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Abstract—In recent years, there has been an increasing interest
in enriching the traditional control-flow perspective of processes
with additional dimensions, the data perspective being the most
prominent one. At the same time, variants of Petri nets with
data have been extensively studied, giving raise to a plethora of
formal models with different expressive power and computational
guarantees. In this work, we focus on DPNs, a data-aware
extension of P/T nets where the net is enriched with data variables
of different types, and transitions are guarded by formulae that
inspect and update such variables. Even though DPNs are less
expressive than Petri nets where data are carried by tokens, they
elegantly capture business processes operating over simple case
data and taking complex decisions based on these data. Notably,
various techniques have been implemented to discover DPNs from
event data. However, such techniques do not guarantee that the
discovered DPN is actually sound. In previous work, we have
then studied how to check soundness of DPNs with simple data-
based guards that can only compare variables with constants. In
this paper, we generalize the study of soundness to DPNs to the
fundamental case where the evolution of the process depends
on the comparison between the values carried by different
variables through linear inequations. Our main contribution is
to show decidability of soundness for this sophisticated class
of DPNs. This is done by constructing an abstract state space
of the net relying on the manipulation of constraints, and by
showing that such an abstract state space can be faithfully and
effectively inspected for soundness. The construction lends itself
to be directly implemented by combining standard state-space
construction methods with constraint programming techniques.
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I. INTRODUCTION

In recent years, there has been an increasing interest in
enriching the traditional control-flow perspective of processes
with additional dimensions. In particular, the Business Process
Management (BPM) field has witnessed an increasing shift
from conceptual models solely focusing on the flow of ac-
tivities, to so-called multi-perspective models linking the flow
of activities to other central aspects such as data, decisions,
resources, and time. In particular, the integration between
(business) processes and data has been extensively studied,
towards a more holistic understanding of how processes induce

the evolution of data, and how data and decisions based on
such data influence the process execution [4], [13].

This, in turn, has led to a flourishing line of research fo-
cused on the formalisation of integrated models for processes
and data, and on the corresponding study of the boundaries
of decidability for their formal analysis. Within this line,
two main different paradigms can be identified. The first
is about data-centric models where relational databases are
enriched with processes operating over them [4], [19]. The
second concentrates activity-centric models based variants
of Petri nets enriched with data, data-driven decisions, and
data-manipulation operations. Within this latter tradition, we
consider in particular the model of data Petri Nets (DPNs),
introduced in [10] and further studied in [8]. DPNs constitute
a data-aware extension of P/T nets where the net is enriched
with data variables of different types (including numerical
ones), and transitions are guarded by formulae that inspect and
update such variables. Even though DPNs are less expressive
than Petri net-based models for data-aware processes where
data are carried by tokens, such as those in [11], [16], they
are particularly interesting to study for a twofold reason:

1) As argued in [8], DPNs elegantly capture the interesting
class of activity-centric business processes that operate
over scalar case data, and that use decision models based
on the DMN S-FEEL standard [1] to route the process
depending on case data [2];

2) As witnessed by [10], there are state-of-the-art process
mining techniques that automatically discover DPNs from
event logs, and that employ DPNs for conformance
checking.

In [8], a suitable formal notion of so-called data-aware sound-
ness (simply referred to as soundness from now on) has been
introduced to provide a general criterion of correctness that
builds on the well-known notion of soundness in workflow
nets [18]. In particular, [8] has brought forward an abstraction
technique that faithfully ascertains (data-aware) soundness for
DPNs with simple data-based guards that can only compare
variables with constants. Notably, the resulting framework can
be used to study all the different “decision-aware” variants of



soundness discussed in [2] to carry out a fine-grained study
of the impact that data and decisions have on the process
control-flow. This is not only of foundational interest, but
has also direct practical relevance considering that the DPNs
discovery algorithms do not guarantee that the inferred models
are indeed correct, and thus must be complemented with a
further soundness verification step.

In this work, we generalize the study of soundness to DPNs
with a large class of conditions, by also considering the
fundamental case where the evolution of the process depends
on the comparison between the values carried by different
variables through linear inequations. Our main contribution
is to show decidability of soundness for this sophisticated
class of DPNs. This is done by constructing an abstract state
space of the net relying on the manipulation of (numerical)
constraints, and by showing that such an abstract state space
can be faithfully and effectively inspected for soundness.
The construction lends itself to be directly implemented by
combining standard state-space construction methods for P/T
nets with constraint programming techniques. In addition,
it also paves the way towards the verification of temporal
properties that go beyond soundness.

The remainder of the paper is organised as follows: in
Section II we discuss related work; in Section III we introduce
the type of Petri nets that we will use for modelling data-
aware processes and we provide their execution semantics,
used to describe the (possibly infinite) executions of these nets;
in Section IV we recall the notion of data-aware soundness
and provide our main result, showing how this property can
be effectively checked by analyzing a specific finite-state
representation of the infinite executions of the process, that
compactly represents them all. Finally, in Section V we discuss
future work.

II. RELATED WORK

A large body of research exists to verify the soundness
of process models. Most of these works only focus on the
control flow [12], starting from the seminal work of van
der Aalst et al. [17]. These works ignore the data decision
perspective, a significant limitation as also acknowledged by
Sadiq et al. [14]. Corradini et al. focus on verification of
BPMN choreographies and the message exchanges among
collaborating processes [6], [7], but the focus remains on the
control flow.

In fact, some attempts exist to also incorporate data and
decisions. Sidorova et al. proposed a conceptual extension
of workflow nets, equipped with an abstract, high-level data
model [15]. In fact, data are captured abstractly, and activities
are assumed to read and write entire guards instead of the
single data variables that affect the satisfaction of guards.
This is not realistic: as testified by modern process modeling
notations such as BPMN and DMN, the data perspective
requires data variables and full-fledged guards and updates.

Calvanese et al. [5] focus on single DMN tables to verify
whether they are correct or contain inconsistent, missing or
overlapping rules. However, the analysis is only conducted

locally to single decision points, whereas our notion of data-
aware soundness is a global property that considers entire
process’ runs. A similar drawback is also present in [3].
Knuplesch et al. [9] propose a technique to verify properties
expressed in LTL against models that incorporate the data
perspective. Unfortunately, data-aware soundness cannot be
expressed as a (set of) LTL formulas; this is specifically
related to the termination aspects: the property of an option to
complete cannot be represented as an LTL formula.

III. DATA PETRI NETS

In this section we illustrate how data-aware processes are
represented by data Petri nets (DPNs) [10]. Specifically, we
adopt the formalisation introduced in previous work [8], which
provided for the first time a full account of the syntax and
semantics of these nets, allowing to lift the standard notion
of soundness to their richer, data-aware setting. However, the
DPNs considered in [8] are restricted to allow only transitions
associated to conditions that are conjunctions or disjunctions
of atoms of the form variable-operator-constant. In this paper
we relax such a restriction, and generalize it to the case of
variable-operator-variable.

We first define the notion of domain for case variables,
assuming an infinite universe of possible values U .

Definition 1 (Domain). A domain is a couple D = 〈∆D,ΣD〉
where ∆D ⊆ U is a set of possible values and ΣD is the set
of binary predicates on ∆D.

We consider a fixed set of domains, and in particular the
notable domains DR = 〈R, {<,>,=}〉, DZ = 〈Z, {<,>,=}〉,
Dbool = 〈{true, false}, {=}〉, Dstring = 〈S, {=}〉 which,
respectively, account for real numbers, integers, booleans, and
strings (S denotes here the infinite set of all strings). Given
D, the symbol ⊥ ∈ ∆D is used as a special domain value for
variables, denoting an undefined value. Although our approach
can be applied to arbitrary domains, from now on we restrict
to the ones above.

We assume that ΣD is closed under negation, namely that
for every predicate � also its complement is included. For
instance, if = is in ΣD then also 6= is in the set (the domains
above are extended accordingly).

Consider a set V of variables. Given a variable v ∈ V we
write vr or vw to denote that the variable v is, respectively,
read or written by an activity in the process, hence we consider
two distinct sets V r and V w defined as V r = {vr | v ∈ V }
and V w = {vw | v ∈ V }. When we do need to distinguish, we
still use the symbol v to denote any member of (V r∪V w). To
talk about the possible values that variables may take, we need
to associate domains to variables. If a variable v is assigned
a domain D = 〈∆D,ΣD〉, for brevity we denote by vD the
corresponding typed variable, that is a shorthand to specify
that v can only take values in ∆D.

Variables provide the basic building block to define logical
conditions on data, used to specify conditions on the possible
evolutions of the process, depending on the value of read and
written variables. We call such conditions constraints.



Definition 2 (Constraints). Given a set of typed variables V ,
the set of possible constraints CV is the largest set containing
the following:
• vD �∆D iff v ∈ (V r ∪ V w) and � ∈ ΣD;
• v1D � v2D iff v1 ∈ (V r ∪ V w), v2 ∈ V r and � ∈ ΣD;

In words, a constraint allows to compare a variable with a
constant (among those in their associated domain ∆D) or with
another variable with the same domain D. Parentheses around
constraint are used throughout the paper to enhance readability.
As shorthand notation, we denote by (v � k) a constraint in
which a variable, either read or written, is compared with a
constant, i.e., where v ∈ (V r ∪ V w), D is the domain of v
and k ∈ ∆D. When we need to specify not only the shape of
a constraint φ but also whether a variable is read or written,
we then use the notations (vr�k) and (vw�k). Analogously,
for comparing variables between them, we use the notations
(v1� v2), (vr1 � vr2) and (vw1 � vr2). When the right-hand side
can be either a constant or a variable, we use the symbol x.
Finally, given a constraint (v�x), we denote by ¬(v�x) the
constraint in which � is replaced by its negation.

We use constraints to formalise the conditions that we can
associated to activities in the process: each activity in the
process, modelled as a transition in our net representation,
is associated to a constraint called guard. With respect to [8],
we are allowed to specify guards that compare the (written
or read) value of variables not only against constants, but
also against other variables. Guards allow to model conditions
between the value of a variable and a constant (e.g., ar > 0),
between the written value of a variable and the current value
of another variable (e.g., aw > br) or between the current
value of two variables (e.g. ar > br) – in these examples,
a, b ∈ V .

Note that conjunctions and disjunction are not allowed for
simplicity but without loss of generality: disjunctive guards
can be mimicked by having multiple transitions from and to
the same places, each having a disjunct as guard, whereas
conjunctive guards can be modelled as ‘non-interruptible’
sequences. This also allows us to express, e.g., guards such
as a ≥ 0 for a variable aD with ≥6∈ ΣD (an example will be
given later). The simplification is only aimed at simplifying
the technical details that follow.

A variable assignment is a function β : (V r ∪ V w) →
U ∪{⊥}, which assigns a value to read and written variables,
with the restriction that β(v) is a possible value for v, that is
if vD is the corresponding typed variable then β(v) ∈ ∆D.
Given a variable assignment β and a guard φ = (v � x), we
say that φ evaluates to true when variables are substituted as
per β, written φ[β] = true, iff x is a constant and �(k, x)
for k = β(v) or x is a read variable and �(k1, k2) for
k1 = β(v) and k2 = β(x). In other words, a guard is satisfied
by evaluating it after assigning values to read and written
variables, as specified by β.

A state variable assignment, abbreviated hereafter as SV
assignment, is instead a function α : V → U ∪ {⊥}, which
assigns values to each variable v ∈ V , with the restriction

p0
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[aw > 5] p1
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[ar > 10] p2
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] t4
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]
p3

Fig. 1. A simple DPN N , with MI = {p0} and MF = {p3}. Variables
a and b are integers and we assume αI(a) = 0 and αI(b) = 10. Guards of
transitions are shown between squared brackets.

that α(vD) ∈ ∆D. Note that this is different from variable
assignments β, which are defined over (V r ∪ V w).

We can now formalise DPNs as in [8].

Definition 3 (Data Petri Net). Let V be the set of process
variables. A Data Petri Net (DPN) N = 〈P, T, F, V, dom, αI ,
read ,write, guard〉 is a Petri net (P, T, F ) with additional
components, used to describe the additional perspectives of
the process model:

• V is a finite set of process variables;
• dom is a function assigning a domain D to each v ∈ V ;
• αI is the initial SV assignment;
• read : T → 2V returns the set of variable read by a

transition;
• write : T → 2V returns the set of variable written by a

transition;
• guard : T → Φ(V ) returns a guard associated with the

transition.

Hence, given a generic transition t, read(t) and write(t)
denote, respectively, the set of variables in V r and V w that
are mentioned in guard(t). The latter is always a singleton.

Moreover, we assume that a DPN is always associated with
an arbitrary initial marking MI and an arbitrary final marking
MF . The latter, when reached, indicates the conclusion of the
execution of the process instance.

Consider as en example the very simple DPN in Figure 1,
where we assume a and b to have domain DZ, and an initial
SV assignment αI(a) = 0 and αI(b) = 10. From the initial
marking MI = {p0} a transition t1 updates the value of a to
any integer greater of 5. Then, either t2 or t3 are executable,
depending on the current value assigned in t1 being greater
or smaller than 10. Similarly, t4 can be executed only if the
initial value of b is smaller than the current value of a. This
process presents several evident issues related to the possibility
of marking the output place, as not any possible assignment of
a is taken into account (for instance, for the case in which t1
assigns value 10 to a). Clearly, a very simplistic analysis that
disregards the possible SV assignments of case variables that
the process can generate at each step would still conclude that
the process is (classically) sound. Hence, before being able to
address this issue, we first need to characterise the possible
evolutions of the process, in which data are also considered.
This will be done in the next section.



A. Execution Semantics

By considering the usual semantics for the underlying Petri
net together with the guards associated to each of its transi-
tions, we define the resulting execution semantics for DPNs in
terms of possible states and possible (legal) evolutions from a
state to the next. Let N as above be a DPN. Then the set of
possible states of N is formed by all pairs (M,α) where:
• M ∈ B(P )1, that is, M is the marking of the Petri net

(P, T, F ), and
• α is a SV assignment, defined as in the previous section.
In any state, zero or more transitions of a DPN may be

able to fire. Firing a transition updates the marking, reads
the variables specified in read(t) and selects a new, suitable
value for those in write(t). We model this through a variable
assignment β for the transition (cf. the previous section),
which assigns a value to all and only those variables that are
read or written. A pair (t, β) is called transition firing.

Definition 4 (Legal transition firing). A DPN N = 〈P, T, F,
V, dom, αI , read ,write, guard〉 evolves from state (M,α) to
state (M ′, α′) via the transition firing (t, β) with guard(t) =
φ iff:
• β(vr) = α(v) if v ∈ read(t): the variable assignment β

assigns values as α for read variables;
• the new SV assignment α′ is as α but updated as per β.

It is computed as:

α′(v) =

{
α(v) if v 6∈ write(t),
β(vw) otherwise;

• β is valid, namely φ[β] = true: the guard is satisfied
when we assigns value to variables according to β;

• each input place of t contains at least one token:
(M(p) > 0) for any p ∈ P then (p, t) ∈ F ;

• the new marking is computed according to the Petri net
execution semantics as usual, denoted M [t〉M ′.

We denote a legal transition firing by writing (M,α) t,β−−→
(M ′, α′). We also extend this definition to sequences σ =
〈(t1, β1), . . . , (tn, βn)〉 of n legal transition firings, called
traces, an denote the corresponding run by (M0, α0) t1,β1

−−−→
(M1, α1) t2,β2

−−−→ . . . tn,βn

−−−→ (Mn, αn) or equivalently by
(M0, α0) σ−→ (Mn, αn). By restricting to the initial marking
MI of a DPN N together with the initial variable assignment
αI , we define the legal process traces of N as the set of
sequences σ as above, of any length, such that (MI , αI)

σ−→
(M,α) for some marking M and SV assignment α, and
the trace set of N as the set of process traces σ such that
(MI , αI)

σ−→ (MF , α) is a run for some α, where MF is the
final marking of N .

For instance, referring to the simple DPN N in Fig-
ure 1, a possible one-step run fragment from of the initial
state is ({i}, {αI(a) = 0, αI(b) = 10)}) t1,{β(aw)=7}−−−−−−−−→
({p1}, {α(a) = 7, α(b) = 10)}), and it is clearly the case

1The notation B(X) indicates the set of all multisets of elements of X .
However, for readability, in the case of 1-bounded DPNs we will simply
denote a marking as a set of places.

that one such run fragment can be legally executed for any
possible variable assignment for a that satisfies the guard of
transition t1.

B. Data-aware soundness

We recall here the lifting of the standard notion of soundness
[17] to the the data-aware setting of DPNs, as illustrated in [8].
The resulting notion is data-aware, as it requires not only to
quantify over the reachable markings of the net, but also on the
SV assignments for its case variables. It is thus distinguished
from the simpler case of decision-aware soundness in the
literature.

Given a DPN N , in what follows we write (M,α) ∗−→
(M ′, α′) to implicitly quantify existentially on traces σ in the
trace set of N . Let M ′ and M ′′ be two markings of a DPN
N = 〈P, T, F, V, dom, αI , read ,write, guard〉. We say that
M ′′ is greater than marking M ′, denoted as M ′′ > M ′, iff,
for any place p ∈ P of the DPN, M ′′(p) ≥ M ′(p) and there
exists p ∈ P s.t. M ′′(p) > M ′(p).

Definition 5 (Data-aware soundness). A DPN with ini-
tial marking MI and final marking MF is data-aware
sound iff all the following properties hold. By denoting as
ReachN the set of reachable states of N , namely the set
{(M,α) | (MI , αI)

∗−→ (M,α)}, these are:

P1: ∀(M,α) ∈ ReachN . ∃α′. (M,α) ∗−→ (MF , α
′)

P2: ∀(M,α) ∈ ReachN . M ≥MF ⇒ (M = MF )
P3: ∀t ∈ T . ∃M1,M2, α1, α2, β. (M1, α1) ∈ ReachN and

(M1, α1) t,β−−→ (M2, α2)

The first condition imposes the reachability of an output
state, namely a state in which the first component is the
final marking on the DPN. This corresponds to requiring
that it is always possible to reach the final marking of N
by suitably choosing a continuation of the current run (i.e.,
legal transitions firings). The second condition captures that an
output state is always reached in a “clean” way, i.e., without
having tokens in the net that are not in the output place. The
third condition verifies the absence of dead transitions, where
a transition is considered dead if there is no way of assigning
the case variables, through the execution of the process, so as
to eventually enable it.

As an example, and as already commented, the DPN in
Figure 1 is not data-aware sound because property P1 is false:
when transition t1 assigns a value not greater than 10 to a there
exists no run from there which reaches an output state.

IV. DATA-AWARE SOUNDNESS OF DPNS

In this section we show how to extend the general tech-
nique employed in [8] to our setting, namely to the case
of more complex variable-to-variable conditions. Specifically,
that work introduced an implemented technique for verifying
data-aware soundness by first translating the input DPN into
a DPN whit only finitely many possible variable assignments,
and then into a colored Petri net (CPN) with bounded color
domains. This allowed to analyse the resulting CPN with



Algorithm 1: Procedure for computing C ′ .= C ⊕ c
1 if c = (vr � x) then
2 C ′ ← C ′ ∪ {(v � x)}
3 if c = (vw � x) then
4 C ′ ← C ′ ∪ {(vw � x)}
5 C ′ ← saturate(C ′)
6 foreach c = (vr � y) or c = (y � vr) in C ′ do
7 C ′ ← C ′ \ {c}
8 foreach (vw � z) in C ′ do
9 C ′ ← C ′ \ {(vw � z)}

10 if z 6= vr then
11 C ′ ← C ′ ∪ {(vr � z)}
12 return saturate(C ′)

conventional tools. Here we follow a similar approach, how-
ever limited to the first step: we show how the (possibly
infinite) process traces of the DPN, as defined at the end
of Section III-A, can be described finitely through a special
kind of state-transition structure which we call constraint
graph. A constraint graph can thus be regarded as a faithful
abstraction of the original process, at least with respect to
soundness: being finite-state, these can effectively be analysed
for assessing data-aware soundness of the original process.

First, given a constraint set C, we define the procedure of
computing the new constraint set C ′ resulting from the addi-
tion of a constraint c to C so that C ′ is univocally determined.
This is shown in Algorithm 1, where we maintain the same
notation as before, so that x, y, z can be either constants or
read variables in V r. It requires a saturate procedure that,
given a set C ′ of constraints as input, returns the constraints in
C ′ in addition to all the constraints implied by C ′ (using only
variables and constants appearing in C ′). Since the constraint
language is based on comparisons (cf. Definition 2), it trivially
follows that only finitely many constraints can be added with
this procedure. When given an unsatisfiable constraint set,
we assume saturate to return the same set as output. We
denote such operation as C ′ = C ⊕ c. Hereafter, we assume
a canonical ordering of variables and, hence, constraints in a
set. This allows us to efficiently compute the equality of two
sets of constraints.

Referring to the algorithm, the former case (line 1) applies
to constraints c that are predicated over the current value of
variables, and therefore restrict the set of possible solutions for
a constraint set C. The latter case (line 3) applies to constraints
that overwrite the current constraints on the variable v, hence c
is added (line 4) whereas all previous constraints mentioning v
are removed (line 7). After this, at lines 9-11 we replace each
constraint of the form (vw�z) with one of the form (vr�z).
The test at line 10 applies to constraints c such as vw > vr

for some variable v, for which line 11 must not be executed
(as in the previous example it would result in the constraint
vr > vr). Note that the resulting C ′ may be not satisfiable.

Next, we consider a set of extra transition symbols τt, with
t ∈ T . Each τt denotes the silent transition that corresponds

{i},
{
a = 0

b = 10

}

{p1},
{
a > 5

}
{p2},

{
a > 10

}
{p3},

{
a > 10

b < a

}
{p1},

{
a ≥ 10

}

{p1},
{
a ≤ 10

a > 5

} {p1},
{
a = 10

}
{p2},

{
a < 10

a > 5

}

t1

t3
t4t2

τt3

τt2

t2

t3

τt3

τt2

Fig. 2. The constraint graph CGN for the DPN N in Figure 1. We list
next to each node the couple (M,C), where a marking M is denoted as a
set (since the DPN is 1-bounded). The constraint b = 10 is not repeated in
each node after the initial one, for brevity. The DPN is clearly unsound, as
a can be assigned a value smaller or equal to 10, which would lead to one
of the dead-end nodes (which do not correspond to the final marking). We
highlight nodes with the final markings by a double circle, and nodes that are
dead-ends as forbidden signs.

to the explicit case-based reasoning hypothesis of assuming
that guard(t) does not hold in the current state: intuitively, by
performing this silent action, we assume true the negation of
the guard of t. Given a set E ⊆ T , we define τE

.
= {τt | t ∈

E}. We can finally give the formal definition of constraint
graph of a given DPN.

Definition 6 (Constraint Graph of a DPN). Let N = 〈P, T, F,
V, dom, αI , read ,write, guard〉 be a DPN. Let M be the set
of markings of N , and MI the initial marking. Recalling that
CV denotes the set of possible constraints on V , the constraint
graph CGN of N is a tuple 〈S, s0, A〉 where:
• S ⊆ M× 2CV is a set of states of the graph, which we

call nodes to distinguish them from the notion of states
of the DPN;

• s0 = (MI , C0) ∈ S is the initial node, where the initial
constraints set is computed as C0 =

⋃
v∈V {v =αI(v)};

• A ⊂ S× (T ∪ τT )×S is the set of arcs, which is defined
with S by mutual induction:
– a transition ((M,C), t, (M ′, C ′)) is in A iff:

(i) M [t〉M ′;2

(ii) C ′ = C ⊕ guard(t) is satisfiable.
– a transition ((M,C), τt, (M,C ′′)) is in A iff:

(i) write(t) = ∅;
(ii) ∃M ′ s.t. M [t〉M ′;

(iii) C ′′ = C ⊕ ¬guard(t) is satisfiable.

The first two items are very simple: first, the set of nodes
is the set of all possible couples in which the first component
is a marking on the DPN N and the second is a constraint
set; second, the initial node is identified by the initial marking
and the constraint set which simply encodes the initial SV
assignment of the case variables.

2In the remainder, given a N = 〈P, T, F, V, dom, αI , read ,write,
guard〉 and two of its markings M and M ′, we use the notation M [t〉M ′

to denote that a transition t is enabled at marking M and leads to marking
M ′ according to the classical Petri net 〈P, T, F 〉.



The third item defines the transition relation between nodes
(i.e., the edges): there are two kinds of transitions. First, given
a node (M,C), a new node (M ′, C ′) can be reached through a
transition t ∈ T of the DPN iff A((M,C), t, (M ′, C ′)), which
analogously to DPNs we denote as (M,C) t−→ (M ′, C ′). The
conditions are as follows: first (i) M ′ is the marking resulting
from firing transition t from M according to the standard
underlying Petri net semantics; second (ii) the constraint set
C ′ obtained by adding the guard of t to the current set C,
as defined by Algorithm 1, is satisfiable. This case covers
the expected semantics of DPNs, as described in the previous
section: after firing a transition, the guard of the transition
must be true and compatible with the new SV assignment.

Second, given a node (M,C), a new node (M ′, C ′)
can be also reached through a silent transition τt iff
A((M,C), τt, (M

′, C ′)), denoted (M,C) τt−→ (M ′, C ′). For
this case, the conditions require that: first (i) the transition t is
not writing a variable; second (ii) t can fire given the marking
M of the original DPN; third (iii) the constraint set C ′′

obtained by adding the negation of the guard of t is satisfiable.
This case simulates the reasoning by case that is required
to take into consideration every possible SV assignment that
is produced, in the original DPN, after a transition is fired.
Intuitively, an edge labelled with τt is intended to model all
the SV assignments, consistent with the current constraint set,
for which the guard of t is not true.

An example of constraint graph CGN for the DPN N in
Figure 1 is shown in Figure 2. The DPN is clearly unsound,
as a can be assigned a value smaller or equal to 10. This
corresponds, in CGN , to the nodes with no outgoing edges.

Definition 6 is constructive, as it formally defines all the
conditions that are required in order to build the transitions
between the nodes of a constraint graph, starting from the
initial node. As such, it can be used to devise a procedure for
building CGN , which is listed here as Algorithm 2.

The algorithm uses a set L to hold the nodes of the
constraint graph being built that still need to be expanded.
As new nodes of the form (M,C) are generated, these are
added to L and are removed only when all transitions t such
that M [t〉M ′ is in N , for some M ′, have been considered in
the for-each loop at line 9 (see also lines 6-8). S and A are,
respectively, the nodes and the arcs of the constraint graph
returned by the algorithm. A transition labelled with t is built
for every t ∈ T in the DPN N , and at the beginning of the
foreach cycle at line 9 the constraint set C ′ is obtained by
adding to C the guard of t (and saturating). Then, consistently
with the definition, if the guard of t is a test on the current
value of variables, then C ′′ is computed by updating C with
the negated guard, to explicitly represent those SV assignments
in which the guard is not satisfied. However, if the constraint
graph contains a node (M,C ′) with the same constraint set
and M ′ > M , it means that at least one of the places of
the DPN is unbounded, therefore that the DPN is certainly
unsound [18], so false is returned (lines 15-16). If this is
not the case, an edge is created for the silent transition τt.
In particular, the node reached by this edge is such that the

Algorithm 2: Data-aware soundness-checking procedure
Input: A DPN N = 〈P, T, F, V, dom, αI , read ,write,

guard〉 and an initial marking MI for N .
Result: Whether or not N is data-aware sound

1 C0 ←
⋃
v∈V {v =αI(v)},

2 s0 ← 〈MI , C0〉,
3 S ← {s0},
4 A← ∅,
5 L← {s0}
6 while L 6= ∅ do
7 (M,C)← pick(L)
8 L← L \ {(M,C)}
9 foreach t ∈ T s.t. M t−→M ′ do

10 C ′ ← C ⊕ guard(t)
11 C ′′ ← C
12 if write(t) = ∅ then
13 C ′′ ← C ′′ ⊕ ¬guard(t)
14 if satisfiable(C ′) then
15 if ∃(M̄, C̄) ∈ S s.t. M ′ > M̄ ∧ C ′ = C̄ then

//The net is unbounded
16 return false

17 S ← S ∪ {(M ′, C ′)}
18 A← A ∪ {〈(M,C), t, (M ′, C ′)〉}
19 L← L ∪ {(M ′, C ′)}
20 if satisfiable(C ′′) ∧ C 6= C ′′ then
21 S ← S ∪ {(M,C ′′)}
22 A← A ∪ {〈(M,C), τt, (M,C ′′)〉}
23 L← L ∪ {(M,C ′′)}
24 return analyzeConstraintGraph (〈S, s0, A〉)

marking is not updated (as no transition in the DPN was fired),
whereas the new constraint set is the C ′′ computed as above.
The algorithms then continues considering a new transition.

Note that, apart from computing the constraint graph CGN
of a given DPN N , the algorithm also checks on the fly
whether N is data-aware sound. The following theorem states
the soundness of the approach.

Theorem 1. Algorithm 2 terminates and returns true iff N
is data-aware sound.

Arguments for supporting the soundness of the procedure
are deferred to the next section. Here we only note that the
algorithm always terminates, when the net is bounded, because
the sets of possible markingsM, the set of transitions T (and
thus the set τT ) are finite. If instead the net is unbounded
then M is infinite, but this will be eventually detected by
the algorithm, which will then terminate and simply return
false. This implies that the number of possible nodes is also
bounded, and thus CGN is finite-state for any N : the set of
possible markings and possible constraint sets are finite.

As a consequence, if and only if the procedure
analyzeConstraintGraph returns true for a given
DPNN then we conclude thatN is data-aware sound. We here
do not present an algorithm corresponding to such procedure,
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Fig. 3. An example DPN inspired to the example in [8], modeling the process of requesting and approving a loan. MI = {i} and MF = {o}. Guards of
transitions are shown between squared brackets. We assume that, at the beginning of the process, no variable is set. The and-split and and-join transitions are
considered to have some tautologically true guard.

as it only needs to apply the definition of data-aware soundness
on the constraint graph CGN for N , which is finite-state. This
can be implemented by exploiting either verification or search
techniques, similarly to what was done in [8] for the case of
DPNs with restricted guards.

A. Example

We now introduce a more complex process than the one
modeled in Figure 1, which we use as running example with
the purpose of illustrating the technical details which follow
(for this reason, the process does not sometimes match a
reasonable modeling of a real world scenario). The example,
depicted in Figure 3, models a process in which a customer
applies for a loan, and it is a modification of the one in [8].

The process is as follows. The initial marking is MI = {i},
that is only one token is in the input place. A credit request
transition models the activity of requesting a certain positive
amount, hence writing the variable reqd (we assume for such
a variable the domain of integers, i.e. DZ). After this, a verify
transition models the activity of performing some background
checks, which results in determining the value of a boolean
variable ok. Depending on the outcome of the check, two
transitions can be fired: either prepare or skip. Their only
purpose is to make sure that make proposal can be only
executed when the check was successful, and they could be
equivalently modeled as silent transitions (which however we
do not allow in the DPN, to simplify the technical details).
The transition make proposal determines the amount that the
bank is actually willing to lend, and therefore a further variable
granted is written, assigning a value that is smaller or equal
to the requested amount. Also granted has domain DZ, as it is
required by Definition 2: constraints (thus guards) comparing
variables are only possible when these variables share the
same domain. If the proposed amount is smaller than the
requested amount, the transition refuse proposal can be fired,
to restart the procedure with a smaller request, by executing
a further transition update request. Alternatively, two parallel

branches can be initiated: if the check represented by verify
was successful, the transition open credit loan can be fired; at
the same time, depending on the value of ok and granted, one
of two transitions can be fired to notify the customer. These
are inform acceptance VIP and inform rejection.

The DPN is clearly problematic, and it is indeed not data-
aware sound: if verify assigns to ok the value false then the
and-join will never be executable, and thus the final marking
MF = {o} never reached. A similar case happens when
granted is assigned a value smaller or equal to 10k.

We now comment the construction of the constraint graph
CGN for N , which is partially depicted in Figure 4, showing
how the same conclusion can be reached by analysing its
possible runs. The initial node is ({i}, {reqd = ⊥, ok =
⊥, granted = ⊥}), that is, all case variables are not set. As
depicted, runs exist which reach nodes that have no outgoing
transitions and thus cannot be extended to reach a node with
the final marking. For instance, the run in which the transition
make proposal writes a value for granted that is smaller or
equal to 10k while ok is true: in this case, the place p6
can never be marked. Analogously, when ok is assigned value
false, then the current run cannot be extended so that place
p7 is marked, and therefore an output marking cannot be
reached. Therefore, one should be able to conclude that N
is not data-aware sound. In the next section we formalise this
intuition, and further comment on the structure of CGN for
this example. For now, note how the firing of transition refuse
proposal induces a constraint set in which granted ≤ reqd
is replaced by granted < reqd in the resulting node, and
then how the satisfiability requirements at lines 14 and 20 of
Algorithm 2 prevents several nodes and edges from appearing
in the constraint graph.

B. Data-aware soundness checking on the constraint graph

In this section we prove that Algorithm 2 is correct,
in that it correctly establishes the soundness of any given
DPN. First, observe that the algorithm simply constructs
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Fig. 4. A fragment of the constraint graph CGN for the DPN N in Figure 3, built by following Algorithm 2 (grey nodes are not expanded further for lack
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the constraint graph CGN when N is given as input and
then, after checking that N is not unbounded (as this
implies unsoundness), it launches an auxiliary procedure
analyzeConstraintGraph on CGN , which analyses the
constraint graph for undesired deadlocks.

First, for comparing the executions of the constraint graph
to those of the original DPN N , we need to define a structure
which incorporates the trace set of N . We call this the
reachability graph of a DPN.

Definition 7 (Reachability graph of a DPN). Given a DPN
N = 〈P, T, F, V, dom, αI , read ,write, guard〉, the reachabil-
ity graph of N is a graph 〈V,E〉 where
• V = ReachN is the set of reachable states of N ; and
• E ⊆ V × T × V is the set of arcs such that there exists

an arc v t,β−−→ v′ in RGN iff v t,β−−→ v′ in N .

Fixing a given DPN N , we denote the set of transi-
tions enabled in a marking M (i.e., by only looking at the
underlying Petri net semantics without considering guards
and SV assignments) as enabled(M)

.
= {t | M [t〉}. Like-

wise, with some abuse of notation, given a state (M,α)
of its RGN , we denote the set of transitions enabled in
such state as enabled((M,α))

.
= {t ∈ T | (M,α) t,β−−→

(M ′, α′) for some M ′, α′, β}. The same notation applies to
constraint graphs, by defining enabled((M,C))

.
= {t ∈

T | (M,C) t−→ (M ′, C ′)}. We now define a custom simulation

notion between reachability graphs and constraint graphs. This
will allow us to express a formal relationship between their
possible executions. First, we need to introduce some formal
definitions.

Considering a special empty symbol ε for transitions, we
define the observation function obs : T ∪ τT → T ∪ {ε} so
that obs(t) .

= t if t ∈ T and obs(t)
.
= ε otherwise (i.e.,

t ∈ τT ). Given a trace σ = t1 · · · tn of a constraint graph
as above, the corresponding observed trace is the sequence
obs(σ)

.
= obs(t1) · · · obs(tn). For instance, for σ = t · τt′ · t′′

(· is used to denote concatenation) we have obs(σ) = t · t′′.
A trace σ is said to be one-step iff obs(σ) is not equal to ε
and it has length one: it is composed by an arbitrary number
of silent transitions and exactly one transition in T .

Definition 8 (obs-Simulation Relation). Given a reachability
graph RGN = 〈V,E〉 of a DPN N and its constraint graph
CGN = 〈S, s0, A〉, we say that a relation R ⊆ S × V

• is a obs-simulation relation of RGN by CGN iff
(s, (M,α)) ∈ R implies that for any (M,α) t,β−−→
(M ′, α′) there exists a one-step trace fragment σ with
obs(σ) = t and s σ−→ s′, so that (s′, (M ′, α′)) ∈ R.

• is a obs-simulation relation of CGN by RGN iff
(s, (M,α)) ∈ R implies that for any one-step trace
fragment σ with s σ−→ s′ in CGN there exists
(M,α) t,β−−→ (M ′, α′) in RGN , with obs(σ) = t, such



that (s′, (M ′, α′)) ∈ R.

A node of CGN obs-simulates a state in RGN iff there
exists a obs-simulation relation R of RGN by CGN such
that these are included in the relation, and we say that CGN
obs-simulates RGN if s0 obs-simulates (MI , αI). Similarly
for the other direction.

Lemma 1. CGN obs-simulates RGN .

Proof: We show this by induction. First, note that the
marking reached by executing a sequence of observable tran-
sitions is the same, in both the reachability graph (hence the
DPN) and the constraint graph (irrespective of the unobserv-
able transitions added). This is because the variable assignment
βi considered at each step plays no role in computing the next
marking of the DPN. Hence in what follows we use the same
symbol M for the new marking of both RGN and CGN . To
prove the claim, we first need to make sure that the same set of
transitions t ∈ T are enabled in both (MI , αI) and (MI , C0),
i.e., the initial state of RGN and initial node of CGN . This
is true by construction because C0

.
=
⋃
v∈V {(v = αI(v))}

and thus enabled((MI , αI)) = enabled((MI , C0)). Then,
if (MI , αI)

t,β−−→ (M,α) there must exist a trace σ with
obs(σ) = t such that (MI , C0) σ−→ (M,C) is in CGN , and
so that (M,C) obs-simulates (M,α). In particular, this is
true for σ = t · τE with E = {t′ ∈ T | t′ 6= t ∧ t′ ∈
enabled(M) ∧ t′ 6∈ enabled((M,α)) ∧ write(t′) = ∅}. The
idea is that σ = t · τE corresponds to the execution of t in
the constraint graph, followed by an unobservable transition
for each transition t′ ∈ enabled(M) which cannot be fired
from the new state (M,α) of the reachability graph due to the
SV assignment α. Such σ makes sure that the new generated
constraint set C correctly encodes the initial set C0 updated
with the negated guard of each transition that cannot be fired
next in RGN . Notice that, by construction, a run fragment
with trace σ always exists in CGN : unobservable transitions
τt are always added for any t with write(t) = ∅ as long as the
resulting constraint set is satisfiable (cf. Definition 6). Since
obs(σ) = t, it remains to show that (M,C) obs-simulates
(M,α). This can be done by repeating in the inductive
step the same reasoning as above, since the marking is the
same (hence the set of transitions in enabled(M)) and also
enabled((M,α)) ⊆ enabled((M,C)).

The above result implies that the constraint graph can
‘mimic’ any possible execution of the reachability graph,
hence of the DPN. This gives us a very formal and precise
characterisation of the ability of the constraint graph, which
is finite-state, to account for the possibly infinite executions
of the DPN. This, however, does not imply that any property
true in RGN is also true in CGN , or vice-versa.

Interestingly, the converse does not hold: RGN does not
obs-simulate CGN in general. As an evidence of this, let us
consider again the DPN N and the constraint graph CGN
in Figure 4. From the node marked with an asterisk we can
execute the sequence of transitions update request, verify,
prepare, make proposal, refuse proposal, which corresponds to

a cycle in the constraint graph (it reaches again the same node).
The constraint graph is indeed allowed to be cyclic. Note,
however, that a corresponding cycle in the reachability graph
RGN does not exist: variable reqd has non-dense domain
of integers, which implies that the sequence of transitions
composing the cycle in CGN can in fact be executed only
a bounded number of times (since reqd is decreased at each
iteration). This can be taken as one of the intuitions about the
differences between RGN and its abstraction CGN , for which
it is not true that RGN always obs-simulates CGN for any N .
As commented in the future work section, however, we plan
to formulate conditions to be checked directly on the original
DPN N which allow to characterise this sort of mismatch in
terms of the properties that can be checked on CGN .

We now adapt the definition of data-aware soundness
to constraint graphs, as our objective is to assess these
properties on these objects. The three properties P1 − P3
as in Definition 5 become as follows. By denoting as
ReachCGN the set of reachable nodes of CGN , namely the
set {(M,C) | (MI , C0) ∗−→ (M,C)} we then have:
P1: ∀(M,C) ∈ ReachCGN . ∃C ′.(M,C) ∗−→ (MF , C

′);
P2: ∀(M,C) ∈ ReachCGN . M ≥MF ⇒ (M = MF );
P3: ∀t ∈ T . ∃M1,M2, C1, C2. (M1, C1) ∈ ReachCGN and

(M1, C1) t−→ (M2, C2).
A constraint graph CGN of a DPN N is said to be data-

aware sound iff all these properties are true. With this defini-
tion at hand, we can now state our main result. Intuitively, it
states that the constraint graph constitutes a faithful abstraction
of the original DPN with respect to data-aware soundness.

Theorem 2. RGN is data-aware sound iff CGN is data-
aware sound.

Proof: Consider the first property P1 of data-aware
soundness, which requires the co-reachability of an ‘output
node’ (i.e. reachability from any reachable node).

(⇒). This direction follows by simulation. Assume to fix a
state (M,α) reached by executing a trace σ′, and for which the
property must hold if RGN is data-aware sound: there exists
a trace σ such that (M,α) σ−→ (MF , α

′) for some α′. By obs-
similarity, at least one node (M,C) exists that is reached in
RGN through a run with trace σ′, for which (M,C) obs-
simulates (M,α) – in the base case, these are the initial state
and node, respectively. Then by Lemma 1 there must also exist
a run (M,C) σ′′

−−→ (MF , C
′), for some C ′, with σ′′ = obs(σ)

and which only traverses nodes that (stepwise, by considering
one-step traces) obs-simulate those in σ. If instead the property
is not true for RGN , if CGN is data-aware sound it means
that either RGN has additional runs which do not correspond
to runs of CGN (and which cannot be extended to reach a
final node) or that there exists in CGN at least one run, with
trace σ, such that obs(σ) is not a legal trace of RGN . Both
cases are excluded by construction, as it can be deduced by
inspecting Definition 6 or Algorithm 2.

(⇐) First, consider a run fragment s σ′

−→ s′ in CGN where
σ′ is not required to be a one-step trace. Observe that if one



such run exists which is cyclic, then one which ends in s′ must
exist that is acyclic as cycles do not affect the reachability
of nodes (a run is cyclic iff the same node appears twice).
Therefore in what follows we are allowed to restrict to these
acyclic runs of CGN . To satisfy the requirement P1 it is
indeed enough to find an acyclic run in CGN which reaches
a node with final marking that also includes a given node
s, for every reachable s. Hence we show that by construction
every acyclic run ρ on CGN with trace σ has a corresponding
run ρ′ in RGN with trace σ′, and in particular one such that
σ′ = obs(σ), so that for every ρ · ρ′′ there exists ρ′ · ρ′′′
in RGN with the same observed trace. At the beginning we
have (MI , C0) and (MI , αI), with C0

.
=
⋃
v∈V {v =αI(v)},

and enabled((MI , αI)) = enabled((MI , C0)). Then, consider
(M,C) σ−→ (M ′, C ′) to be one-step, with (M,C) obs-
simulating (M,α). Then a transition (M,α) t,β−−→ (M ′, α′)
with obs(σ) = t so that (M ′C ′) obs-simulates (M ′, α′) must
exist as well by construction, as a transition exists in CGN iff
it is enabled in the current marking in N , guard(t) is satisfied
in C, M [t〉M ′ and C ′ is consistent. Since C ′ is consistent, a
solution α′ exists. If the property is not true for CGN , then
there exists a run ρ reaching a node (M,C) from where a
node with final marking cannot be reached, i.e., there is no
run ρ′ from (M,C) reaching such nodes. This implies, by
construction, that if σ is the trace of the run ρ · ρ′, obs(σ) is
not legal in N .

For P2 and P3 we follow the same reasoning as for P1:
they all require the existence of runs from states in RGN (and
nodes in CGN ), that are reached through corresponding traces
σ′ and σ, respectively, so that σ′ = obs(σ).

By exploiting this theorem, we establish the decidability of
the problem of checking data-aware soundness of processes
represented as DPNs, and provide a practical and imple-
mentable procedure for doing so.

V. CONCLUSIONS AND FUTURE WORK

In this paper we generalized the study of soundness of
DPNs to the case in which the evolution of the process also
depends on the comparison between the values carried by
the variables of the process. We have shown the decidability
of the problem of assessing the soundness for this class of
DPNs, by reducing it to the analysis of a finite-state abstraction
of the possible executions of the original DPN. Our result
extends to any constraint language that has two properties: (i)
it generates only boundedly many constraints over a fixed set
of variables and constants, and (ii) has decidable satisfiability.
We have also defined and investigated the formal relationship
between the reachability graph of DPNs and their finite-state
abstraction.

In future work, we plan to investigate further such rela-
tionship, and identify the subclasses of processes for which
we can identify more general properties, beyond data-aware
soundness, which can be used to express complex interplays of
temporal and data-aware requirements of processes, and which
can be assessed with the same abstraction technique illustrated

here. Further, we plan to implement the approach described
in this paper by combining standard state-space construction
methods with constraint programming techniques, needed to
perform the satisfiability checks required by the abstraction.
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