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Abstract. The object-centric process paradigm is increasingly gaining popular-
ity in academia and industry. According to this paradigm, the process delineates
through the parallel execution of different execution flows, each referring to a
different object involved in the process. Object interaction is present, and takes
place through bridging events where these parallel executions synchronize and
exchange data. However, the complex intricacy of instances of such processes
relating to each other via many-to-many associations makes a direct applica-
tion of predictive process analytics approaches designed for single-id event logs
impossible. This paper reports on the experience of comparing the predictions
of two techniques based on gradient boosting or the Long Short-Term Memory
(LSTM) network against two based on graph neural networks. The four tech-
niques were empirically evaluated on event logs related to two real object-centric
processes, and more than 20 different KPI definitions. The results show that
graph-based neural networks generally perform worse than techniques based on
Gradient Boosting. Considering that graph-based neural networks have training
times that are 8-10 times larger, the conclusion is that their use does not seem to
be justified.
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1 Introduction

Predictive process analytics is the branch of process mining that aims to predict the
eventual outcome of process executions. Traditional predictive process analytics tech-
niques rely on the assumption that process instances are composed of single flows of
execution. However, recent industrial experience is showing that the assumption of a
single execution flow is unfortunately often not met in practice. This led to the intro-
duction of the paradigm of object-centric processes, which has recently been gaining
more and more attention because it can naturally model inter-organizational processes
more naturally [1]. Any process execution materializes itself as a set of instances that
run concurrently, each representing the life cycle of one different object that contributes
to the process execution (e.g., the order and the delivery object). These object life cycles
run independently and synchronize through bridging events to exchange data required
for further processing.

The problem of predictive analytics remains relevant in the context of object-centric
processes, as well. Typically, the process outcome is measured using a Key Performance
Indicator (KPI), which depends on and is accordingly configured for the specific pro-
cess being analyzed. The existing techniques for predictive process analytics cannot be
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directly applied in the context of object-centric processes because they heavily rely on
the concept of a single identifier associated with a single execution flow.

This paper compares the predictive quality of two techniques leveraging on graph-
based neural networks with one technique based on LSTM network and with one based
on gradient boosting on decision trees. Graph-based neural network can naturally repre-
sent the complex many-to-many interaction between objects of object-centric processes.
Conversely, LSTM networks and gradient boosting require the manual engineering of
features that maintain a meaningful abstraction of the object interactions.

Graph-based neural networks have the significant disadvantage of a very large train-
ing time. The research question addressed in this paper is the following: is the very large
training time justified by a significant improvement of the prediction accuracy? To an-
swer this question, we conducted experiments with two object-centric processes and
21 different KPIs of interest, using the four predictive-analytics techniques mentioned
above.

The results show that Gradient Boosting usually has the highest accuracy, compared
with both LSTM and the two types of graph-based neural networks used in the exper-
iments. At the same time, the training time is 8-10 times shorter. In sum, it seems that
there is no advantage to use graph-based neural networks: a meaningful, manual engi-
neering of features that encode the object interaction allows gradient boosting to reach
higher prediction accuracy.

2 Preliminaries

2.1 Object-Centric Event Logs

Object-centric processes are executed with the support of one or more information sys-
tems. It is possible to extract the history of past executions from information systems
into a transactional data set organized as object-centric event logs.

Space limitations prevent us from giving a full formalization, which can be found
in [4]. Here, we limit ourselves to give the intuition through the example in Table 1,
which shows an excerpt of an object-centric event log of an Italian utility-provider
company. It consists of a set E of event identifiers (see column ID), each associated
with an activity name, a timestamp of occurrence, a set of object identifiers of different
types associated with the event (columns from Contract to Invoice), and a set of event
attributes with their associated values (columns from Order Price to Rec Quantity).

In particular, five object types can be observed, each with a different life cycle: Con-
tract, Requisition, Order, Receipt, and Invoice. As an example, the event with identifier
e1 is associated with object c1 of type Contract, whereas, e.g., event e20 is associated
with object i2 of type Invoice, and the three objects r2, r3, and r4 of type Receipt.

The object-centric event log can map the relationships between object types. For
instance, the contracts c1 and c2 are associated with the requisitions rq1 and rq2, re-
spectively (cf. events e3 and e5). In general, a contract can be associated with multiple
requisitions, while each requisition is at most associated with one contract. However,
this can not be seen in the event log excerpt because of its small size.

The life-cycle process of an object of type Contract refers to the stipulation of a
contract with a customer, possibly followed by a Requisition, which is an optional ob-
ject activated with its life cycle when the order needs a purchase requisition. The Order
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Table 1: Example of an object-centric event log. Each row is an event, and the blank
spaces represent attributes’ missing values.
ID Activity Timestamp Contract Requisition Order Receipt Invoice User

Order
Price

Order
Month

Order
Group

Rec
Quantity

e1 Contract Line Creation 2017-07-11 9:00 c1 CO01
e2 Contract Material Group Changed 2017-07-14 11:00 c1 CO01
e3 Purchase Requisition Line Created 2017-07-15 12:00 c1 rq1 A456
e4 Contract Line Creation 2017-07-15 14:00 c2 CO01
e5 Purchase Requisition Line Created 2017-07-15 17:00 c2 rq2 A457
e6 Purchase Order Line Creation 2017-07-16 15:00 c1 o1 A458 100 7 100 L50
e7 Contract Line Creation 2017-07-16 16:00 c3 CO01
e8 Purchase Order Line Creation 2017-07-17 15:00 rq1 o2 A458 200 8 100 L51
e9 Purchase Order Line Creation 2017-07-18 15:00 rq2 o3 A458 300 8 100 L52

e10 Goods Line Registered 2017-07-22 15:00 o1 r1 A456 100 7 100 L50 10
e11 Invoice Receipt 2017-07-22 16:00 i1 A125
e12 Requisition Group Changed 2017-07-22 19:00 rq1 A456
e13 Purchase Order Line Creation 2017-07-23 9:00 rq1 o4 A458 600 8 100 L51
e14 Purchase Order Line Creation 2017-07-23 12:00 c3 o5 A458 600 8 100 L51
e15 Goods Line Registered 2017-07-23 15:00 o2 r2 A456 100 8 100 L50 10
e16 Invoice Registered 2017-07-29 11:00 r1,r2 i1 A125 10
e17 Invoice Cleared 2017-07-30 12:00 i1 A125
e18 Goods Line Registered 2017-07-31 15:00 o4 r3 A456 600 8 100 L51 10
e19 Goods Line Registered 2017-08-09 15:00 o5 r4 A456 600 8 100 L51 10
e20 Invoice Registered 2017-08-10 11:00 r2,r3,r4 i2 A125 10
e21 Invoice Cleared 2017-08-15 14:00 i2 A125
e22 Goods Line Registered 2017-08-16 15:00 o3 r5 A456 300 8 100 L52 5
e23 Requisition Supplier Changed 2017-08-16 17:00 rq2 A456
e24 Invoice Registered 2017-08-18 11:00 r5 i3 A125 5
e25 Invoice Cleared 2017-08-20 14:00 i3 A125

(a) Energy event log. (b) IT event log.

Fig. 1: ER-diagram representing the cardinality between the different object types in
the two considered object-centric event logs. For each object type, the cardinality
with the subsequent or the previous object type is represented as (min cardinality,
max cardinality).

life-cycle process consists of several activities representing mainly quantity, price, or
date modifications of the order, eventually approved by the head of the department. The
Receipt life-cycle process is then related to receiving the goods or services requested,
followed by the Invoice life-cycle process, which includes everything related to pay-
ments. Some events are associated with a single object identifier. In contrast, others are
associated with multiple object identifiers (i.e., so-called bridge events), enabling the
synchronization and data exchange between the object’s life-cycle processes. Fig. 1 il-
lustrates how objects are related to each other for synchronization and data exchanges
for the aforementioned utility-provider company (see Fig. 1a) and for our second object-
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centric event log related to an American technology company (see Fig. 1b). Note that
relationships can be of many-to-many or many-to-one nature.

2.2 Single-Id Event Logs and Predictive Process Analytics

The traditional predictive process analytics assumes that a trace is naturally composed
by a sequence of events, namely a trace σ ∈ E∗ where E is the universe of events. An
event e ∈ E records the execution of an activity πact(e) that occurred at time πtime(e).
Events also assign values to attributes: πvmap(e) returns a function f such that f(a)
indicates that e assigns value f(a) to attribute a.

Process predictive analytics aims to predict the KPI value of traces σ ∈ E∗. The
definition of KPI depends on the process domain, and hereafter it is abstracted as a
function:

Definition 1 (KPI Function). Let WK be the set of possible KPI values. A KPI is a
function TL : E∗ × N ̸→ WK such that, given a trace σ ∈ E∗ and an integer index
i ≤ |σ|, TL(σ, i) returns the KPI value of σ after the occurrence of the first i events.3

Note that our KPI definition assumes it to be computed a posteriori when the execution
is completed and leaves a complete trail as a certain trace σ. In many cases, the KPI
value is updated after each activity execution, namely after the occurrence of a subse-
quence event. We can then define the prediction problem on single-id, traditional event
logs:

Definition 2 (Prediction Problem on Single-id Event Logs). Let TL be a KPI func-
tion. Let σ = ⟨e1, . . . , ek⟩ be the trace of a running case, which eventually will com-
plete as σT = ⟨e1, . . . , ek, ek+1 . . . , en⟩. The prediction problem can be formulated as
predicting the value of T (σT , i) for all k < i ≤ n.

In the Process Mining literature, this problem has been faced with different Machine
Learning models [9]. The training set is composed of pairs (x, y) ∈ X × Y where X
encodes the independent variables (also known as features) with their values, and Y
is the dependent variable with its value (i.e., the value to predict). Predictive process
analytics requires a KPI definition T as input (cf. Definition 1). Let WK = img(T )
be the domain of possible KPI values (i.e., the image or co-domain of T : Y = WK).
Afterward, each prediction technique requires the definition of the domain X and a
trace-to-instance encoding function ρ : E∗ → X , which maps each trace σ or prefix
of it to an element ρ(σ) ∈ X .

The prediction model is then trained off-line based on a data set D that is created
from an event log L as follows: Each prefix σ of each trace σT ∈ L generates one
distinct item in D, consisting of a pair (x, y) ∈ (X × Y), where x = ρ(σ) and y =
T (σT , |σ|). Once the data set item of every trace prefix is created, the model is trained.
The resulting prediction model (known as predictor) can be abstracted as an oracle
function ΦD : X → Y .

3 Techniques for Object-centric Process Predictive Analytics

The application of object-centric predictive analytics techniques requires to build a set
of graph instances. Initially, a single graph is built, where the nodes are the events of the

3 Given a sequence X , |X| indicates the length of X .
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object-centric event log. The arcs are then added: an arc is added between a node/event
e′ and a node/event e′′ if e′ and e′′ have at least one object in common. For instance,
there is an arc between the events e1 and e2 in Table 1 because they share the object
with identifier c1. Arcs are directed: the arc goes out e′ and enters e′′ if the timestamp
of e′ is smaller than the timestamp of e′′.4

Fig. 2: The event graph extracted from the object-centric
event log in Table 1. Each strongly-connected component be-
comes a graph instance, used to train predictors.

This graph is in
fact not strongly con-
nected: not every object
is connected to every
other object. The graph
is thus partitioned into
its strongly-connected
components: each com-
ponent becomes a graph
instance.

As an example, let
us consider the object-
centric event log in Ta-
ble 1. Fig. 2 repre-
sents the two graph in-
stances, namely the two strongly-connected components that have been found. For in-
stance, the nodes in the first connected component represented by the event identifiers
e1, e2, e3, and e6 are connected to each other as the object identifier c1 is in common.

In this paper, we consider four techniques for object-centric process predictive ana-
lytics, which require a previous construction of the set of graph instances: GCN (Graph
Convolutional Network), GGNN (Gated Graph Neural Network), LSTM, and Catboost.
While Catboost and LSTM require the flattening of the graph instances, GGNN and
GCN can directly take the set of graph instances as input during the training and test
phase. The choice fell for Catboost and LSTM because they are seen to generally out-
perform other methods for predictive analytics [11,12,5]. The remainder introduces how
the graphs are encoded when Catboost and LSTM models are used as well as via two
types of graph-based neural networks.

Catboost and LSTM Models. LSTM is a type of Recurrent Neural Network that uses
gates to control the information flow over time. Catboost performs Gradient Boosting
on Decision Trees [3]. Catboost performs at each iteration t a random permutation of
the features and creates a tree based on it. The usage for predictive process analytics
has firstly been reported in [5].

Both LSTM and Catboost require flattening: each graph instance is converted into
a trace of a single-id event log (cf. Section 2.2). Given a graph instance g, the corre-
sponding trace contains every event of g (recall that the g’s nodes are events). To retain
aggregated information about the interaction, each event, node of the graph instance, is
extended with attributes (i.e., features) that summarizes the interaction. This is exten-
sively discussed in [6], and here we limit to give an intuition. For each object type o and
event e, we include an attribute that stores the number of events of type o to which e is

4 The special case of an arc between two events with the same timestamp can be dealt separately:
in this case, the arc is bi-directional
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connected in g. Also, for each numerical attribute a of every event connected to e, we
compute the average value of a in the events connected to e.

The result is ultimately a single-id event log, and the prediction problem is as for-
mulated in Definition 2 (cf. Section 2.2). The difference between LSTM and Catboost
is related to a different definition of trace-to-instance encoding function ρ : E∗ → X .

In the Catboost learning domain, X is a vector that contains one dimension for each
process activity, and one dimension for each log attribute. Given a trace σ defined over
a set A of activities with a set V of event attributes, the encoding function is as follows:5

ρCat(⟨e1, . . . , en⟩) =
⊕
a∈A

|{e ∈ σ. πact(e) = a}| ⊕ ζ(en)

where ⊕ denotes the concatenation of two tuples and ζ(e) is the vector encoding of
e ∈ σ:

ζ(e) =
⊕
v∈V

[πvmap(e)(v)] (1)

In the case of LSTM, X consists of sequences of vectors with n dimensions, where
n is the number of event-log attributes: X = (Rn)

∗.6 Function ρ is then defined as
ρLSTM (⟨e1, . . . , em⟩) = [ζ(e1), . . . , ζ(em)] where function ζσ is as introduced in Def-
inition 1. Further details of the encoding for Catboost and LSTM are provided in [5].

Graph-based Neural Network Models. GCN is designed to work on graph data [7].
Each log trace is represented as a graph, and we opted to represent the input graph as
proposed in the work of [14]. Here, events of a prefix are represented as graph nodes.

GGNN integrates a Gated Recurrent Unit (GRU) cell that explicitly considers the
temporal aspect of sequences [8]. We decided to represent the input graph as proposed
in the work of [14]. Here, events of a prefix are represented as graph nodes, and edges
are used to express relationships between the events of a prefix.

In the case of the GCN, X is represented by a two-element tuple (AM,V ); AM
is an adjacency matrix storing which nodes (that in our case represent events) of the
graph are connected by an edge and lies in R|V |×|V |, while V is a node matrix storing
features that describe the graph’s nodes and lays in R|V |×q , where q is the number of
node features. Please notice that, for each event, i.e. node, of the GCN and GGNN, the
node features have been encoded in the same way as LSTM.

In the case of the GGNN, X represents a three-element tuple (AM,V,EM). EM
is an edge matrix that is added in order to store features that describe the edges of the
graph and lays in R|V |×p, where p refers to the number of features describing the edge.
In particular, the edge between two events e′ and e′′ encodes the object in common
between those of e′ and e′′. Edges are also characterized by a type: (1) Repeat (activity
of a target event is equal to an activity of a source event), (2) Backward (activity of a
target event was observed in a previous event of the current prefix), and (3) Forward
(activity of a target event was not observed in previous events of the current prefix).

5 To keep the explanation simple, we assume that the enumerations of all attributes v ∈ V and
all activities a ∈ A are always returned consistently as if there is a total order among the
variables and among activities (e.g., the alphabetical order).

6 In literature, LSTMs are often trained based on matrices. However, a sequence of m vectors
in Rn can be seen, in fact, as a matrix in Rn×m. We use here the data set representation as
vectors to simplify the formalization.
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4 Evaluation Setup

The evaluation is based on the two object-centric processes described in Section 2.7

The first object-centric process was executed by a well-known Italian utility-provider
company, one of the major energy companies in Europe. The company focuses on the
production/extraction of electricity and gas and on their distribution in different parts
of the world. As mentioned in Section 2, this object-centric process runs through the
intertwining of five different processes (i.e., object types): the Requisition, the Order,
the Invoice, the Contract, and the Receipt.

The second object-centric process was executed by a well-known American tech-
nology company, one of the major companies worldwide. As mentioned in Section 2,
this object-centric process runs through the intertwining of three different processes
(i.e., object types): the Requisition, the Order, and the Invoice.

In a preprocessing phase, we removed attributes with missing values in more than
80% of the cases or attributes with the same values in all cases, and one of each pair
of duplicate attributes (e.g., we removed the plant name, which is unique, and kept
the plant identifier. Third, the large dimension of both companies is also reflected in the
cardinality of some categorical attributes. For instance, for the utility-provider company,
the codes of the materials shipped worldwide (order material code) are stored in an
attribute that counts up to 4179 different values. We applied the 80-20 rule to reduce
the cardinality of the attributes with thousands of different values [10]. Specifically, we
kept the most frequent attribute values that covered 80% of the cases and labeled the
remaining values as other. We considered several KPIs in our evaluation, grouped
into three categories:

Elapsed Time between the first occurrence of the considered object type and the
last occurrence of a selected target activity. The KPIs in this category are measured

with respect to the first occurrence of an event that includes an object of the given
time. For instance, regarding the utility-provider company, the first target activity
of interest is SES Line Registered. It indicates that the service requested by the cus-
tomer is provided. However, as the customer can require several services, it is of
interest to know when all the services requested are provided. The second target
activity, SES Line Released, indicates that a further step is performed, which is the
confirmation from the manager that everything is received correctly. Another inter-
esting activity to be monitored is Invoice Receipt, which indicates that the invoice
is correctly charged to the customer; conversely, Invoice Cleared indicates that the
invoice is paid. Also for the technology company, two interesting activities to be
monitored were Invoice Receipt and Invoice Reconciled that, similarly to Invoice
Cleared, indicate that the invoice is paid. The third target activity of interest is In-
voice Submit, which indicates that the Invoice is registered into the system. The last
interesting activity to be monitored is Invoice Approved, which indicates that the
invoice that is submitted for registration is approved by a manager.

Pay Delay estimation. It refers to the number of days exceeding the planned payment
date, starting from the contract’s creation to the last occurrence of Invoice Cleared.

Occurrence of activity / occurrence of attribute with a particular value. It refers to
whether a certain activity or condition (e.g., a late payment) will occur in the fu-
ture. This category is boolean, with true indicating the occurrence, and false the

7 The presence of NDAs prevent the authors from publicly sharing the datasets.
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Table 2: Descriptive statistics of selected KPIs.

(a) Numerical KPIs. Process 1 and 2 refer to the energy company and to the IT company,
respectively. Values are reported in days.

Process ID KPI Average
Standard
Deviation

1 1 Elapsed Time from Contract to the last SES Line Registered 278.22 230.96
1 2 Elapsed Time from Contract to the last SES Line Released 279.42 230.94
1 3 Elapsed Time from Contract to the last Invoice Receipt 237.11 218.61
1 4 Elapsed Time from Contract to the last Invoice Cleared 287.14 229.69
1 5 Pay Delay estimation from Contract to the last Invoice Cleared 11.41 53.57
1 6 Elapsed Time from Order to the last Invoice Receipt 28.34 38.20
1 7 Elapsed Time from Order to the last Invoice Cleared 45.89 51.89
1 8 Elapsed Time from Requisition to the last Invoice Receipt 61.58 49.44
1 9 Elapsed Time from Requisition to the last Invoice Cleared 115.68 60.18
1 10 Elapsed Time from Requisition to the last SES Line Released 50.76 52.44
1 11 Elapsed Time from Requisition to the last SES Line Registered 49.79 52.25
2 12 Elapsed Time from Requisition to the last Invoice Reconciled 28.95 54.94
2 13 Elapsed Time from Requisition to the last Invoice Receipt 26.57 53.06
2 14 Elapsed Time from Requisition to the last Invoice Submit 27.65 54.31
2 15 Elapsed Time from Requisition to the last Invoice Approved 27.99 54.74
2 16 Elapsed Time from Order to the last Invoice Reconciled 37.65 71.45
2 17 Elapsed Time from Order to the last Invoice Submit 36.29 70.93
2 18 Elapsed Time from Order to the last Invoice Approved 36.74 71.40

(b) The percentage of graph instances in which the activity occurred, or the attribute is
present with that value. KPIs are all related to the process for the energy company.

KPI Percentage

Occurrence of Activity Purchase Order Blocked (from Contract to the last Invoice Cleared) 27%
Occurrence of Activity Pay Method Changed (from Contract to the last Invoice Cleared) 26%
Occurrence of Attribute Pay Type Assuming Value Late (from Contract to the last Invoice Cleared) 61%

absence. First, the company is interested to know in advance whether there would
be changes to the payment method (represented by the activity Invoice Pay Method
Changed). When this activity happens, there are usually delays in payments. The
company is also interested in predicting whether there will be problems with the
order (represented by the activity Purchase Order Blocked) since this situation can
bring additional delays caused by the reworks needed to fix the problem. Finally, it
is interesting to know whether there will be delays with the payments (represented
by the attribute Pay Type assuming value Late).

Table 2 enumerates the KPIs on which we performed experiments. In particular, Ta-
ble 2a focuses different numerical KPIs, while Table 2b reports on boolean KPIs re-
lated to the occurrence of two activities and to the occurrence of one attribute taking on
a certain value: for this table, we report the percentage of the graph instances for which
the activity or the pair attribute-value is observed.
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Each KPI definition used in our evaluation is of the form from object type t to the
last activity a, to indicate that the KPI value is undefined for prefixes that ends (i) before
the first event that incorporates objects of type t, or (ii) after the last event that refers to
a. This means that, both in the train and test phases, we do not consider the prefixes for
which the KPI values are undefined.

For the LSTM implementation we relied on the Keras framework and, as learning
algorithm, we adopted ADAM with Nesterov Momentum (NAdam). For the GCN and
the GGNN implementation, we used the Tensorflow framework, leveraging ADAM
as learning algorithm. For all the three models, we selected 200 training epochs with
a patience of 25. 8 For the Catboost implementation, instead, we leveraged the open
source library available at https://catboost.ai/.

The splitting in training and test set is performed on the set of graph instances that
are obtained from the event log: two third of them are used for training, and one third
for testing. During training, a hyperparameter optimization was performed, in which
we used the last 20% of the training set as a validation set. For LSTM, in particular, we
validated the number of LSTM neurons used for each layer (which varied between 100
and 250), and the number of layers (1, 2 and 4), with a 20% dropout for each layer. We
found that the best architecture consisted in most cases of two LSTM layers with 100
neurons each and a 20% dropout for each layer. For Catboost, conversely, we validated
the number of trees used (which varied between 1500, 3000 and 4000) and the depth
of each single tree (3, 6 and 10). We found that the best architecture consisted in most
cases of 1,500 trees, each with a depth of 10.

Regarding the GCN implementation, the architecture was inspired by the work of
[13], which included a GCN layer with one channel, followed by a global average pool-
ing layer, a dropout layer with a dropout rate of 50%, two Dense layers with 256 neurons
and tanh activation, and a second dropout layer with the same dropout rate. In particu-
lar, we validated the number of channels in the GCN layer (which varied between 1 and
2), the number of final dense layers (we considered keeping the two layers or removing
them) and the number of neurons for each dense layer (which varied between 100 and
250). However, we found the original architecture to be the most effective one.

Conversely, the architecture of the GGNN, was inspired by the work of [14]; the
original architecture included a Gated Graph layer with four GRU cell iterations and
tanh activation, followed by a Global Attention layer with 100 output channels and
three Dense layers with a dropout rate of 50% each and with 300, 200 and 100 neurons,
respectively. In particular, we validated the number of GRU cell iterations in the Gated
Graph layer (which varied between 1, 2, and 4), the number of final Dense layers (which
varied between 1, 2, 3 or no layers at all) and the number of neurons for each Dense
layer (which varied between 100 and 250). We found that the best architecture consisted
in most cases of two GRU cell iterations and no final Dense layers at all.

We calculated the Mean Absolute Error (MAE) for the 18 numerical KPIs as values
were reasonably well balanced. By contrast, we calculated the F1-Score for the last
three KPIs. These KPIs are categorical and relate to activities the energy company wants
to prevent. Finally, we report the training time required to train every prediction model
for each KPI of interest.

8 The code can be found at https://github.com/PyRicky/graph object centric prediction fau/

https://catboost.ai/
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5 Evaluation Results

Table 3 summarizes the results of our comparison. We first observe that Catboost
achieves the highest predictive accuracy among the four prediction models in almost
all the considered KPIs, except for one case, where GCN obtains slightly better pre-
dictive accuracy. Also, Catboost models are learned significantly faster: summing up
the training time of Catboost and GCN in Table 3 for every process and KPI, Catboost
requires overall 7h and 49m, while GCN 59h and 19m (870%).

We further compare the obtained results with the statistics of the selected KPIs in
Table 2; in particular, we noticed that the event logs obtained for the numerical KPIs 3
to 7 and for the categorical KPIs 19 to 21 are those that contain more events. In these
settings, the predictive accuracy of LSTM is closer to that of Catboost, and considerably
outperforms those of GGNN and GCN. However, for KPIs 12 to 18 related to the sec-
ond case study, while GGNN always performs better than GCN and there is not a clear
winner between GGNN and LSTM, Catboost systematically outperforms other meth-
ods. Linked to the point above, LSTM can naturally learn from sequences of events, thus
learning from the interaction among process objects. By contrast, GGNN and GCN tend
to focus on adjacency matrices of nodes (i.e., events) in proximity, being less capable of
reason on events that are indirectly connected. However, while the LSTM does not al-
ways outperform GGNN, Catboost systematically performs better than the other models
because of the aggregated features, designed to capture the object-interaction [6]. Con-
versely, for the numerical KPIs 8 to 11, which are characterized by fewer events, the
GCN outperforms LSTM and shows a predictive accuracy relatively comparable to Cat-
boost. From this, we can conclude that the GCN can occasionally have slightly better
performances in the presence of the limited amount of data. On the other hand, if enough
data is provided, Catboost systematically outperforms graph-based approaches, which
conversely struggle to learn more complicated interaction patterns, and also LSTM,
which is known to require large amount of data.

When the KPI is related to the (non) occurrence of a process’ activity (e.g., Occur-
rence of Activity Purchase Order Blocked) that is seldom observed (see KPIs 19 and 20),
we observed that Catboost models significantly surpass graph-based neural networks,
which are also outperformed by LSTM networks. When the activity is more common,
graph-based neural networks show better predictive accuracy, which however usually
remains lower than that of LSTM and Catboost models.

We can finally conclude that, when gradient boosting is used, the engineering of
features to encode the object interaction enables obtaining prediction accuracy that is
higher than that of graph-based neural networks. The preference of gradient-boosting-
based techniques over those leveraging on graph-based neural network is further tes-
tified by the fact techniques relying on graph-based neural networks require a training
time that is eight times longer. The comparison of graph-based neural networks and
LSTM’s shows that there is no clear winner: sometimes the former perform better, other
times the latter does. This does not fully confirm the work by Adams et al. [2], which
reported on the superiority of graph-based neural networks. But they only conducted
two case studies, likely insufficient to reach more general conclusions.

This is likely partially linked to the manual engineering of object-interaction fea-
tures, which is an informed tuning for the specific problem of object-centric process
predictive analytics. Note how this paper does not flatten the event log as in [6] when
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Table 3: Predictive accuracy for KPIs and prediction models. An horizontal line split
the Numerical and Boolean KPIs, with the former measured in terms of Mean Absolute
Error (MAE) and the latter as F1-Score. Training times are reported in brackets.
Log ID KPI GCN GGNN LSTM Catboost

1 1 Elapsed Time from Contract to the last SES Line Registered 42.85 (1h 5m) 41.17 (1h 45m) 45.22 (3h 34m) 31.9 (11m)
1 2 Elapsed Time from Contract to the last SES Line Released 42.31 (1h 13m) 47.99 (3h 12m) 50.77 (4h 9m) 33.09 (21m)
1 3 Elapsed Time from Contract to the last Invoice Receipt 42.64 (2h 59m) 41.19 (8h 7m) 37.72 (5h 23m) 30.78 (42m)
1 4 Elapsed Time from Contract to the last Invoice Cleared 47.86 (6h 12m) 44.37 (9h 17m) 39.05 (12h 6m) 34.4 (49m)
1 5 Pay Delay estimation from Contract to the last Invoice Cleared 17.09 (2h 12m) 18.47 (10h 4m) 14.05 (8h 53m) 12.36 (11m)
1 6 Elapsed Time from Order to the last Invoice Receipt 27.51 (2h 29m) 36.44 (5h 45m) 26.71 (2h 47m) 19.15 (21m)
1 7 Elapsed Time from Order to the last Invoice Cleared 29.95 (7h 56m) 37.04 (11h 50m) 23.22 (4h 19m) 20.08 (1h 21m)
1 8 Elapsed Time from Requisition to the last Invoice Receipt 34.39 (41m) 45.62 (33m) 41.36 (56m) 31.08 (5m)
1 9 Elapsed Time from Requisition to the last Invoice Cleared 35.33 (16m) 67.04 (27m) 40.96 (2h 15m) 36.71 (17m)
1 10 Elapsed Time from Requisition to the last SES Line Released 32.23 (5m) 75.21 (20m) 55.4 (49m) 26.96 (3m)
1 11 Elapsed Time from Requisition to the last SES Line Registered 31.52 (5m) 81.62 (14m) 48.97 (48m) 31.2 (6m)
2 12 Elapsed Time from Requisition to the last Invoice Reconciled 45.86 (2h 56m) 42.12 (4h 47m) 40.5 (1h 16m) 27.5 (13m)
2 13 Elapsed Time from Requisition to the last Invoice Receipt 48.16 (3h 10m) 44.31 (4h 17m) 49.06 (1h 9m) 29.44 (12m)
2 14 Elapsed Time from Requisition to the last Invoice Submit 47.88 (1h 45m) 43.02 (5h 12m) 43 (1h 3m) 27.82 (13m)
2 15 Elapsed Time from Requisition to the last Invoice Approved 47.81 (3h 54m) 43.87 (3h 50m) 42.53 (1h 2m) 28.75 (8m)
2 16 Elapsed Time from Order to the last Invoice Reconciled 51.3 (2h 50m) 46.6 (8h) 50.60 (1h 28m) 25.48 (9m)
2 17 Elapsed Time from Order to the last Invoice Submit 53.13 (4h 51m) 46.89 (10h 31m) 45.23 (42m) 24.02 (14m)
2 18 Elapsed Time from Order to the last Invoice Approved 51.61 (5h 14m) 47.14 (5h 3m) 47.49 (42m) 25.26 (14m)
1 19 Occurrence of Activity Purchase Order Blocked 0.33 (4h 45m) 0.37 (9h 12m) 0.51 (6h 4m) 0.60 (20m)
1 20 Occurrence of Activity Invoice Pay Method Changed 0.38 (3h 35m) 0.50 (13h) 0.64 (6h 22m) 0.74 (20m)
1 21 Occurrence of Attribute Pay Type Late 0.73 (1h 6m) 0.75 (5h 38m) 0.82 (7h 12m) 0.82 (19m)

Catboost or LSTM models are employed: here, graph instances are still created and
encoded as sequences.

Graph-based neural networks conversely are general purpose, and are not informed
on the specific characteristics of the graphs that encodes the interactions. Internally, they
need to learn an abstraction of the graph structure, and no specific known characteristics
of these graph instances can be leveraged on for a better abstraction. This yields lower
accuracy, as well as the effort to learn an abstraction is paid via higher training time.

6 Conclusion

The object-centric process paradigm is increasingly gaining popularity in academia and
industry. According to this paradigm, the process is seen as the interplay of numer-
ous processes that constitute the life cycles of different objects of various types, where
these life cycles periodically synchronize. The presence of many-to-many interactions
between objects (i.e., processes) prevents the direct application of existing techniques,
designed for traditional processes with one single id and execution flow.

This paper reports on the experience of comparing the predictions of two techniques
based on gradient boosting on decision tree or LSTM against two based on graph neural
networks. The four techniques were empirically evaluated on event logs related to two
real object-centric processes, and more than 20 different KPI definitions. The results
illustrate that the technique based on gradient boosting generally shows the highest
accuracy, likely thanks to a proper engineering of the features to encode the object
interaction. At the same time, it is more than 800% faster than the techniques relying on
graph-based neural networks. For the two adopted datasets and the 21 KPIs employed in
our experiments, gradient boosting on decision trees is more suitable than graph-based
neural networks for object-centric process predictive analytics.
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Note how the Gradient-Boosting technique discussed in this paper does not use the
event-log flattening solution proposed in [6]: in this paper, we still represent the objects’
interaction via graph instances, and the sequence conversion is only done as last step,
retaining a set of features that meaningfully encode the graph-like structure.

Future work aims to conduct additional experiments on different publicly-available
datasets and to also perform cross-validation to further validate the findings reported
here. We also plan on testing different manual engineering of the object-interaction fea-
tures; it cannot be excluded, indeed, that the features that so far we manually engineered
are not the right abstraction of the object interaction in every case study. Moreover, we
cannot exclude that a different trace encoding function for LSTM and graph-based neu-
ral networks could improve the performances of these models.
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