
Fundamenta Informaticae XXI (2001) 1001–1027 1001

DOI 10.3233/FI-2016-0000

IOS Press

Soundness Verification of Data-Aware Process Models with
Variable-to-Variable Conditions

Paolo Felli
Free University of Bozen-Bolzano

Bolzano, Italy

Massimiliano de Leoni
University of Padova

Padova, Italy

Marco Montali
Free University of Bozen-Bolzano

Bolzano, Italy

Abstract. Traditionally Business Process Modeling has only focused on the control-flow per-
spective, thus allowing process designers to specify the constraints on the activities of the process:
the order and potential concurrency of their execution, their mutual exclusivity, the possibility of
being repeated, etc. However, activities are executed by different resources, manipulate data ob-
jects and are constrained by the state of such objects. This requires that the traditional notion
of soundness, typically introduced for control-flow-only models, is extended so as to consider
data. Intuitively, a (data-aware) process model is sound if (1) it does not contain deadlocks, (2) no
more activities are enabled when the process instance is marked as completed and finally (3) there
are no parts of the model that cannot be executed. Although several data-aware notations have
been introduced in the literature, not all of these are given a formal semantics. In this paper, we
propose a technique for checking the data-aware soundness for a specific class of such integrated
models, with a simple syntax and semantics, building on Data Petri Nets (DPNs). These are Petri
nets enriched with case variables, where transitions are guarded by formulas that inspect and up-
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date such variables, and are of the form variable-operator-variable or variable-operator-constant.
Even though DPNs are less expressive than Petri nets where data are carried by tokens, they el-
egantly capture business processes operating over simple case data, allowing to model complex
data-aware decisions. We show that, if a DPN is data-aware sound, the Constraint Graph is a
finite-state automaton; however, a finite-state Constraint Graph does not guarantee data-aware
soundness, but provides a finite structure through which this property can be checked. Finally,
we investigate further properties beyond data-aware soundness, such as the problem of verifying
that an actor participating in the business process can unilaterally enforce data-aware soundness
by restricting the possible executions of a bounded DPN, assuming this actor to be able to control
the firing of some transitions and decide the value of some of the case variables whenever these
are updated.

Keywords: Soundness of Process Models, Data Perspective, Data Petri Nets,

1. Introduction

Traditionally Business Process Modeling has only focused on the control-flow perspective, thus allow-
ing process designers to specify the constraints on the activities of the process: the order and potential
concurrency of their execution, their mutual exclusion, the possibility of being repeated, etc. How-
ever, activities are executed by different resources, manipulate data objects, and are constrained by the
state of such objects. By overlooking these aspects, the resulting process models do not accurately
describe the domain of interest. In the light of above, the process analysts and software vendors have
shown an increasing interest in enriching the traditional control-flow perspective of processes with
additional dimensions, and the Business Process Management (BPM) field has witnessed a shift from
conceptual models solely focusing on the flow of activities, to a so-called multi-perspective, data-
aware process modeling. This extends the flow of activities with additional information such as the
resources performing these activities and the data that is produced and manipulated by their execution.
In particular, the integration between (business) processes and data has been extensively studied, so
as to gain a more holistic understanding of how processes induce evolutions on data [1, 2]. This is
a crucial aspect because the data produced by the activity executions may influence how the single
process executions will proceed. Indeed, data-aware models are typically equipped with decisions,
which are points in the process from where several potential, alternative paths exist. Each path of a
decision point is associated with an expression (or condition) on the data of the process, and if any
expression is evaluated to true on the current data values, then the corresponding path may be taken.
The incorporation of these decision within process models is gaining momentum, as also testified by
the recent introduction and development of the Decision Model and Notation (DMN), an OMG stan-
dard [3], and by the large share of recent research on the analysis of decision points [4, 5], and their
discovery within the realm of Process Mining [6, 7, 8].

The fundamental problem of verifying the correctness of business process models has been tradi-
tionally tackled by exclusively considering the control flow perspective. This means that correctness
is assessed by only considering the ordering relations among activities present in the model. In this
setting, one of the most investigated formal notions of correctness is that of soundness, originally in-
troduced by van der Aalst in the context of workflow nets [9]. Intuitively, it requires the three good
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properties of “certainty of clean termination”, “absence of deadlocks” and “absence of dead frag-
ments” in the process. These ensure that whenever a process instance is being executed, it always has
the possibility of reaching its completion and, if it does so, then no concurrent thread is still active in
the process. Additionally, it requires that the process does not contain dead activities that are impossi-
ble to enact. Importantly, this is ascertained by considering each process instance in isolation, and has
the effect of requiring the resulting control-flow to be finite-state (that is, in Petri net terms, bounded).

In order to apply the same principles and practices to models in which the control-flow perspective
is integrated with the data dimension, we need to develop methods and techniques able to ascertain
the correctness of data-aware processes. As an example, a model, although sound according to the
intuitive definition given above, might be equipped with a decision point where the disjunction of the
expressions of the available execution paths is not tautological. In this case, it may happen that, for
some execution of this process, the current data values at that decision point are such that no path is
enabled, yielding a deadlock. Ot it may happen that a cyclic path is always enabled, but the termination
of the process cannot be reached. It may also be that one of the paths is associated with an expression
that can never be satisfied, consequently yielding a dead path.

Previous approaches for assessing correctness of data-aware processes typically focused on single
decisions [4], or simply on the interplay between decisions and their immediate corresponding outgo-
ing branches [5]. More recent efforts have tackled this locality problem by considering soundness of
the overall, end-to-end process, but have mainly remained at the foundational level [10, 11] as they do
not come with actual techniques to effectively carry out the verification of data-aware soundness.

The literature proposes a large repertoire of modeling notations for data and processes. Such
models differ one from another in terms of their: (i) degree of formal semantics, (ii) representation
of the data and process component, and of their linkage, (iii) sophistication and expressiveness of
the resulting approach. To be able to ascertain soundness of data-aware process models, we need a
model that employs Petri nets as the underlying control-flow process backbone, and whose execution
semantics is formalized in full.

The literature flourishes of data-aware extensions of Petri nets at different levels of sophistication,
ranging from weak extensions where tokens carry single data elements [12, 13] to more expressive
models where tokens carry complex structures [14, 15] and/or are equipped with modeling constructs
akin to (subclasses of) Colored Petri nets and relational databases [16, 17, 18].

In this work, we adopt for our investigation the simple, yet rich Petri net-based model of Data Petri
nets(DPNs) [19, 8, 20]. A DPN consists of a Petri net equipped with a fixed set of read-write variables
that are inspected and updated by transitions. Even though DPNs are less expressive than Petri net-
based models where data are carried by tokens, they come with a threefold advantage. First, the
classical notion of soundness can be naturally lifted to a corresponding notion of data-aware soundness
for DPNs. Second, DPNs elegantly capture the interesting class of activity-centric business processes
that operate over scalar case data, and that use decision models based on the DMN S-FEEL standard
[3] to route the process depending on process data [11]. Third, as witnessed by [8], several process
mining techniques use DPNs as modeling notation, e.g., to discover decision points and their logic, as
well as to perform conformance checking.

Nonetheless verifying soundness of DPNs is undecidable in general, e.g. when case data can be
updated using arithmetical operators. To overcome this, we isolate a decidable class of DPNs that
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employs both non-numerical and numerical domains, and is expressive enough to capture data-aware
process models equipped with S-FEEL DMN decisions [3], such as those recently proposed in [5, 11].
However the soundness of these DPNs cannot be directly checked by analyzing the state space, as it
is infinite due to data variables even when the number of reachable markings is finite.

To tame this infinity, in [20, 21] we have taken inspiration from the technique of predicate abstrac-
tion [22] and presented an effective technique that verifies soundness by computing an abstraction of
the given net. In [20] we considered DPNs which are not able to express variable-to-variable condi-
tions on transitions, but provided a general abstraction technique to check the data-aware soundness of
these nets. The technique is based on constructing an abstract state space which can be faithfully and
effectively inspected for soundness. In [21] we have generalized this to study the fundamental case
where the evolution of the process depends on the comparison between the values carried by different
variables through linear inequations.

In this paper we illustrate the resulting framework, detailing our sound and complete verification
technique. Importantly, our approach paves the way towards the verification of properties that go be-
yond data-aware soundness. Indeed, in this paper we enrich the previous results by also showing how
an analogous technique, based on the same type of abstraction as in [21], can be extended to further
properties that, unlike data-aware soundness, require to analyze the specific (abstract) branching struc-
ture induced by DPNs. Specifically, we consider (as notable example) the problem of verifying that an
actor participating in the business process can unilaterally enforce data-aware soundness by restricting
the possible executions of a bounded DPN, assuming this actor to be able to control the firing of some
transitions and decide the value of some of the case variables whenever these are updated.

The paper is organized as follows. In Section 2 we discuss related work, and in Section 3 we
provide the necessary background on DPNs, formalize their execution semantics and the property of
data-aware soundness. In Section 4 we detail our verification technique. Finally, in Section 5 we
extend our approach beyond data-aware soundness and comment on future work in Section 6.

2. Related Work

A large body of research exists to verify the soundness of process models. Most of these works only
focus on the control flow [23], starting from the seminal work of van der Aalst et al. [9]. These works
ignore the data decision perspective, which is a significant limitation as also acknowledged by Sadiq
et al. [24]. Corradini et al. focus on verification of BPMN choreographies and the message exchanges
among collaborating processes [25, 26], but the focus remains on the control flow.

In fact, some attempts exist to also incorporate data and decisions. Sidorova et al. proposed a
conceptual extension of workflow nets [27], where transitions update data predicates, namely the
entire guards of transitions, instead of single data variable. As testified by modern process modeling
notations such as BPMN and DMN, however, correctly modeling the data perspective requires data
variables and full-fledged guards and updates. Calvanese et al. [4] focus on single DMN tables to
verify whether they are correct or contain inconsistent, missing or overlapping rules. The work in [5]
follows a similar approach, by defining a notion of decision-aware soundness that is based on the
individual properties of the DMN decision tables [3] associated to decision points, taken in isolation.
These are decision-deadlock freedom and dead decision absence. Intuitively, the former requires that
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a table specifies an output value for every possible case input to a decision (i.e., for every possible
current assignment of variables), and that each of such outputs enables at least one subsequent path.
The latter requires that for each of these possible paths, an output of the decision table that would
enable them exists. In comparison, our notion of data-aware soundness is a global property considering
the behavior of the entire net.

Knuplesch et al. [28] propose a technique to verify properties expressed in LTL against models
that incorporate the data perspective. Unfortunately, classical soundness (and its data-aware extension)
cannot be expressed with LTL formulae, as the “possibility of clean termination” is branching in
nature, and also assumes a finite-trace semantics.

Relevant literature on Petri nets is also dedicated to the problem of determining whether a net can
be controlled so as to drive the system it describes into a desired state or, conversely, avoid certain
undesired conditions. This setting is tightly related to that of Supervisory Control Theory (SCT) for
Discrete Event Systems (DES) [29, 30], with practical applications ranging from concurrent systems
to flexible manufacturing. In these approaches, some of the possible transitions of the net are deemed
as controllable and can be disabled by a supervisor, coupled to form a closed-loop system. Classical
approaches for SCT are based on languages, where the DES to be controlled is seen as a language
generator modeled as a deterministic finite-state automaton, and the desired behavior is also a lan-
guage. SCT employs language-based definition of supervisors which are of no direct applicability for
Petri net models [29], which led to the development of alternative state-based control formulations
[31] (also because the controllable sublanguage is not guaranteed to be a Petri net language). Our
approach in Section 5 is also state-based, but tailored for the special case of DPNs where the typical
control-flow perspective of SCT is merged with the data dimension, and for which standard techniques
cannot be applied without first abstracting data while still allowing the controlled system to exhibit the
desired behavior. Also, in our setting transitions are nondeterministic due to the associated operations
on data, the control of transition labels is decoupled from the control of variables, and the desired be-
havior of the system is not expressed by forbidden states nor languages but rather captures data-aware
soundness. However, unlike this literature, we are not interested in computing the minimally restric-
tive controllers for the given specifications. We limit ourselves to nets with a bounded control-flow,
which allow us to exploit analogous abstractions and procedure as those used for checking soundness.

3. Data Petri nets

In this section we illustrate how data-aware processes are represented by DPNs [8]. We maintain the
formalization introduced in previous work [20, 21], which provided a full account of the syntax and
semantics of these nets, allowing to lift the standard notion of soundness to their richer, data-aware
setting. While the DPNs in [20] are restricted to allow only transitions associated to conditions of the
form variable-operator-constant, those in [21] allow for variable-to-variable comparisons as well. In
this paper we consider the latter setting.

We first define the notion of domain for case variables, assuming an infinite universe of possible
values U . A domain is a couple D = 〈∆D,ΣD〉 where ∆D ⊆ U is a set of possible values and ΣD is
a finite set of binary predicates on ∆D. We require these predicates to be effectively computable, and
the theory associated (which includes all FO formulae that are true in D) is so that the satisfiability of
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predicates is decidable.
We consider a fixed set of domains, and in particular the notable domains DR = 〈R, {<,>,=

}〉, DZ = 〈Z, {<,>,=}〉, Dbool = 〈{true, false}, {=}〉, Dstring = 〈S, {=}〉 which, respectively,
account for real numbers, integers, booleans, and strings (S denotes here the infinite set of all finite
strings). Given D, the special symbol ⊥ ∈ ∆D is used to denote an undefined value. Although our
approach can be applied to arbitrary domains, from now on we restrict to the ones above. We also
assume that ΣD is closed under negation, namely that for every predicate � also its complement is
included.

Consider a set V of variables. Given a variable v ∈ V we write vr or vw to denote that the
variable v is, respectively, read or written by an activity in the process, hence we consider two sets
V r and V w defined as V r .

= {vr | v ∈ V } and V w .
= {vw | v ∈ V }. Intuitively, since an activity

of the process may require to read and/or update the value of variables, as formalized later, we use vr

(resp., vw) to denote the variable v before (resp., after) an activity, represented here as a transition, is
executed. For this reason, we also refer to them as read and written variables, respectively. To talk
about the possible values of variables, we need to assign them a domain. If a variable v has domain
D = 〈∆D,ΣD〉, for brevity we denote by vD the corresponding typed variable as shorthand to specify
that v takes values from ∆D. Variables provide the basic building block to define logical conditions
on the possible evolutions of the process, depending on the value of read and written variables. We
call such conditions constraints.

Definition 3.1. Given a set of typed variables V , a constraint is an expression of the form:
• vD � k, where v ∈ (V r ∪ V w), k ∈ ∆D and � ∈ ΣD; or
• v1D � v2D, where v1 ∈ (V r ∪ V w), v2 ∈ V r and � ∈ ΣD.

We denote by CV the set of all possible constraints on V .

A constraint allows to compare a variable vD with a constant (among those in the associated
domain ∆D) or with another variable with the same domain D. Parentheses around constraints are
used throughout the paper to enhance readability. As shorthand notation, we denote by (v � k) a
constraint in which a variable, either read or written, is compared with a constant, i.e., where v ∈
(V r ∪ V w), D is the domain of v and k ∈ ∆D. When we need to specify not only the shape of a
constraint but also whether a variable is read or written, we then use the notations (vr�k) and (vw�k).
Analogously, for comparing variables between them, we use the notations (v1 � v2), (vr1 � vr2) and
(vw1 � vr2). When the right-hand side can be either a constant or a variable, we use the symbol x.
Finally, given a constraint (v� x), we denote by ¬(v� x) the constraint in which � is replaced by its
negation. The set of variables read and written by a constraint c is denoted by read(c) and write(c),
respectively.

We use constraints to formalize the conditions that we can associate to activities in the process:
each activity in the process, modeled as a transition in our net representation, is associated to a con-
straint called guard. These allow to model conditions between the value of a variable and a constant
(e.g., ar > 0), between the written value of a variable and the current value of another variable (e.g.,
aw > br) or between the current value of two variables (e.g. ar > br), with a, b ∈ V .

Conjunctions and disjunctions are not allowed for simplicity but without loss of generality: dis-
junctive guards can be mimicked by having multiple transitions from and to the same places, each
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p0

t1

(aw > 5) p1

t2

(ar > 10) p2

t3

(ar < 10)

t4

(br < ar) p3

Figure 1. A DPNN , whereMI = {p0} andMF = {p3}, a and b are integers and αI(a) = 0 and αI(b) = 10.

having a disjunct as guard, whereas conjunctive guards can be modeled as “non-interruptible” se-
quences, i.e., a sequence of transitions whose initial firing requires a token in a special lock place
(where the token is sent back as the entire sequence is completed). All such sequences share the same
lock place. The simplification is only aimed at simplifying the technical details that follow.

An assignment is a function β : (V r ∪ V w) 7→ U , which assigns a value to read and written
variables. Given β as above and a guard c = (v � x), we say that c is true when variables are
substituted as per β, written c[β] = true, iff x is a constant and �(k, x) for k = β(v) or x is a read
variable and�(k1, k2) for k1 = β(v) and k2 = β(x). In other words, a guard is satisfied by evaluating
it after assigning values to read and written variables, as specified by β.

A state variable assignment, abbreviated hereafter as SV assignment, is a function α : V 7→ U ,
which assigns values to each variable v ∈ V so that α(vD) ∈ ∆D. The difference with an assignment
is that while β may define a variable update when a transition is fired, a SV assignment α simply holds
the current value of each and all variables. We can now formalize DPNs.

Definition 3.2. A Data Petri Net (DPN) N = (P, T, F, V, dom, αI , guard) is a Petri net (P, T, F )
with additional components describing the additional perspectives of the process model:

• V is a finite set of process variables, and dom is a function assigning a domainD to each v ∈ V ;
• αI is the initial SV assignment;
• guard : T → CV returns a guard associated with the transition.

Given t ∈ T , as a shorthand we write read(t)
.
= {v ∈ V | v ∈ read(guard(t))}, and analogously

write(t). Moreover, we assume that a DPN is always associated with an arbitrary initial marking MI

and an arbitrary final marking MF . When MF is reached the execution of the process instance ends.

Example 3.3. Consider as en example the DPN in Figure 1. From the initial marking MI = {p0}
a transition t1 updates the value of a to any integer greater of 5. Then, t2 or t3 may be executable
depending on the current value assigned in t1 being greater or smaller than 10. Similarly, t4 can be
executed only if the initial value of b is smaller than the current value of a. The formal execution
semantics of DPNs is given in Section 3.1, but one can easily verify that the only possible sequence
of transition that reaches the final marking is t1, t2, t4, as αI(b) = 10. A simplistic analysis that
disregards the possible SV assignments of variables at each step, and thus only considers the control-
flow of the net, would instead erroneously conclude that there are no dead transitions and that it is
always possible to reach the final marking avoiding deadlocks, i.e., that N is classically sound [9].

We introduce a slightly more complex process than the one modeled in Figure 1, which we use as
running example (for this reason, the process is sometimes not reasonable for a real world scenario).
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)
reject request
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okr = false

)
p1

p9

verify

(okw 6= ⊥)

update request

(reqdw < reqdr)

p2
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(
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)
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)
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(
grantedw > grantedr

)

inform acceptance VIP

(
grantedr > 10k

)
inform rejection

(
okr = false

)

p7
p6

AND join

o

Figure 2. A modification of the example in [21]. MI = {i} and MF = {o} and αI(reqd) = αI(granted) =
0 and αI(ok) = ⊥. The and-split and and-join transitions are considered to have some tautologically true guard.

Example 3.4. The example, depicted in Figure 2, models a process in which a customer applies for
a loan. It is a modification of the one in [21], and has evident issues. A credit request transition
represents the activity of requesting a certain loan amount, hence writing the variable reqd (with
domainDZ). After this, a verify transition models the activity of performing some background checks,
thus determining the value of a boolean variable ok. Depending on this outcome, two transitions can be
fired: either prepare or reject request, so that a further transition make proposal can be only executed
when the check was successful. This transition determines the amount that the bank is willing to
lend, setting the integer variable granted to a value that is smaller or equal to the requested amount.
If the proposed amount is smaller than the requested amount, the transition refuse proposal can be
fired. Then, by executing a further transition update request that updates reqd to a smaller value than
the current one, the procedure can be restarted. Alternatively, two parallel branches can be initiated:
if the check represented by verify was successful, the transition open credit loan can be fired; at the
same time, depending on the value of ok and granted, one of two transitions can be fired to notify
the customer. These are inform acceptance VIP and inform rejection. A further case is possible: a
transition update proposal can be fired to arbitrarily raise the proposed amount, even when the initial
check determined a false value for variable ok.

This DPN is problematic: if verify sets ok to false then the and-join is never executable, and thus
the final marking never reached. A similar case happens when granted is smaller or equal to 10k.

3.1. Execution Semantics

By considering the usual semantics for the underlying Petri net together with the guards associated
to each of its transitions, we define the resulting execution semantics for DPNs in terms of possible
states and possible evolutions from a state to the next. Let N as above be a DPN. Then the possibly
infinite set of states of N is formed by all pairs (M,α) where M ∈ B(P )1, that is, M is the marking

1The notation B(X) indicates the set of all multisets of elements of X . At times, we denote a marking M as a function such
that, for each place p, M(p) indicates the number of occurrences of p in M .
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of the Petri net (P, T, F ) and α is a SV assignment, defined as in the previous section.
In any state, zero or more transitions of a DPN may be able to fire. Firing a transition t updates

the marking, reads the variables specified in read(t) and selects a new value for those in write(t). We
model this through a variable assignment β for the transition (cf. the previous section), which assigns
a value to all and only those variables that are read or written. A pair (t, β) is called transition firing.

Definition 3.5. A DPNN = (P, T, F, V, dom, αI , guard) evolves from state (M,α) to state (M ′, α′)
through (t, β) with guard(t) = c, and we say that the transition firing is legal, iff:

• β(vr) = α(v) if v ∈ read(t): the variable assignment β assigns values as α for read variables;
• the new SV assignment α′ is as α but updated as per β. It is computed as follows: for each v ∈
V , if v 6∈ write(t) then the value of v is unchanged: α′(v) = α(v); otherwise α′(v) = β(vw);

• c[β] = true: the guard is satisfied when we assign value to variables according to β;
• t is enabled and the new marking is M ′ (denoted M [t〉M ′) according to the Petri net semantics.

We denote a legal transition firing by writing (M,α) t,β−−→ (M ′, α′). We also extend this defini-
tion to sequences σ = 〈(t1, β1), . . . , (tn, βn)〉 of n legal transition firings, called traces, and denote
the corresponding run by (M0, α0) t1,β1

−−−→ (M1, α1) t2,β2

−−−→ . . . tn,βn

−−−→ (Mn, αn) or equivalently by
(M0, α0) σ−→ (Mn, αn). By restricting to the initial marking MI of a DPNN together with the initial
variable assignment αI , we define the runs ofN and traces ofN as the set of runs and traces as above,
of any length, such that (MI , αI)

σ−→ (M,α) for some marking M and SV assignment α.
For instance, referring to the simple DPN N in Figure 1, a possible run from of the initial state is

({p0}, {αI(a) = 0, αI(b) = 10)}) t1,{β(aw)=7}−−−−−−−−→ ({p1}, {α(a) = 7, α(b) = 10)}).
Finally, recall that a Petri net (P, T, F ) is unbounded when there exists a place p ∈ P such that

there exists no finite bound k so that M(p) ≤ k for all reachable markings M . The notion trivially
extends to DPNs: a DPN is unbounded when there exists a place p ∈ P so that there is no finite bound
k such that M(p) ≤ k for all reachable states (M,α).

3.2. Data-aware soundness

We recall here the lifting of the standard notion of soundness [9] to the the data-aware setting of DPNs,
as illustrated in [21]. The resulting notion is data-aware, as it requires not only to quantify over the
reachable markings of the net, but also on the SV assignments for its case variables.

Given a DPN N , in what follows we write (M,α) ∗−→ (M ′, α′) to mean that there exists a trace
σ such that (M,α) σ−→ (M ′, α′) or that (M,α) = (M ′, α′). Also, given two markings M ′ and M ′′

of a DPN N , we write M ′′ ≥ M ′ iff for all p ∈ P of N we have M ′′(p) ≥ M ′(p), and we write
M ′′ > M ′ iff M ′′ ≥M ′ and there exists p ∈ P s.t. M ′′(p) > M ′(p).

Definition 3.6. A DPN with initial marking MI and final marking MF is data-aware sound iff all the
following properties hold. By denoting as ReachN the set of reachable states of N , namely the set
{(M,α) | (MI , αI)

∗−→ (M,α)}, these are:
P1. ∀(M,α) ∈ ReachN . ∃α′. (M,α) ∗−→ (MF , α

′)
P2. ∀(M,α) ∈ ReachN . M ≥MF ⇒ (M = MF )
P3. ∀t ∈ T . ∃M1,M2, α1, α2, β. (M1, α1) ∈ ReachN and (M1, α1)

t,β−−→ (M2, α2)
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The first condition imposes, from any reachable state, that a state in which the first component is
MF is reachable. This corresponds to requiring that it is always possible to reach the final marking
by suitably choosing a continuation of the current run (i.e., legal transitions firings). The second
condition captures that an output state is always reached in a “clean” way, i.e., without having tokens
in the rest of the net. The third condition verifies the absence of dead transitions, where a transition
is considered dead if there is no way of assigning the case variables, through the execution of the
process, so as to eventually enable it. If only P1 and P2 hold forN , but not P3, then the DPN is said
to be data-aware weak sound. For instance, P1 is false for the DPN in Figure 1: when transition t1
assigns a value not greater than 10 to a there exists no run from there which marks MF .

4. Checking data-aware soundness of DPNs

In this section we show how to extend the general technique employed in [20] to our setting, namely
to the case of more complex variable-to-variable conditions as in Definition 3.1. We show how the
(possibly infinite) traces of the DPN, as defined in Section 3.1, can be abstracted through a special
kind of state-transition structure which we call constraint graph. A constraint graph can be regarded
as a finite abstraction of the original process with respect to soundness, as it isolates the source of in-
finiteness into the representation of the control-flow dimension of the original DPN, while abstracting
the data that is manipulated by the process into a finite representation. As we are going to show, this
implies that when the control-flow dimension of a DPN can be determined to be finite (that is, when
the net is bounded), then the constraint graph is finite-state and it can thus be effectively analyzed to
assess the data-aware soundness of the original process.

Given a constraint set C, we now define the procedure of computing the new constraint set C ′

resulting from the addition of a constraint c to C so that C ′ is uniquely determined, denoted C ′ =
C ⊕ c. This is shown in Algorithm 1, where we maintain the same notation as before, so that x, y, z
can be either constants or read variables in V r. It requires a saturate procedure that, given a set C ′

of constraints as input, returns the constraints in C ′ in addition to all the constraints logically implied
by C ′ (using only variables and constants appearing in C ′, and assuming a lexicographic ordering that
allows this operation to be deterministic). From Def. 3.1 it trivially follows that only finitely many
constraints can be added with this procedure. When given an unsatisfiable constraint set, we assume
saturate to return the same set as output. Hereafter, we assume a canonical ordering of variables and,
hence, constraints. This allows us to efficiently compute the equivalence of two sets of constraints.

Referring to the algorithm, line 1 applies to constraints c where this imposes a condition of the
current value of variables, i.e., with write(c) = ∅. In this case, the algorithm return the constraint set
obtained by adding c to C. Line 2 applies to the case in which write(c) 6= ∅: the constraint c is added
(line 3) whereas all previous constraints mentioning v are removed (line 5). After this, at lines 6-8 we
replace each constraint of the form (vw � z) with one of the form (vr � z), expressing the fact that
the new values assigned to variables is now taken as their current value. The test at line 8 makes sure
that no constraint on the form (vr � vr) is included in the set (this may otherwise happen for guards
of the form (vw � vr)).

Let ConstN be the set of constants that appear in N = (P, T, F, V, dom, αI , guard). Formally,
ConstN

.
= {k | t ∈ T ∧ (v � k) = guard(t)} ∪ {k | v ∈ V ∧ αI(v) = k}. Given a DPN N , we
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Algorithm 1: Procedure for computing C ′ .= C ⊕ c
1 if c = (vr � x) then C′ ← C ∪ {(v � x)}
2 if c = (vw � x) then
3 C′ ← saturate(C ∪ {(vw � x)})
4 foreach c = (vr � y) or c = (y � vr) in C′ do
5 C′ ← C′ \ {c}
6 foreach (vw � z) in C′ do
7 C′ ← C′ \ {(vw � z)}
8 if z 6= vr then C′ ← C′ ∪ {(vr � z)}
9 return saturate(C′)

denote by CN the set of all constraints c ∈ CV satisfying one of the following two conditions: either
c = (v1 � v2) or, if c = (v � k), that is k is a constant, then k ∈ ConstN . Intuitively, CN is the set
of all possible constraints that can be obtained by using only variables and constants that are in N .
Clearly, CN is finite.

Proposition 4.1. Given a DPN N , if C ∪ {c} ⊆ CN then C ′ = C ⊕ c is so that C ′ ⊆ CN .

Since our objective is to only verify data-aware soundness, we define a parsimonious construction
which attempts to minimize the number of states and transitions in the constraint graph. For this
reason, we call such approach lazy, as opposed to the eager one in Section 5, when we will look at
properties beyond data-aware soundness.

We consider a set of extra transition symbols τt, for t ∈ T . Each τt denotes the silent transition
that corresponds to the explicit case-based reasoning hypothesis of assuming that guard(t) does not
hold in the current state. Given a set E ⊆ T , we define τE

.
= {τt | t ∈ E}.

Definition 4.2. Let N = (P, T, F, V, dom, αI , guard) be a DPN. Let M be the set of markings of
N , and MI the initial marking. the lazy constraint graph CGlazy

N of N is a tuple 〈N,n0, A〉 with:
• N ⊆ M × 2CN is a set of states of the graph, which we call nodes to distinguish them from

the notion of states of the DPN. We equivalently use the notation n or (M,C) for its members,
depending on the case; n0 = (MI , C0) is the initial node, with C0 =

⋃
v∈V {v =αI(v)};

• A ⊂ N × (T ∪ τT )×N is the set of arcs, which is defined with N by mutual induction:
– a transition ((M,C), t, (M ′, C ′)) is in A iff

(i) M [t〉M ′;
(ii) C ′ = C ⊕ guard(t) is satisfiable.

– a transition ((M,C), τt, (M,C ′′)) is in A iff:
(i) write(t) = ∅;

(ii) ∃M ′ s.t. M [t〉M ′;
(iii) C ′′ = C ⊕ ¬guard(t) is satisfiable.

As define above, the set of nodes is the set of all possible couples in which the first component is
a marking on the DPN N and the second is a constraint set on variables V and constants in ConstN .
The initial node is identified by the initial marking and the constraint set which simply encodes the
initial SV assignment of the case variables. The transition relation between nodes (i.e., the arcs) admits



1012 M. de Leoni, P. Felli, M. Montali / Soundness Verification of Data-Aware Process Models

[p0],

{
a = 0

b = 10

}
[p1],

{
a > 5

}
[p2],

{
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}

[p3],

{
a > 10

b < a

}
[p1],

{
a ≥ 10

}

[p1],

{
a ≤ 10

a > 5

}
[p1],

{
a = 10

}
[p2],

{
a < 10

a > 5

}

t1
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t4t2

τt3
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t2

t3τt3
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Figure 3. The lazy constraint graph CGlazy
N for the DPN N in Figure 1. We list next to each node the couple

(M,C), where a marking M is denoted as a set (since the DPN is 1-bounded). The constraint (b = 10) is not
repeated in each node after the initial one, for brevity. We highlight nodes with the final markings by a double
circle, and nodes that are dead-ends as forbidden signs. As anticipated, the DPN is clearly not data-aware sound.

two kinds of transitions. First, given a node (M,C), a new node (M ′, C ′) can be reached through a
transition t ∈ T of the DPN iff ((M,C), t, (M ′, C ′)) ∈ A, which analogously to DPNs we denote as
(M,C) t−→ (M ′, C ′). The conditions are as follows: (i)M ′ is the marking resulting from firing t inM
according to the underlying Petri net semantics, and (ii) the constraint set C ′ obtained by adding the
guard of t to the current set C, as defined by Algorithm 1, is satisfiable. Second, given a node (M,C),
a new node (M ′, C ′) can be also reached through a silent transition τt iff ((M,C), τt, (M

′, C ′)) ∈ A,
denoted (M,C) τt−→ (M ′, C ′). This case simulates the reasoning by case that is required to take into
consideration every possible current SV assignment that does not enable a transition t. The conditions
require that: (i) the transition t is only reading variables (since we are considering variables previously
written); (ii) t is enabled in marking M of the DPN; (iii) the constraint set C ′′ obtained by adding
the negation of the guard of t is satisfiable. We extend to constraint graphs the notions of trace and
run, as well as that of reachability. Hence we say that a node (M,C) is reachable in CGlazy

N iff
{(M,C) | (MI , C0)

∗−→ (M,C)}. A simple example of lazy constraint graph CGlazy
N for the DPN N

in Fig. 1 is shown in Fig. 3. The DPN is not data-aware sound, since a can be assigned a value smaller
or equal to 10. This corresponds, in CGlazy

N , to the nodes with no outgoing arcs.

Observation. This observation follows immediately by construction, and plays an important role
in our approach: since the size of CN is finite, the state-space of CGlazy

N is finite if and only if the DPN
N is bounded, as the number of reachable markings is finite in this case.

Example 4.3. Consider the constraint graph CGlazy
N for the DPN N as in Figure 2, which is partially

depicted in Figure 4. The initial node is ({i}, {reqd = 0, ok = ⊥, granted = 0}). As depicted,
runs exist which reach nodes that have no outgoing transitions and thus cannot be extended to reach a
node with final marking. For instance, consider the run in which the transition make proposal writes
a value for granted that is smaller or equal to 10k while ok is true: in this case, place p6 can never
be marked. Analogously, when ok is assigned value false, then the current run cannot be extended so
that place p7 is marked, and thus an output marking cannot be reached. Therefore, one should be able
to conclude that N is not data-aware sound. In the next section we formalise this intuition. Note how
the firing of transition refuse proposal induces a constraint set in which granted ≤ reqd is replaced
by granted < reqd in the resulting node (as the result of adding the guard of the transition, namely
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Figure 4. A fragment of the constraint graph CGlazy
N for the DPN N in Figure 2, built by following Al-

gorithm 2 (grey nodes are not expanded further for lack of space). Arcs are labelled with the initials of the
transition names of the DPN, and constraints that assign variables to 0 or ⊥ (which is the case for all variables
in the initial node) are not shown. Note that only nodes with consistent constraint sets are generated.

granted 6= reqd, to the current constraint set).

4.1. Checking data-aware soundness on the lazy constraint graph

We now prove that CGlazy
N suitably abstracts all possible runs of the given DPN N , which allows us

to check the data-aware soundness of N on CGlazy
N . First, for comparing the runs of CGlazy

N to those
of N , it is convenient to resort to the notion of reachability graph of a DPN.

Definition 4.4. Given a DPN N , the reachability graph of N is a graph 〈S,E〉 where:
• S = ReachN is the set of reachable states of N , each of the form (M,α); and
• E ⊆ S × T × S is the set of arcs s.t. there exists an arc s t,β−−→ s′ in RGN iff s t,β−−→ s′ for N .

We extend to reachability graphs the notions of trace and run, as well as that of reachability. Hence
we say that a state (M,α) is reachable in RGN iff (M,α) ∈ S.

We now define a simulation notion between CGlazy
N and RGN , capturing a formal relation-

ship between their runs. First, considering a special empty symbol ε for transitions, we define the
observation function O : T ∪ τT → T ∪ {ε} so that O(t)

.
= t if t ∈ T and O(t)

.
= ε otherwise (i.e.,

t ∈ τT ). Given a trace σ = t1 · · · tn of a constraint graph as above, the corresponding observed trace
is the sequence O(σ)

.
= O(t1) · · ·O(tn). E.g., for σ = t · τt′ · t′′ (· is used to denote concatenation)
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CGlazy
N

RGN

(M,C) (M ′, C ′)

(M,α) (M,α′)

τ t τ

t, βR R

Figure 5. Intuitive depiction of the definition of the O-simulation relation R.

we have O(σ) = t · t′′. A trace σ is said to be one-step iff O(σ) is not equal to ε and it has length one:
it is composed by an arbitrary number of silent transitions and exactly one transition in T .

Definition 4.5. Given a reachability graph RGN = 〈S,E〉 of a DPN N and its constraint graph
CGlazy

N = 〈N,n0, A〉, we say that a relation R ⊆ N × S is a O-simulation relation of RGN by
CGlazy

N iff (n, (M,α)) ∈ R implies that for any (M,α) t,β−−→ (M ′, α′) there exists a one-step trace σ
with O(σ) = t and n σ−→ n′, so that (n′, (M ′, α′)) ∈ R.

A node of CGlazy
N O-simulates a state in RGN iff there exists a O-simulation relation R of RGN

by CGlazy
N such that these are included in the relation, and we say that CGlazy

N O-simulates RGN if
n0 O-simulates (MI , αI). An intuitive depiction of the definition above is given in Figure 5.

Lemma 4.6. CGlazy
N O-simulates RGN .

Proof. ([21]) We show this by induction. First, note that the marking reached by executing a se-
quence of observable transitions is the same, in both the reachability graph (hence the DPN) and
the constraint graph (irrespective of the unobservable transitions added). This is because the vari-
able assignment βi considered at each step plays no role in computing the next marking of the
DPN. Hence in what follows we use the same symbol M for the new marking of both RGN and
CGlazy

N . To prove the claim, we first need to make sure that the same set of transitions t ∈ T are
enabled in both (MI , αI) and (MI , C0), i.e., the initial state of RGN and initial node of CGlazy

N .
This is true by construction because C0

.
=
⋃
v∈V {(v = αI(v))}: by defining enabled((M,α))

.
=

{t | (M,α) t,β−−→ (M ′, α′) for some M ′, α′, β}, and enabled((M))
.
= {t | ∃M ′. M [t〉M ′}, we thus

have enabled((MI , αI)) = enabled((MI , C0)). Then, if (MI , αI)
t,β−−→ (M,α) there must exist a

trace σ with O(σ) = t such that (MI , C0)
σ−→ (M,C) is in CGlazy

N , and so that (M,C) O-simulates
(M,α). In particular, this is true for σ = t · τE with E = {t′ ∈ T | t′ 6= t ∧ t′ ∈ enabled(M) ∧ t′ 6∈
enabled((M,α)) ∧ write(t′) = ∅}. The idea is that σ = t · τE corresponds to the execution of t
in the constraint graph, followed by an unobservable transition for each transition t′ ∈ enabled(M)
which cannot be fired from the new state (M,α) of the reachability graph due to the SV assignment
α. Such σ makes sure that the new generated constraint set C correctly encodes the initial set C0

updated with the negated guard of each transition that cannot be fired next in RGN . Notice that, by
construction, a run with trace σ always exists in CGlazy

N : unobservable transitions τt are always added
for any t with write(t) = ∅ as long as the resulting constraint set is satisfiable (cf. Definition 4.2).
Since O(σ) = t, it remains to show that (M,C) O-simulates (M,α). This can be done by repeating
in the inductive step the same reasoning as above, since the marking is the same (hence the set of
transitions in enabled(M)) and it also holds that enabled((M,α)) ⊆ enabled((M,C)). �
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This result implies that the lazy constraint graph can step-wise “mimic” any possible run of the
reachability graph (hence of DPN). This, however, does not imply that any property true in RGN is
also true in CGlazy

N , or vice-versa, as we will comment further in Section 5.
We now adapt the definition of data-aware soundness to constraint graphs, as our objective is to

assess these properties on these objects. The three properties P1-P3 as in Definition 3.6 become
as follows. By denoting as Reach(CGlazy

N ) the set of reachable nodes of CGlazy
N , namely the set

{(M,C) | (MI , C0)
∗−→ (M,C)} we then have:

P1. ∀(M,C) ∈ Reach(CGlazy
N ). ∃C ′.(M,C) ∗−→ (MF , C

′);
P2. ∀(M,C) ∈ Reach(CGlazy

N ). M ≥MF ⇒ (M = MF );
P3. ∀t ∈ T . ∃M,M ′, C, C ′. (M,C) ∈ Reach(CGlazy

N ) and (M,C) t−→ (M ′, C ′).

A constraint graph CGlazy
N of a DPN N is said to be data-aware sound iff these properties are

true. With this definition at hand, we can now state our main result: intuitively, that the lazy constraint
graph faithfully abstracts the original DPN with respect to data-aware soundness.

Theorem 4.7. RGN is data-aware sound iff CGlazy
N is data-aware sound.

Proof. ([21]) Consider property P1, which requires the a state (MF , α) on RGN (resp., node
(MF , C) on CGlazy

N ) is always reachable from any other state (resp., node).
(⇒) This direction follows by O-simulation. Assume to fix a state (M,α) reached by executing

a trace σ′, and for which the property must hold if RGN is data-aware sound: there exists a trace σ
such that (M,α) σ−→ (MF , α

′) for some α′. Then at least one node (M,C) exists that is reached in
RGN through a run with trace σ′, for which (M,C) O-simulates (M,α) – in the base case, these are
the initial state and node, respectively. Then by Lemma 4.6 there must also exist a run (M,C) σ′′−→
(MF , C

′), for someC ′, with σ′′ = O(σ) and which only traverses nodes that (stepwise, by considering
one-step traces) O-simulate those in σ. If instead P1 is not true for RGN but holds for CGlazy

N then
either RGN has additional runs which do not correspond to runs of CGlazy

N (and which cannot be
extended to reach a final node) or that there exists in CGlazy

N at least one run, with trace σ, such that
O(σ) is not a trace of RGN . The first case is not possible due to the lemma, whereas the latter is
excluded by construction (Def. 4.2) since each possible t ∈ T is considered when building CGlazy

N
(⇐) First, consider a run s σ′−→ s′ in CGlazy

N where σ′ is not required to be a one-step trace.
Observe that if one such run exists which is cyclic, then also an acyclic one ending in s′ must exist, as
cycles do not affect reachability of nodes (a run is cyclic iff the same node appears twice). Therefore
in what follows we are allowed to restrict to acyclic runs of CGlazy

N . To satisfy the requirement P1 it
is indeed enough to find an acyclic run in CGlazy

N which reaches a node with final marking that also
includes a given node s, for every reachable s. Hence we show that by construction every acyclic run
ρ on CGlazy

N with trace σ has a corresponding run ρ′ in RGN with trace σ′, and in particular one such
that σ′ = O(σ), so that for every ρ · ρ′′ there exists ρ′ · ρ′′′ in RGN with the same observed trace.
For the base case we have (MI , C0) and (MI , αI), with C0

.
=
⋃
v∈V {v =αI(v)}, and (MI , αI) and

(MI , C0) enabled the same transitions. Then, consider (M,C) σ−→ (M ′, C ′) to be one-step, with
(M,C) O-simulating (M,α). A transition (M,α) t,β−−→ (M ′, α′) with O(σ) = t so that (M ′C ′) O-
simulates (M ′, α′) must exist by construction, as a transition exists in CGlazy

N iff it is enabled in the
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Algorithm 2: Data-aware soundness-checking procedure
Input: A DPNN = (P, T, F, V, dom, αI , guard), with initial marking MI and final marking MF .

1 C0 ←
⋃

v∈V {v =αI(v)}, s0 ← 〈MI , C0〉, S ← {s0}, A← ∅, L← {s0}
2 while L 6= ∅ do
3 (M,C)← pick(L)
4 L← L \ {(M,C)}
5 foreach t ∈ T s.t. M t−→M ′ do
6 C′ ← C ⊕ guard(t)
7 C′′ ← C
8 if write(t) = ∅ then C′′ ← C′′ ⊕ ¬guard(t)
9 if satisfiable(C′) then

10 if ∃(M̄, C′) ∈ S s.t. M ′ > M̄ ∧ (M̄, C′) ∗−→ (M ′, C′)

11 then return false //N is unbounded (see Proposition 4.8)
12 N ← N ∪ {(M ′, C ′)}
13 A← A ∪ {〈(M,C), t, (M ′, C ′)〉}
14 L← L ∪ {(M ′, C ′)}
15 if satisfiable(C′′) ∧ C 6= C′′ then
16 N ← N ∪ {(M,C′′)}
17 A← A ∪ {〈(M,C), τt, (M,C′′)〉}
18 L← L ∪ {(M,C′′)}
19 return analyzeConstraintGraph (〈N,n0, A〉,MF )

current marking inN , guard(t) is satisfied in C, M [t〉M ′ and C ′ is consistent. Since C ′ is consistent,
a solution α′ exists. If the property is not true for CGlazy

N , then there exists a run ρ reaching a node
(M,C) from where a node with final marking cannot be reached, i.e., there is no run ρ′ from (M,C)
reaching such nodes. By construction, if σ is the trace of the run ρ · ρ′, then O(σ) is not a trace of N .

For P2 and P3 we follow the same reasoning as for P1: they all require the existence of runs
from states in RGN (and nodes in CGlazy

N ), that are reached through corresponding traces σ′ and σ,
respectively, so that σ′ = O(σ). �

4.2. A computational procedure for checking data-aware soundness of DPNs

Definition 4.2 specifies all the conditions that are required in order to build the transitions between
the nodes of a constraint graph, starting from the initial node. As such, it can be used to devise a
procedure for checking data aware soundness, which is shown in Algorithm 2. Given a DPN N , the
procedure computes the complete constraint graph CGlazy

N of N when this is bounded, then invokes
an explicit soundness checking procedure on it. This procedure takes in input CGlazy

N as well as the
final marking of N . If instead, during the computation, the DPN is determined to be unbounded (see
the condition at line 11) then a negative result is returned, as this implies that N is in fact unbounded
and thus cannot be data-aware sound. First, we prove that the condition checked by the procedure
in fact detects when the given DPN N is unbounded, and that this implies that N is not data-aware
sound; then we comment the steps in the procedure.

Proposition 4.8. Given a constraint graph CGlazy
N for a DPN N , if there exist two nodes (M,C) and
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(M ′, C) in the constraint graph so that M > M ′ and (M ′, C) ∗−→ (M,C) then N is unbounded. If N
is unbounded then it is also not data-aware sound.

Proof. Assume (M,C) and (M ′, C) exist in CGlazy
N so that M > M ′ and (M ′, C) σ−→ (M,C). We

show that no bound exists on the number of tokens in the markings M of reachable nodes of CGlazy
N .

Indeed, it follows that a node (M ′′, C) exists in CGlazy
N with M ′′ > M and (M,C) σ−→ (M ′′, C),

or otherwise this would contradict that (M ′, C) σ−→ (M,C). This implies that the state-space of
CGlazy

N is infinite. Since the number of possible constraints is finite, by Prop. 4.1 we conclude that the
state-space of CGlazy

N can be unbounded only if N is unbounded. Assume now N is unbounded but
data-aware sound, and let M = M ′ ]M .2. IfN is data-aware sound, (M ′, α) ∗−→ (MF , α

′) (Property
P1 of Def. 3.6). However, this also means that (M ′]M,α) ∗−→ (MF ]M,α′), which violates Property
P2 of Def. 3.6. Therefore N is not data-aware sound. �

We can now comment the body of the procedure. The algorithm uses a set L to hold the nodes of
the constraint graph being built that still need to be expanded. As new nodes of the form (M,C) are
generated, these are added to L and are removed only when all transitions t such thatM [t〉M ′ is inN ,
for some M ′, have been considered in the for-each loop at line 5. N and A are, respectively, the nodes
and the arcs of the constraint graph returned by the algorithm. An arc labelled with t is built for every
t ∈ T enabled in the current marking of the DPN N , and at the beginning of the foreach cycle at line
5 the constraint set C ′ is obtained by adding to C the guard of t (and saturating). Then, consistently
with the definition, if the guard of t is a test on the current value of variables, then C ′′ is computed by
adding to C the negated guard, to explicitly represent those SV assignments in which the guard is not
satisfied. However, if the net is found to be unbounded then false is returned (line 11). If this is not
the case, an edge is created for the silent transition τt. The node reached by this edge is such that the
marking is not updated (as no transition in the DPN was fired), whereas the new constraint set is the
C ′′ computed as above. The algorithms then continues considering a new transition.

The following theorem states the soundness of the approach.

Theorem 4.9. Algorithm 2 terminates and is correct, that is, it returns true iffN is data-aware sound.

The algorithm always terminates: as already observed, when the net is bounded then CGlazy
N is

finite-state; if instead the net is unbounded then this will be eventually detected by the algorithm,
which will then terminate and simply return false.

Regarding the complexity of the procedure, the state-space of CGlazy
N is bounded by |M| × 2|CN |

in the bounded case, otherwise the procedure is guaranteed to terminate (with a negative answer) with
the same worst-case complexity of boundedness-checking for standard Petri nets (which is EXSPACE-
complete) [32]. The second component of the state space, i.e. the number of possible constraint sets,
is at most exponential in the number of variables, operators in the domains and constants in ConstN .
Verifying properties P1-P3 as in Def. 3.6 can be done by executing a search procedures on this finite-
state graph: from each node a final node must be reachable (P1) and a transition firing for each t ∈ T
must be reachable from the initial node (P3). P2 requires checking that there exists no node with
M > MF .
2We use ] to indicate the multiset union, e.g. [a, b] ] [b, c] = [a, b, b, c]
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As a consequence, if and only if the procedure analyzeConstraintGraph returns true for a given
DPN N then we conclude that N is data-aware sound. We here do not present an algorithm for such
procedure, as it only needs to apply the definition of data-aware soundness on CGlazy

N , which is finite-
state. This can be implemented by exploiting verification or search techniques. Thanks to the results
above, we have provided a practical and implementable procedure for checking data-aware soundness
of DPNs.

5. Beyond data-aware soundness

In the previous section we have shown that a DPN N is data-aware sound if and only if the lazy
constraint graph CGlazy

N is so. We have shown that this result holds even though, as implied by
Lemma 4.6, these structures are not O-bisimilar in general. Nonetheless, the notion of data-aware
soundness does not depend on the specific branching structure of N and thus of RGN , and therefore
inspecting CGlazy

N is sufficient to verify this property. However, this clearly implies that any property
which depends on the specific branching structure of a DPN (even when disregarding the specific
values assigned to variable) cannot be verified on CGlazy

N . As anticipated, in this section we illustrate
a technique that is based on a variant of constraint graph of a given DPN N , assumed to be bounded.
We call this variant of constraint graph eager, which we show to be a faithful abstraction of the given
DPNN . As expected, this implies that the size of CGeager

N is in general larger than the size of CGlazy
N ,

although the new construction does not require the distinction between observable and unobservable
transitions, which was central for CGlazy

N .

We consider at least two practical scenarios justifying the need for an abstraction that preserve the
branching structure of DPNs. First, consider the case in which a DPN is determined not to be data-
aware sound by the procedure analyzeConstraintGraph, as described in Section 4. As a simple
negative verdict may not be satisfactory, can we check whether the process can be restricted in such
a way that data-aware soundness can be achieved? As a further example, even when a DPN is data-
aware sound, can we analyze its branching structure so as to determine whether the soundness property
relies on the collaboration of all actors involved in the enactment of the process, or only part of them?

To answer these questions, in this section we consider the property of controllable data-aware
soundness and provide a technique for verifying it on a given DPN. We need to impose two conditions:

• N is bounded. As suggested above, boundedness may be known as a result of the (negative)
verdict of the soundness-checking approach in Section 4 (specifically, thanks to the boundedness
test in Algorithm 2). If instead it is not known whether N is bounded, then we simply observe
that the same boundedness test as in Algorithm 2 can be performed when explicitly constructing
CGeager

N , although an analogous construction algorithm is not given here. In fact, Prop. 4.8 still
holds when CGlazy

N is replaced by CGeager
N , and this can be directly proved in the same way.

• The domains of variables are restricted toDR andDbool. Allowing other finite or dense domains
(as well as Dstrings) is possible with no modification, but we keep the formalization simple.
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5.1. Controllable data-aware soundness of bounded DPNs

We first give an intuition. Consider a process, modeled by a DPN, that describes the interaction of
multiple actors. The bank process in Figure 2 is an example of such processes, as it describes the
interaction of (at least) the customer and a bank clerk. In such scenarios, each of the actors (customer
and clerk) has some control on the execution of the activities represented by DPN transitions. For
instance, the transition credit request is clearly executed by the customer, whereas transitions such as
deny credit or make proposal are executed by clerk, which has decisional authority on which transition
is executed in each case (and if make proposal is chosen, the clerk will also decide the amount).

We thus can assign transitions to each actor, and say that each transition is controlled by exactly
one actor. A process execution strategy for an actor AC is thus a policy that tells the actor which are
the possible transitions to fire at each step, possibly specifying the values to write for variables (if
these are under the control of the agent). If then we adopt the perspective of one such actors AC in a
DPN N , so that all the transitions that are not controlled by AC are assumed to be controlled by the
environment (an abstract antagonist controlling everything else), we might be interested in checking
whether the actor AC can make its choices, namely adopt a process execution strategy, so that the
resulting sub-process, obtained by removing any branch of RGN that is not allowed by the process
execution strategy, is data-aware sound as in Definition 3.6. As suggested at the beginning of this
section, a DPN may not be data-aware sound but an actor might still be able enforce such condition.
If this is not the case, the same verification task can be carried out with respect to data-aware weak
soundness (defined below Def. 3.6), i.e., allowing dead transitions.

In what follows, we formalize: (i) which are the sub-processes (henceforth called refinements) of
RGN that AC can enforce; (ii) how to link such refinements to process execution strategies for AC;
(iii) say that the DPN N can be made data-aware (weak) sound by the actor AC when there exists a
process execution strategy for AC that induces a refinement of RGN that is data-aware (weak) sound.
Note that we are only interested here in the existence of one such process execution strategy: the
problem of automatically synthesizing process execution strategy is left as future work.

Formally, consider a subset TAC ⊆ T of transitions and a subset VAC ⊆ V of variables of a DPNN
that are under the control of AC. Intuitively, only the actor AC can decide to execute transitions in TAC

and similarly it is the responsibility of actor AC to decide the new value of variables in VAC whenever
these are written (by transitions in TAC as well as by other transitions controlled by the environment).
To avoid conflicts, without loss of generality we impose one restriction on N : all transitions enabled
from any marking M (i.e. the set {t | ∃M ′. M [t〉M ′}) are controlled either by our actor AC or by the
environment. We refer to the former case by saying that AC controls M , and similarly we say that AC

controls a state s = (M,α) of the reachability graph RGN iff AC controls M .

Definition 5.1. Given a DPN N , the actor AC can enforce a set of transition firings X from a state s
of RGN iff one of the following conditions are satisfied:

• if AC controls s then for all (t, β) ∈ X either write(t) = ∅ or write(t) ⊆ VAC or for every β′

we have that s t,β′−−→ s′′ implies (t, β′) ∈ X;
• if AC does not control s then for all (t, β) ∈ X either:

– write(t) 6= ∅ and write(t) ⊆ VAC, or
– for every β′, s t,β′−−→ s′′ implies (t, β′) ∈ X;
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and there is no t′ enabled in s (s.t. s t′,−−−→ s′) for which there is no β′ so that (t′, β′) ∈ X .

Intuitively, this definition captures the conditions under which an actor can act in s so that, no
matter how the environment behaves, the selected transition firing will be in X . Since transition
firings are deterministic (i.e., the resulting state is uniquely determined), this implies that AC can force
the next state of RGN to be in a certain subset. In the first case of the definition above, when AC

controls s, it is sufficient to check that the environment cannot force the next state s′ to be outside X
by choosing some value of written variable. An analogous condition captures the other case.

Example 5.2. Consider the DPN in Figure 2 and the state ({p5, p4}, α) where we have α(ok) = true,
α(granted) = 8k andα(reqd) = 9k. If AC controls {p5, p4}, hence open credit loan, inform acceptance
VIP and inform rejection, then AC can enforce each of the possible specific transition firings that is le-
gal, since no variable is written (by the environment). If instead AC does not control the marking
above, then it cannot enforce specific transition firings, since it will be the environment to decide
the next marking. As a further example, consider ({p1}, α) with α(ok) = ⊥, α(granted) = 0 and
α(reqd) = 9k. Even if AC controls verify this does not imply that AC can enforce a specific transition
firing (e.g. verify with {ok → true}): in order to do so, it would also need to control variable ok.

We denote the set of all sets of transition firings that can be enforced by AC from a state s of RGN
as CtrlsAC. Note that it is often possible that the set of transition firings that can be enforced by AC

from a state s is not unique (i.e., |CtrlsAC| > 1) but it is closed under union.
We now turn to define the executions of N that an actor can enforce. We model this as a

process execution strategy for AC: a partial function stratwhich, given the sequence of states s0, . . . , sn
of RGN traversed so far by the current run, either returns a set of legal transition firings that can be
enforced by AC or it is undefined (if sn has no possible legal successors). If we define CtrlSAC as
{CtrlsAC | s ∈ S} then strat : S+ 7→ CtrlSAC is so that strat(s0, . . . , sn) ∈ CtrlsnAC. In words, strat
always returns a set of possible transition firings that actor AC can control from the last state sn in the
given sequence of traversed states.

We denote by RGstratN the (refined) reachability graph obtained by executing strat on RGN , that
is, so that a run s0 t1,β1−−−→ · · · tn,βn−−−→ of RGN is in RGstratN iff (ti+1, βi+1) ∈ strat(s0, . . . , si) for
i ∈ [0, n−1]. Since multiple functions strat may exist then multiple refinements are possible, but we
do not need to actually compute them. They are needed to define our verification task:

Definition 5.3. Given a DPN N and sets VAC ⊆ V and TAC ⊆ T of variables and transitions (respec-
tively) controlled by an actor AC, we say that AC can guarantee data-aware (weak) soundness for N
iff there exists a process execution strategy strat for AC so that RGstratN is data-aware (weak) sound.

Example 5.4. In our example in Figure 2 we might be interested in checking whether the actor AC

representing the clerk can guarantee data-aware soundness, assuming TAC = {verify, reject request,
prepare, make proposal} and VAC = {granted}. It is easy to see that this actor cannot guarantee
data-aware soundness nor data-aware weak soundness: since the actor does not control variable ok,
when this variable is set to false then the marking {p5, p4} is a deadlock. If we add ok to VAC then
the previous deadlock can be avoided by always writing ok = true with transition verify, but another
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deadlock is encountered: when ok = true and reqd is set to a value smaller or equal to 10k, all states
with marking {p5, p4} have no legal transition firings, and this marking cannot be avoided. If we add
update proposal to TAC then the resulting refinement of RGN is data-aware weak sound: in addition
to the above it is enough, from states with ok = true and reqd set to a value smaller or equal to 10k,
to fire transition modify proposal to raise the proposed loan amount to a value higher than 10k. Still,
this refinement is not data-aware sound: it will never fire some transitions, for instance reject request.

As already commented informally, the property above cannot be checked on the lazy constraint
graph CGlazy

N of a DPN N , because it clearly depends on the specific branching structure of the
reachability graph RGN induced by N (although modulo the values of variables).

5.2. Eager constraint graph

Intuitively, an eager constraint graph CGeager
N for a given DPN N differs from the lazy constraint

graph CGlazy
N ofN in that it does not attempt to parsimoniously explore the state space, but explicitly

encodes the possible successor states that are reachable by firing each of the enabled transitions. The
construction is analogous, but instead of resorting on unobservable transitions, we finitely yet explic-
itly account for all possibilities when a transition is fired that updates a variable. As in the previous
section, when N is bounded then this structure is finite-state. First we define a finite set of constraint
sets that account for all possible ways in which a variable may be updated.

Recall that we denote by ConstN the set of constants that appear anywhere in N , i.e., ConstN =
{k | t ∈ T ∧ (v � k) = guard(t)} ∪ {k | v ∈ V ∧ αI(v) = k}. For instance, for the DPN in Figure 2
we have ConstN = {0, 10k}. Based on this, we define the set of intervals partitioning the domain of
variables that are assigned domain DR. Let Const+N

.
= ConstN ∪ {+∞,−∞}.

Definition 5.5. The representative intervals for v ∈ V is the set IntervalsvN of constraint sets encod-
ing all possible relationship between v and the constants in ConstN . It is defined as follows:

• If v has domain DR, it is the set containing {(v = k)} for each k ∈ ConstN , and {(v >
k1), (v < k2)} for any two distinct successive k1, k2 ∈ Const+N ;

• If v has domain Dbool, it is trivially defined as {{(v = true)}, {(v = false)}}.

IntervalsvN is unique for each v ∈ V , although one could optimise by analysing the structure of
N and avoid considering constraints that are not relevant. For the DPN in Figure 2, for both v = reqd
and v = granted, we have IntervalsvN = {{(v < 0)}, {(v = 0)}, {(v > 0, v < 10k)}, {(v =
10k)}, {(v > 10k)}}. For ok, we have IntervalsokN = {{(ok = true)}, {(ok = false)}} .

The sets defined above allow to finitely guess the possible (relevant intervals of) values assigned
to written variables when a transition of the DPN is fired. However, such guesses are not yet sufficient
for evaluating successive guards that compare variables between them, i.e. of the form (vr1 � vr2). For
this reason, we also consider the following notion.

Definition 5.6. The set of two-variable constraint sets of aN is the set C2
N of all satisfiable constraint

sets C in which, for each transition t for which guard(t) is of the form (vr1�vr2), then either (vr1�vr2)
or ¬(vr1 � vr2) is in C.
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For instance, for the DPN in Figure 2 we haveC2
N composed of only two sets, namely {(grantedr =

reqdr)} and {(grantedr 6= reqdr)}, because the only guard of the form (vr1 � vr2) is the guard of
transition refuse proposal.

Finally we can give the definition of eager constraint graph, as a structure that finitely abstracts all
possible runs of RGN . As we are going to show, this structure also preserves the branching structure
of the the DPN (modulo variable assignment). Given N = (P, T, F, V, dom, αI , guard):

Definition 5.7. The eager constraint graph CGeager
N of N is a tuple 〈N,n0, A〉 where:

• N ⊆M× 2CN is a set of nodes;
• n0 = (MI , C0) is the initial node, with C0 =

⋃
v∈V {v =αI(v)};

• A ⊆ N × T ×N is the set of arcs, defined with S by mutual induction as follows. A transition
((M,C), t, (M ′, C ′)) is in A iff M [t〉M ′ and one of the following cases applies:

– (i) write(t) = {v};
(ii) C ′′ ∈ IntervalsvN ;

(iii) C ′′′ ∈ C2
N ;

(iv) C ′ = (C ⊕ guard(t)) ∪ C ′′ ∪ C ′′′ is satisfiable.
– (i) write(t) = ∅

(ii) C ′ = C ⊕ guard(t) is satisfiable;

Intuitively, in the case of a transition twith write(t) 6= ∅, an arc exists inCGeager
N for each possible

way in which a representative interval and a two-variable constraint set can be selected (guessed), so
that C ′ is satisfiable. If write(t) = ∅ it is enough to check that C ⊕ guard(t) is satisfiable.

Example 5.8. A fragment of CGeager
N for N as in Figure 2 is shown in Figure 6, exemplifying how

representative intervals and two-variable constraint sets are employed to account for all possible (and
satisfiable) evolutions of the original DPN. The guard of transition credit request is (reqdw 6= ⊥),
hence one possible successor node is added for each possible representative interval for variable reqd.
Additionally, one possible two-variable constraint set is also guessed for each of these nodes: in this
example, since granted = 0, there exists only one constraint set among {(granted = reqd)} and
{(granted 6= reqd)} that can be added to a successor node so that the resulting set is satisfiable.
Since representative intervals and two variable constraints precisely encode the conditions on which
the evolution of a DPN may branch in following steps, by guessing all possible combinations we can
make sure to account for all possible runs. For transition verify, two possible successor nodes exist for
each of the nodes added in the previous step: one for ok = true and one for ok = false.

As for CGlazy
N , if N is bounded then also CGeager

N is finite-state. Note how this implies that we
can devise a construction algorithm, similarly to the case of a lazy-constraint graph, which checks
on-the-fly (i.e., during the construction itself) whetherN is bounded. A run of CGeager

N is a sequence
ρ = (MI , C0)

t1−→ · · · tn−→ (Mn, Cn) and we say that AC controls n = (M,C) iff AC controls M .

5.3. Verifying controllable data-aware soundness for bounded DPNs

We now present our algorithm for checking whether a given actor AC can guarantee the data-aware
(weak) soundness of a bounded DPN (given TAC and VAC). The algorithm is executed directly on
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[i], [reqd = 0, granted = 0, ok = ⊥]

[p1], [reqd < 0, granted 6= reqd]

[p1], [reqd = 0, granted = reqd]

[p1], [reqd > 0, reqd < 10k, granted 6= reqd]

[p1], [reqd = 10k, granted 6= reqd]

[p1], [reqd > 10k, granted 6= reqd]

[p2], [reqd = 0, granted = reqd, ok = true]

[p2], [reqd = 0, granted = reqd, ok = false]
cr
cr

cr
cr
cr

v
v

Figure 6. A fragment of CGeager
N for N as in Figure 2, restricted to the first two transitions credit request

and verify. As before, grey nodes are not expanded further for lack of space.

CGeager
N , computed following the definition in the previous section. It is based on a backward reach-

ability procedure: starting from the nodes N ′ of the form (MF , C) containing the final marking, we
proceed backwards by computing the controllable pre-image of N ′, namely the set of states from
where AC can enforce a transition firing that will lead to one in N ′. By repeating such procedure
until the initial node (MI , C0) is reached, or until the set of currently explored nodes does not change,
we can assess whether the property is true. We thus formalize on CGeager

N a definition analogous to
Definition 5.1 on RGN , as follows.

Definition 5.9. Given a DPN N and sets TAC and VAC for a given actor AC, and considering the
resulting eager constraint graph CGeager

N = 〈N,n0, A〉, we say that AC can enforce a set of nodes
N ′ ⊆ N from the current node n iff N ′ is a set computed as follows:

• if AC controls n then for each n′ ∈ N ′ we have that n t−→ n′ and either:
– write(t) = ∅ or write(t) ⊆ VAC, or
– all n′′ so that n t−→ n′′ are in N ′;

• if AC does not control n then for each n′ ∈ N ′ we have that n t−→ n′ and either:
– write(t) 6= ∅ and write(t) ⊆ VAC, or
– all n′′ so that n t−→ n′′ are in N ′;

there is no t′ so that n′ 6∈ N ′ for some n′ with n t′−→ n′.

We denote the sets of all possible sets N ′ of nodes as above as CtrlnAC: these are the sets of nodes
that can be enforced by the actor AC from a node n. As it was the case for RGN , if the actor AC

controls all enabled transitions and all the variables that these write, then AC can handpick a specific
node to be the successor (namely CtrlnAC also contains all the sets {n′} so that n t−→ n′ for some t).

Given a set N ′ ⊆ N of arbitrary nodes of CGeager
N , the controllable pre-image PreAC(N ′) of the

set N ′ for the actor AC is the set computed as follows:

PreAC(N ′)
.
= {n ∈ N | ∃N ′′ ∈ CtrlnAC. N

′′ ⊆ N ′}.

In other words, PreAC(N ′) is the set of all nodes such that, no matter how the environment chooses
transitions and/or variable assignments (if allowed to do so, i.e., if AC does not control the current
marking or the written variable is not in VAC), the next node can be guaranteed to be in N ′.

Based on this simple building block, we compute the set Y ⊆ N of nodes of CGeager
N from

where a node with final marking can always be reached (no matter how the environment behaves) by
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Yk Yk−1 · · · Y1 Y0

(MI ,C0) (MF ,C
′)

(MF ,C
′′)

Figure 7. Intuitive depiction of the procedure. For simplicity, for each n CtrlnAC contains only one set, marked
with bold outgoing arcs. Black nodes are in YR.

repeatedly applying the PreAC operator until a fixpoint is reached (see Fig. 7). Formally:

Y0
.
= {(M,C) ∈ N |M = MF }; Yi+1

.
= Yi ∪ PreAC(Yi); Y

.
=
⋃

i≤|N |Yi.

namely, Y0 is the set of nodes with a final marking; then Yi+1 for i ≥ 0 is computed from Yi by
applying the PreAC operator. After a bounded number of iterations, a fixpoint is necessarily reached.

As a consequence, from the states in Y the actor AC can force the process to eventually reach a
node of the form (MF , C), i.e., with final marking. The following result is thus a direct consequence
of the computation above: if the initial node ofCGeager

N is in Y it means that the actor AC can, step-by-
step, enforce successor nodes so that eventually a node with final marking is reached. As we are going
to prove, since there exists a bisimulation property between RGN and CGeager

N these graphs have the
same branching structure (modulo the identity of variable values) and therefore a process execution
strategy strat exists for RGN so that RGstratN is data-aware sound iff nodes with final marking are
reachable in CGeager

N by only traversing nodes in Y .

Theorem 5.10. Given a bounded DPN N and sets TAC and VAC for a given actor AC, then AC can
guarantee N to be data-aware weak sound iff the initial node (MI , C0) of CGeager

N is in Y .

For (full) data-aware soundness, which also requires that no dead transition exists (see Def. 3.6),
we also check that each transition t ∈ T labels at least one arc between nodes in Y that are reachable
in CGeager

N from the initial node, denoted YR. More precisely, nodes in YR are those reachable by
only traversing nodes in Y through arcs n t−→ n′ so that n ∈ Yi+1 and n′ ∈ Yi.

The result then follows by construction. The algorithm above (computing Y ) always terminates:
the number of possible iterations are bounded by |N |, which is finite. In fact, the same considerations
on the complexity as the previous section apply to this procedure as well.

Proof. (Sketch.) First, we need to prove that a (simple modification of the classical notion of)
bisimulation exists between CGeager

N and RGN . The definition is as follows. Given a reachability
graph RGN = 〈S, s0, E〉 of a DPN N and its constraint graph CGeager

N = 〈N,n0, A〉, we say that a
relation R ⊆ N × S:

• is a abstraction relation of RGN by CGeager
N if 〈(M,C), (M ′, α)〉 ∈ R implies that

1. M = M ′ and α is a solution of C (the first requirement trivially holds for DPNs);
2. for any arc (M ′, α) t,β−−→ (M ′′, α′) inRGN there is inCGeager

N an arc (M,C) t−→ (M ′′′, C ′);
3. 〈(M ′′′, C ′), (M ′′, α′)〉 ∈ R.

• is a grounding relation of CGeager
N by RGN if 〈(M,C), (M ′, α)〉 ∈ R implies that
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1. M = M ′ and α is a solution of C;
2. for any arc (M,C) t−→ (M ′, C ′) in CGeager

N there exists (M ′, α) t,β−−→ (M ′′′, α′) in RGN ;
3. ((M ′, C ′), (M ′′′, α′)) ∈ R.

Proving that a relation R that is both a grounding and abstraction relation between CGeager
N and

RGN can be done by induction and it relies on the definitions of these structures, which both encode
the possible transitions of the DPN N . By inspecting their definition, it is evident that there is indeed
a direct correspondence between the arcs of CGeager

N and RGN : a transition (M,C) t−→ (M ′, C ′) in
CGeager

N implies that both C and C ′ are satisfiable, hence a SV assignment α′ and variable assignment
β exist so that (M,α) t,β−−→ (M ′, α′) is in RGN , so that α′ is a solution of C ′ (the fact that α is a
solution of C is guaranteed by induction, since it is trivially true in the initial state and node).

With this result at hand, it is sufficient to note that if a run exists in CGeager
N that only traverses

nodes in Y (and in particular through arcs n t−→ n′ so that n ∈ Yi+1 and n′ ∈ Yi), then a corresponding
run exists in RGN so that a relation R as above holds step-by-step. This in turn implies that if
(MI , C0) is in Y and hence a run ρ exists from (MI , C0) to a node (MF , C) irrespective of the
choices made by the environment, we can find corresponding runs ρ′ from (MI , αI) in RGN so
that, at each step, a SV assignment α that is a solution of the constraint sets C traversed by ρ exists,
otherwise ρ would not be a legal run of CGeager

N . It then remains to note that a process execution
strategy for RGN can be simply obtained by returning transition firings (t, β) that are consistent with
the constraint sets along runs ρ′, since there is a direct correspondence between Definition 5.1 and
Definition 5.9. Nonetheless, automatically extracting the process execution strategy requires further
computation and it is not necessary for our result, so it is left as future work. �

6. Conclusions and Future work

In this paper we extended the work in [20, 21] to study the notion of soundness of DPNs to a general
class of DPNs. We have shown the decidability of the problem of assessing the data-aware soundness
for this class of nets by reducing it to the analysis of a finite-state abstraction of the possible executions
of the original DPN. Our result extends to any constraint language that generates only boundedly
many constraints over a fixed set of variables and constants and has decidable satisfiability. Further,
we extended known results to a more involved verification task: that of verifying whether an actor
can guarantee a process to be data-aware sound, if this can be represented as a bounded DPN. We
gave technical insights on why the known approaches for data-aware soundness are not sufficient
for addressing such task, and then provided a sound and complete technique for its solution, based
on a novel definition of constraint graph. The same technique is therefore applicable to any further
property which only relies on the branching structure (modulo variable values) ofRGN . This includes
the study of automated approaches for computing process repairs and process variations that guarantee
given properties, from soundness to temporal specifications.

In future work, we plan to implement the approach described in this paper by combining stan-
dard state-space construction methods with constraint programming techniques, needed to perform
the satisfiability checks required by the abstraction. We also plan to implement synthesis algorithms
that allow not only to verify controllable data-aware soundness but also compute process execution
strategies.
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