, 16-07-21 01:10, Ann, complete).
In this case the mintime res timeL(e) is equal to 16-07-21 00:32, i.e. the maximum
between the time(prev tL(e)) and time(prev rL(e)).

4 Technique

In the remainder, event logs are assumed to contain no events related to the starting
of activities. This is to keep the explanation simple: however, the extension is simple
to tackle the hybrid case where a fraction of the start events are present. Given an
event log L without start events defined over a set A of activities, the technique aims
to build a new event log L′ that include the start events. In particular, for each trace
σ ∈ L, L′ includes a trace σ′ that contains every event of σ. For each event e ∈ σ,
σ′ additionally includes a matching start event e′: act(e′) = act(e), res(e′) = res(e)
and life(e′) = start. The timestamp time(e′) needs to be estimated. To do so, we
formulate the problem as finding a value for a parameter α(e) ∈ [0, 1] related to the
event e such that:

time(e′) = α(e) ·mintime(e) + (1− α(e)) · time(e) (1)

where mintime(e) is some instance of the minimum-timestamp oracle (cf. Section 3).
Note that, if α(e) = 0, time(e′) = time(e), namely the duration of the activity instance
to which e refers is zero. Conversely, if α(e) = 1, time(e′) = mintime(e), namely
the activity instance to which e refers starts at the earliest possible moment.

In practice, to keep the problem tractable, we assume to find the same α(e) for all
events e related to the same activity a, namely:

time(e′) = α(a) ·mintime(e) + (1− α(a)) · time(e) (2)

8 Fracca et al.

where act(e′) = a. The assumption is that waiting times for different instances of
the same activity a are similar, i.e., these instances are executed by the same type of
resources, which exhibit similar behavior. The remainder of this section details how our
technique computes function α : A → [0, 1], namely each value α(a) for every activity
a.

Along with event log L, we need an initial simulation model M0 = (N ,S0) with-
out a specification about activity durations.

Example 5. The event log in Table 1 could be potentially associated to a simulation
model M0 = (N ,S0) where N is the process model in Figure 2, and the simulation
parameters S0 contain: (i) the case inter-arrival time parameterized as an exponential
distribution with mean 20 minutes, (ii) the routing probabilities for the XOR gateway:
65% for the Pay Compensation branch and 35% for the other, and (iii) a resources
allocation where Ann performs the activities RegisterRequest and Decide, while Paul
does the others.

Given n functions α1 : A → [0, 1], . . . , αn : A → [0, 1], we extend the original
event log L with the starting events computed using Equation 2. Using αj : A → [0, 1],
we obtain an event log Lsc

j , which can be used to compute the probability distribu-
tion function Dsc

j of trace duration, along with the waiting time probability distribution
dist wsc

j (a) for each activity a ∈ A (see Section 3).
The probability distributions dist pscj (a) for all a ∈ A can be added to the initial

simulation model M0 = (N ,S0), yielding a simulation model (N ,Sj). The simulation
model (N ,Sj) can be run so as to obtain an event log Lsim

j . Log Lsim
j can be used to

compute the probability distribution function Dsim
j of trace duration, and the waiting

time probability distribution function dist wsim
j (a) for each activity a ∈ A.

Event logs Lsc
j and Lsim

j can now be compared considering the distance of the
respective trace-duration distributions:

Definition 8 (Trace Duration Distance). Let L1, L2 be two event logs. Let D1 : R+
0 →

[0, 1] and D2 : R+
0 → [0, 1] be the probability distribution functions of the trace dura-

tions of L1 and L2 respectively. The trace duration distance is the integral difference
between the probability distribution functions: ε(L1,L2) =

∫ +∞
0

|D1(x)−D2(x)|dx.

Logs Lsc
j and Lsim

j can also be compared with respect to the distance of the waiting-
time distributions:

Definition 9 (Waiting Time Distance). Let L1, L2 be two event logs defined over
the same set A of activities. For each activity a ∈ A, let d1w,a : R+

0 → [0, 1] and
d2w,a : R+

0 → [0, 1] be the probability distribution functions of the waiting times for
activity instance of a in L1 and L2, respectively. The waiting time distance for a is
the integral difference between the probability distribution functions of waiting times:
ϕ(L1,L2)(a) =

∫ +∞
0

|d1w,a(x)− d2w,a(x)|dx.

As mentioned, for each alpha function αk ∈ {α1, . . . , αn}, we obtain a real event log
Lsc
k augmented with start events, and a simulated event log Lsim

k . We opt for the αk

that minimizes the distance ∆(Lsc
k , Lsim

k) between Lsc
k and Lsim

k , which consider the
distances between the respective trace-duration and waiting-time distributions:

Estimating Activity Start Timestamps via Simulation 9

input : Event log: L.
input : Simulation model:M0 = (N ,S0).
input : Mintime function: mintime : EL → T .
input : Granularity parameter: δ.

αbest ← set start alpha(L,M0, δ) ;
ϵbest ← compute distance(αbest,L,M0,mintime) ;
for a ∈ activities(N) do
Qtried ← [αbest(a)] ;
Qnext ← [prev succ(αbest, δ), next succ(αbest, δ)] ;
while Qnext ̸= [] do

α← αbest ;
α(a)← pick and remove(Qnext) ;
if α(a) ̸∈ Qtried then
Qtried ← Qtried ∪ [α(a)] ;
ϵ← compute error(α,L,M0,mintime) ;
if ϵ ≤ ϵbest then

αbest ← α, ;
ϵbest ← ϵ;
Qnext ← [prev succ(αbest, δ), next succ(αbest, δ)] ;

end
end

end
end
return αbest

Function compute distance(α, L,M0, mintime) : R+
0

Lsc ← add start event(L,mintime, α) ;
dist p← find processing time(Lsc) ;
M← set duration distribution(M0, dist p) ;
Lsim ← simulate(M) ;
logs distance←∆(Lsc,Lsim) ;
return logs distance

end

Algorithm 1: Local search-based algorithm to estimate activity start timestamps via
simulation.

Definition 10 (Logs Distance). Let Lsc be the original event log augmented with start
events. Let Lsim be the event log obtained via simulation. Let ε(Lsc,Lsim) be the trace
duration distance for the two logs Lsc and Lsim. Let ϕ(Lsc,Lsim)(a) be the waiting time
distance for any activity a ∈ A. The distance between Lsc and Lsim is computed as
follows:

∆(Lsc,Lsim) = ε(Lsc,Lsim) +
∑
a∈A

ϕ(Lsc,Lsim)(a) (3)

So far, the set of configurations were given. However, these configurations need to be
computed on the fly to find a (sub)optimal minimum error. To this aim, we will use a
local search based algorithm for this minimization problem. The pseudo-code in Algo-
rithm 1. The proposed method takes as input an event log L, an initial simulation model
M0 = (N ,S0), a mintimeL function, and a granularity parameter δ ∈ (0, 1). Using
the δ parameter we can define the succession alpha succ(δ) = {xt|xt = xt−1+δ, x0 =
0, xt ≤ 1}, in such way we can obtain a different configuration obtained via function
α(a) = xt for each activity a ∈ A. For example, using the parameter δ = 0.1, the
succession is alpha succ(δ) = {0, 0.1, 0.2, . . . , 1}.

The first step of the Algorithm 1 is to initialize the function α with random values.
Starting from the initial function α, we select one activity a ∈ A and try to optimize

10 Fracca et al.

α(a) using local search. In particular, for each activity and the corresponding value
α(a) = xt ∈ alpha succ(δ), for the next values of α(a) in Qnext , we add the previous
value xt−1 ∈ alpha succ(δ) and the consecutive value xt+1 ∈ alpha succ(δ). We
store the value with the smallest logs distance and we keep going in the next updates
in the direction with decreasing logs distance until no improvements are permitted, see
Algorithm 1. To compute the logs distance given a configuration of the function α,
we can create the new event log Lsc as discussed above, here abstracted as a func-
tion add start event(). The next step is, given the completed event log Lsc, compute
the function dist p(a) that for each a ∈ A. Then we incorporate the activity-duration
probability distribution function dist p() in the structure of the simulation model M0,
obtaining the updated simulation model M = (N ,S). Given as input the simulation
model M = (N ,S) the next step is to call the simulate(M) function that calls a
simulator and returns the simulated event log Lsim related to the simulation model M.
The last step is to calculate the logs distance ∆(Lsc,Lsim), according to Equation 3.
If the logs distance decreases then we update the function αbest and the logs distance
ϵbest, and we continue until no further improvement are observed.

5 Implementation and Experiments

This section assess the quality of the estimation of the timestamp of start activities
for two case studies. In our experiments, we used the inductive miner algorithm [10]
for the discovery of the process model because it guarantees the soundness of the dis-
covered models. The resulting Petri-net models are later translated into BPMN models
[11]. Then, using process mining and statistical techniques, we complement the BPMN
model with the other simulation parameters, namely:

The resource perspective. We extract the pool of resources from the log events, and
we group them in roles, finally linking BPMN-model tasks to roles. In particular,
we leverage on the role-discovery algorithm by Burattin et al. [3].

Working calendar. We discover the working calendar hours for each role by analyzing
the day of the week and the hour of the day in which each role most frequently
completed tasks.

The inter-arrival time. We calculate the time difference between subsequent traces,
also consider the working calendar. Then, we compute the inter-arrival time distri-
bution that best fits, namely which minimizes the error.

Branching probabilities. For each XOR split in the BPMN model, we compute the
probability to continue via each available branch.

These parameters focus on different process perspectives (resource, time and control-
flow, respectively) and allow configuring a sufficiently-precise simulation model, with
evident benefits on the accuracy of the estimation of the start events and their respective
timestamps. The BPMN-model branching probabilities are derived via from the corre-
sponding probabilities on the Petri net discovered through the Inductive leveraging, by
using the Multi-perspective Process Explorer [12]. The other simulation parameters are
obtained through a combination of the results of the process-mining library PM4Py5

with other Python libraries for machine learning, data science and statistics.
5 https://pm4py.fit.fraunhofer.de/documentation

Estimating Activity Start Timestamps via Simulation 11

Fig. 3. The estimation error when varying the noise parameter of the inductive miner algorithm
for the process for student credential recognition. The estimation error is measured in days, and
is the absolute number of the between the estimated and the real timestamps.

To put together all the simulation parameters with the BPMN model into a single
data structure the implementation is through a Python library BPSimpy [9]. It can be
downloaded from the Github repository.6 We used the Lanner simulator (L-sim)7 using
the generated simulation model as input, to perform the simulation. All the experiments
were run on an Intel Core i7-8550U CPU @ 1.80GHz with 16GB RAM with duration
of ca. 3.5 hours per analysis.

5.1 Case Study of the Process for Student Credential Recognition

This section reports a case study of a real business process for credential recognition of
students in a Colombian University that contains both starting and completion events.8

It contains 954 traces, 18 activities, 6870 events and involves 561 resources. In the re-
mainder, we translate the activity labels into English for clarity. The start events were
removed, aiming to assess the accuracy of their rediscovery via our simulation-based
techniques. Once we discovered the BPMN process model and the simulation param-
eters, we have the initial simulation model M0. Using the mintimeL oracle based on
control-flow and resources (cf. Section 3) and the granularity parameter δ = 0.1, we
apply Algorithm 1 to find the best α function.

Sensitivity with respect to the model. The first question of the evaluation is how much
the quality of the model influences our technique, in terms of precision and fitness [1].
As mentioned we employed inductive miner to mine model, which allows the discovery
of models with different sensitivity levels as function of a noise parameter that takes
values between 0 and 1: value 0 indicates that no part of behaviour is considered as noise
and the model allows for the whole behavior observed in the event log, whereas larger
and larger values indicate that less and less event-log behavior is incorporated into the
model. Since lower values produce models with a larger set of admissible behavior, in
general lower values produce models with higher fitness but less precise. Figure 3 shows
the estimation error when applying our technique and using the different models that

6 https://github.com/claudiafracca/BPSimpyLibrary
7 https://www.lanner.com/en-us/technology/l-sim-bpmn-simulation-engine.html
8 https://github.com/AutomatedProcessImprovement/Simod/blob/master/inputs/ConsultaDataMining201618.xes

12 Fracca et al.

Fig. 4. Comparison of the estimation error of the start timestamp for the student credential-
recognition process when using our simulation-based technique and the naı̈ve techniques The
first and second boxplots respectively report on the naı̈ve techniques that use the control-flow
information only, and both the control-flow and resource information. The third refers to our
technique. Errors are reported in days.

are obtained varying the noise parameter of the inductive-miner algorithm and extended
with the simulation parameters mentioned above. The estimation error is measured in
days and is the absolute number of the between the estimated and the real timestamps.
We can notice that the error does not change with the noise parameter and, hence, with
the model precision and fitness. This can be explained: the possible lack of precision is
balanced by the branching probabilities for the XOR splits. If the model is not precise,
the probabilities for certain infrequent branches might become so low that it is in fact
equivalent to not having them.

Comparison with naı̈ve techniques. The second evaluation question refers to a com-
parison between our and some naı̈ve techniques. The naı̈ve techniques assume no wait-
ing time and that the new activities start as soon as possible. In a first case, the new
activity starts when the previous completes; a second case also considers the availabil-
ity of resources and assumes that the new activity starts when the previous completes
and when the resource that performs the new activity is available. Figure 4 uses box-
plots to show the distribution of the estimation error between the two naı̈ve techniques
and our technique. The error for our technique is built on the model that scores the best
when varying the noise parameter (cf. Figure 3). Our technique clearly outperforms the
naı̈ve technique that is based on only control-flow information: The mean and media
values of the estimation error are certainly smaller, and the error’s standard deviation
reduced to ca. 10% of the case of the naı̈ve technique based on control-flow informa-
tion. Compared with the naı̈ve technique that also employs resource information, our
technique is characterized by a similar error’s mean value, but the error’s standard de-
viation is reduced to ca. 20% of the naı̈ve-technique case that also uses the resource
information.

Accuracy with respect to the α configuration. The next question of the evaluation
is how the estimation error varies for a specific activity a with respect to α(a). Figure

Estimating Activity Start Timestamps via Simulation 13

Fig. 5. Comparison by estimation error in days for the activities Course revision (Revisar
curso) and Validate the application (Validar solicitud) between different parameter values α in
alpha succ(δ) = {0, 0.1, 0.2, . . . , 1} for the process for student credential recognition.

5 reports for the activities Course revision (Revisar curso) and Validate the application
(Validar solicitud) a comparisons between error boxplots one for each values of function
α in alpha succ(δ) = {0, 0.1, 0.2, . . . , 1}. This figure shows a typical distribution of
the error function when varying α: the error has a convex trend, with the minimum
for some value between zero and one. In this case, the minimum corresponds to the
α(a) = 0.8 and α(a) = 0.95, illustrating that activities tend to be started soon after it
is possible, but not immediately (cf. Equation 2).

Effects on Process-Instance Duration in Simulation. In sum, our technique allows
a better estimation of the duration of the activity instances observed in the event log.
We previously mentioned that this provides large benefits to the application of several
Process-Mining techniques, including for more accurate simulation models. Assuming
no waiting times, naı̈ve techniques would lead to estimating distributions of activity-
instance durations that are larger than the reality. If activity-instance durations are sim-
ulated to be larger than reality, simulations would highlight a unreal overestimation of
the utilization of the resources that perform such activities, as well as they would report
on overly long duration of process instances. To empirically verify this, we first used

Table 2. Average and standard deviation of process-instance duration of simulated process ex-
ecutions when activity duration is estimated via the naı̈ve approach (first two table rows) and
ours (third row). The last row refers to actual average and standard deviation of process-instance
durations, observed in the event log.

Average Standard Deviation
Estimating using control-flow only 138d 09h 11m 28s 180 d 19h 25m 53s
Estimating using control-flow and resources 58d 08h 10m 32s 107d 09h 34m 31s
Estimating using our simulation-based technique 10d 19h 01m 56s 18d 20h 35m 21s
Actual process-instance durations in the event log 14d 10h 18m 11s 27d 03h 40m 51s

14 Fracca et al.

Fig. 6. The estimation error when varying the noise threshold of the inductive miner algorithm
for the purchase process case study.

Fig. 7. Comparison of the estimation error of the start timestamp for the purchase process case
study, when using our simulation-based technique and some naı̈ve techniques that assume no
waiting time.

the durations estimated via our techniques and via the naı̈ve techniques to learn the
probability distributions of the durations of the instances of different process’ activi-
ties, which were later added to the simulation model. So-constructed simulation models
were run for so many instances as those recorded in the event log. We measured the
average and standard deviations of process-instance durations. Table 2 summarizes the
findings: the comparison highlights that our technique allows analysts to build simula-
tion models that simulate realistic process-instance durations. Indeed, the average of 10
days and ca. 19 hours and the standard deviation of 18 days and ca. 21 hours is close
to the actual durations (see last table row). Conversely, the two naı̈ve techniques esti-
mated activity-instance durations that produced distributions for the simulation model
that generate process-instance runs whose durations are of an order of magnitude larger
than reality.

5.2 Purchase Process Case Study

This section reports the experiment results based on an event log that record executions
of a purchase-to-pay process of 21 activities and 27 resources.9 This event log is com-
posed by 9119 events, both start and complete, divided in 608 traces. Analogously to the

9 https://fluxicon.com/academic/material/

Estimating Activity Start Timestamps via Simulation 15

previous case study, we removed the start events, aiming to assess the accuracy of their
rediscovery via our simulation-based techniques. As the case study before, the simula-
tion model was created via Inductive Miner, extended with the simulation parameters
that are mentioned at the beginning of this section and discovered as there indicated.
The same sensitivity analysis of the model wrt. different noise-parameter values was
carried out (see Figure 6): analogously to the previous case study, the accuracy of the
estimations was not influenced by the quality of the model to well balance fitness and
precision. So did we compare our techniques with the same naı̈ve techniques that use
control-flow and, possibly, resource information. The results are shown in Figure 7,
which confirm the findings of the first case study: our technique reduces both the aver-
age and the standard deviation of the estimation error.

6 Conclusion

Process mining techniques allows process analysts to discover, monitor, and extract
information from an event log related to different perspectives of a business process.
However, most of the techniques required event logs that stored both start and complete
life-cycle transitions to extract the different multi perspectives aspects. Unfortunately,
event logs often record the completion only. This paper focuses on the approximat-
ing of the start events. Naı̈ve techniques assume activity instances to start as soon as
possible, thus assuming no waiting times. In reality, resources can work on different
processes, take breaks, and perform other duties that are not recorded in the logs. In
these cases, the actual durations are over-estimated, yielding simulations that report an
untrue over-utilization of resources and/or process-instance durations that are far longer
than the reality. This paper reports on an technique to estimate the start event, assum-
ing waiting times to be possible. The idea is to estimate the start event by simulating
different activity-duration configurations and comparing the simulation results to find
the configuration for which the process-instance durations follow a probability distri-
bution that is close to that of the original event log. The idea hint is that the duration
of simulated traces are closer to those of the original event log if the activity durations
are better estimated. The validation has been conducted on processes whose event logs
record both starting and completion timestamps for each activity instance. The starting
timestamps were removed and estimated: the results show that our technique computes
better duration estimation with respect to techniques that assume no waiting time.

As future work, we aim to optimize our technique. Each configuration (i.e. vector)
of α parameters needs to be simulated, and currently we simulate as many traces as
those of the original event log in an attempt to fade any simulation warm-up effects. In
fact, it might actually be statistically sufficient to simulate fewer traces, so as to speed
up the simulation steps, while still fading the warm-up effects.

We acknowledge that there might be some threats to the validity of our technique, on
which we aim to work in the future. First and foremost, the accuracy of the estimations
of the start timestamps might depend on the accuracy of the simulation model. Sec-
ondly, our technique still assumes resources to work on at most one activity instance at
the same time, which might not always be true: we aim to extend support for resources
that carry on multiple activity instances at the same time [8].

16 Fracca et al.

References
1. van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer (2016)
2. Berkenstadt, G., Gal, A., Senderovich, A., Shraga, R., Weidlich, M.: Queueing inference for

process performance analysis with missing life-cycle data. In: Proceedings of 2nd Interna-
tional Conference on Process Mining (ICPM 2020). pp. 57–64. IEEE (2020)

3. Burattin, A., Sperduti, A., Veluscek, M.: Business models enhancement through discovery
of roles. In: Proceedings of the 2013 IEEE Symposium on Computational Intelligence and
Data Mining (CIDM). pp. 103–110 (2013)

4. Camargo, M., Dumas, M., González Rojas, O.: Learning accurate business process simu-
lation models from event logs via automated process discovery and deep learning. arXiv
abs/2103.11944 (2021)

5. Camargo, M., Dumas, M., González-Rojas, O.: Automated discovery of business process
simulation models from event logs. Decision Support Systems (2020)

6. Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking - Relating
Processes and Models. Springer Publishing Company Incorporated, 1st edn. (2018)

7. Denisov, V., Fahland, D., van der Aalst, W.M.P.: Repairing event logs with missing events to
support performance analysis of systems with shared resources. In: Proceedings of the 41st
Intl. Conference on the Application and Theory of Petri Nets and Concurrency (PETRINET
2020). LNCS, vol. 12152, pp. 239–259. Springer (2020)

8. Estrada-Torres, B., Camargo, M., Dumas, M., Garcı́a-Bañuelos, L., Mahdy, I., Yerokhin,
M.: Discovering business process simulation models in the presence of multitasking and
availability constraints. Data & Knowledge Engineering 134, 101897 (2021)

9. Fracca, C., Bianconi, A., Meneghello, F., de Leoni, M., Asnicar, F., Turco, A.: BPSimpy:
A python library for WfMC-standard process-simulation specifications. Proceedings of the
Demo Session at the 19th International Conference on Business Process Management (2021)

10. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process
models from incomplete event logs. In: Proc. of the 35th Intl. Conference on the Application
and Theory of Petri Nets and Concurrency. LNCS, vol. 8489, pp. 91–110. Springer (2014)

11. de Leoni, M., van der Aalst, W.M.P.: The FeaturePrediction Package in ProM: Correlating
Business Process Characteristics. In: Proceedings of the Demo Session at the 14th Interna-
tional Conference on Business Process Management (BPM 2014). CEUR, vol. 1295 (2014)

12. Mannhardt, F., de Leoni, M., Reijers, H.A.: The multi-perspective process explorer. In: Pro-
ceedings of the Demo Session at the 13th International Conference on Business Process
Management. vol. 1418, pp. 130–134. CEUR-WS.org (2015)

13. Martin, N., Depaire, B., Caris, A., Schepers, D.: Retrieving the resource availability calen-
dars of a process from an event log. Information Systems 88, 101463 (2020)

14. Nakatumba, J.: Resource-aware business process management: Analysis and Support. Ph.D.
thesis, Technische Universiteit Eindhoven (2013)

15. Pegoraro, M., van der Aalst, W.M.P.: Mining uncertain event data in process mining. In:
Proc. of the 2nd Intl. Conference on Process Mining (ICPM 2019). pp. 89–96. IEEE (2019)

16. Pegoraro, M., Uysal, M.S., van der Aalst, W.M.P.: Discovering process models from uncer-
tain event data. In: Proceedings of the Business Process Management Workshops. vol. 362,
pp. 238–249. Springer (2019)

17. Rogge-Solti, A., Weske, M.: Prediction of business process durations using non-markovian
stochastic petri nets. Information Systems 54, 1–14 (2015)

18. Rozinat, A., Mans, R., Song, M., van der Aalst, W.: Discovering simulation models. Infor-
mation Systems 34(3), 305–327 (2009)

19. Senderovich, A., Leemans, S.J.J., Harel, S., Gal, A., Mandelbaum, A., van der Aalst, W.M.P.:
Discovering queues from event logs with varying levels of information. In: Proceedings of
the Business Process Management Workshops. LNBIP, vol. 256. Springer (2016)

