
Automatic Workflows Composition of Mobile Services

Giuseppe De Giacomo Massimiliano de Leoni Massimo Mecella Fabio Patrizi

SAPIENZA – Università di Roma
Dipartimento di Informatica e Sistemistica

Via Salaria 113 – 00198 Roma, ITALY
{degiacomo,deleoni,mecella,patrizi}@dis.uniroma1.it

Abstract

Pervasive computing environments are nowadays more
and more used as a supporting tool for cooperative work-
flows, e.g., in emergency management. A typical problem in
these scenarios is the synthesis of workflows in presence of
sets of services (hosted on mobile devices) with constrained
behaviors, just before the collaborating team is dropped off
in the operation field.

In this paper, we propose a technique able to automati-
cally synthesize distributed orchestrators, each one coordi-
nating a service and synchronizing with the other orches-
trators, given a target generic workflow to be carried out
and a set of behaviorally-constrained services.

1. Introduction

Pervasive computing environments are nowadays more
and more used as a supporting tool for cooperative work-
flows, e.g., in emergency management [7].

Each team member is typically equipped with hand-
held devices (PDAs) and communication technologies
(e.g., WiFI for constituting a Mobile Ad hoc NETwork –
MANET), and, through the interplay with the software run-
ning on the device, can execute specific actions. The team
member and his device offer a service towards the other
members, and an overall workflow coordinates the actions
of all the services. On the other hand, actions offered by
such mobile services are typically constrained; as an exam-
ple, if a service A is instructed to take some photos, then
it needs to be instructed to forward them to another stor-
age device B (and no other photos can be taken until the
forwarding is executed), as the device offering A has not
enough storage space to keep multiple photos (this is quite
common with current handheld devices). Moreover, the ef-
fects of such actions can not be foreseen, but can be observ-
able afterwards.

Typically, as demonstrated in many research projects 1,

1cfr. SHARE (http://www.share-project.org),
EGERIS (http://www.egeris.org), ORCHESTRA

generic workflows for the different teams are designed a-
priori, and then, just before a team is dropped off in the op-
eration field, they need to be instantiated on the basis of the
currently available services offered by the mobile devices
and operators effectively composing the team.

Moreover, the effective workflow to be enacted by the
team, through the offered services, cannot be centrally
orchestrated, as in general devices may not be powerful
enough, and continuous connection with this central orches-
trator would be not guaranteed. Conversely, decentralized
orchestrators (one for each device/service) should distribu-
tively coordinate the workflow, through the appropriate ex-
change of messages, conveying synchronization informa-
tion and the outputs of the performed actions by the ser-
vices.

The problem addressed in this paper is how to synthe-
size the distributed orchestrators in presence of services
with constrained behaviors. We propose a novel tech-
nique, sound, complete and terminating, able to automati-
cally synthesize such distributed orchestrators, given (i) the
target generic workflow to be carried out, in the form of
a finite transition system, and (ii) the set of behaviorally-
constrained services, again in the form of (non determinis-
tic) finite transition systems.

This issue has some similarities with the one of automat-
ically synthesizing composite services starting from avail-
able ones [11, 12, 10, 16, 2]. In particular, [2] considers the
issue of automatic composition in the case in which avail-
able services are behaviorally constrained, and [4] in the
case in which the available services are behaviorally con-
strained and the results of the invoked actions cannot be
foreseen, but only observable afterwards. All the previous
approaches consider the case in which the synthesized or-
chestrator is centralized.

On the other side, the issue of distributed orchestration
has been considered in the context of Web service technolo-
gies [1, 5], but with emphasis on the needed run-time ar-
chitectures. Our work can exploit such results, even if they
need to be casted into the mobile scenario (in which service

(http://www.eu-orchestra.org), FORMIDABLE
(http://www.formidable-project.org), WORKPAD
(http://www.workpad-project.eu).

providers are less powerful).
The remainder of this paper is as follows. In Section

2, the general framework is presented. Section 3 presents
a complete example, in which a target workflow, possible
available services and the automatically synthesized orches-
trators are shown. Section 4 presents the proposed tech-
nique, and finally Section 5 concludes the paper by present-
ing some discussion and future work.

2. Conceptual Architecture

As previously introduced, we consider scenarios in
which a team consists of different operators, each one
equipped with PDAs or similar handheld devices, running
specific applications. The interplay of (i) software func-
tionalities running on the device and (ii) human activities to
be carried out by the corresponding operator, are regarded
as services, that suitably composed and orchestrated form
the workflow that the team need to carry out. Such a work-
flow is enacted, during run-time, by an orchestrator (a.k.a.
workflow management system).

The service behavior is modeled by the possible se-
quences of actions. Such sequences can be nondeterminis-
tic; indeed nondeterministic sequences stem naturally when
modeling services in which the result of each action on the
state of the service can not be foreseen. Let us consider as
an example, a service that allows taking photos of a disaster
area; after invoking the operation, the service can be in a
state photo OK (if the overall quality is appropriate), or
in a different state photo bad, if the operator has taken
a wrong photo, the light was not optimal, etc. Note that
the orchestrator of a nondeterministic service can invoke the
operation but cannot control what is the result of it. In other
words, the behavior of the service is partially controllable,
and the orchestrator needs to cope with such partial con-
trollability. Note also that if the orchestrator observes the
status in which the service is after an operation, then it can
understand which transition, among those nondeterministi-
cally possible in the previous state, has been undertaken by
the service. We assume that the orchestrator can indeed ob-
serve states of the available services and take advantage of
this in choosing how to continue in executing the workflow.

The workflow is specified on the basis of a set of avail-
able actions (i.e., those ones potentially available) and a
blackboard, i.e., a conceptual shared memory in which the
services provide information about the output of an action
(cfr. complete observability wrt. the orchestrator). Such
a workflow is specified a-priori (i.e., it encodes predefined
procedures to be used by the team, e.g., in emergency man-
agement), without knowing which effective services are
available for its enactment.

The issue is then how to compose (i.e., realize) such a
workflow by suitably orchestrating available services. In the
proposed scenario, such a composition of the workflow is
useful when a team leader, before arriving on the operation
field, by observing (i) the available devices and operators
constituting the team (i.e., the available services), and (ii)
the target workflow the team is in charge of, need to derive

the orchestration.
At run-time (i.e., when the team is effectively on the op-

eration field), the orchestrator coordinates the different ser-
vices in order to enact the workflow. The communications
between the orchestrator and the services are carried out
through appropriate middleware, which offers broadcasting
of messages and a possible realization of the blackboard
[13].

Indeed the orchestrator is distributed, i.e., there is not any
coordination device hosting the orchestrator; conversely,
each device, besides the service, hosts also a local orchestra-
tor. All the orchestrators, by appropriately communicating
among them, carry on the workflow in a distributed fashion.
Also the blackboard, from an implementation point of view,
is realized in a distributed fashion.

3. A Case Study

Let’s consider a scenario where a disastrous event (e.g.,
an earthquake) breaks out. After giving first assistance to
people involved in the affected area, a team of civil protec-
tion is sent on the spot. Team members, equipped with mo-
bile devices, need to document damage directly on a situa-
tion map so that following activities can be scheduled (e.g.,
reconstruction jobs). Specifically their work is supposed
to be focused on three buildings A, B and C. For each
building a report has to be prepared. Those reports should
contain: (i) a preliminary questionnaire giving a description
of the building and (ii) some photos about the conditions
of buildings. Filling questionnaires does not require to stay
very close to buildings, whereas taking photos does.

Suppose the team is composed of three mobile services
MS1,MS2,MS3, whose capabilities include compiling
questionnaires and taking/evaluating building pictures, in
addition to a repository service RS, which is able to forward
the documents (questionnaires and pictures) produced by
mobile units to a remote storage in a central hall. Services
can read and write some shared boolean variables, namely
{qA,qB,qC,pA,pB,pC,available}, held in a black-
board, which represent relevant environment properties that
can be accessed by all members, for reading/writing. For
example, variable qA set to T corresponds to the avail-
abililty of questionnaire A.

Each service has its own capabilities and limitations, ba-
sically depending on technological, geographical and his-
torical reasons – e.g., a team member who, in the past, vis-
ited building A, makes its respective unit able to compile
questionnaire A; a unit close to building B can move there,
and so on. Mobile services are described by state-transition
diagrams where non-deterministic transitions are allowed.
Diagrams of Figures 1(a) – 1(d) describe, respectively, units
MS1 – MS3 and RS. An edge outcoming from a state s is
labeled by a triple E[C]/A, where both [C] and A are op-
tional, with the following semantics: when the service is in
state s, if the set of events E occurs and condition C holds,
then: i) change state according to the edge and ii) execute
action A. In this context, a set of events represents a set
of requests assigned to the service, which can be satisfied

only if the condition (or guard) holds (is true). Actions cor-
respond to writing messages on the blackboard, while the
actual fulfillment of requests is implicitly assumed when-
ever a state transition takes place. In other words, each set
of events represents a request for some tasks, which are ac-
tually performed, provided the respective condition holds,
during the transition. Moreover, blackboard writes can be
possibly performed.

For instance, consider Figure 1(a). Initially (state S0),
MS1 is able to serve requests: {compile qB} (compile
questionnaire about building B), {read pC} (get photo
of building C from repository), {move A} (move to, or
possibly around, building A) and {req space} (ask re-
mote storage for freeing some space). In all such cases,
neither conditions nor actions are defined, meaning that,
e.g., {move A} simply requires the unit to reach, i.e., ac-
tually moving to, building A, independently of any con-
dition and without writing anything on the blackboard.
After building A is reached (S1), a photo can be taken
({take pA}). A request for this yields a non-deterministic
transition, due to the presence of two different outgo-
ing edges labeled with the same event and non-mutually-
exclusive conditions (indeed, no condition is defined at
all). Note that, besides possibly leading to different states
(S2 or S3), a non-deterministic transition may, in gen-
eral, give raise to different blackboard writes, as it hap-
pens, e.g., if a request for {eval pC} is assigned when
the service is in state S5. State S2 is reached when, due
to lack of light, the photo comes out too dark. Then,
only photo modification ({modify pA}, which makes it
lighter) is allowed. On the other hand, state S3 (the photo
is quite fine) gives also the possibility to ask the reposi-
tory for additional space while photo modification is being
performed ({modify pA,req space}). In such case,
{available=T} is written on the blackboard, which an-
nounces that some space is available in the repository and,
thus, additional data can be stored there. Moreover, state S3
allows for serving a {write pA} request, which has the ef-
fect of writing the taken photo into the remote storage. Such
task can be successfully completed only if there is avail-
able space, as required by condition [available], and,
in such case, it is to be followed by action {pA=T}, in order
to announce the availability, in the storage, of a picture of
building A. Now, consider the request for {read pC} out-
going from state S0. Such task gets a photo of building C,
if any, from the remote storage, and forces a service transi-
tion to state S5. Then, {evaluate pC} can be requested
with the aim of checking whether or not the photo captures
relevant aspects of building C and consequently accepting
or rejecting it. Recall that the photo could be not in the stor-
age. If so, a {pC=F} write is performed. Otherwise, either
{pC=T} or {pC=F} can be written on the blackboard, de-
pending on whether the picture is accepted or not. Finally,
we complete the description of the service by observing that
task {write qB} can be requested in order to write a filled
questionnaire in the remote storage, assuming it is small
enough to be written without satisfying any additional space
condition.

{ take_pA }

S0S0S5

S3

S4

{ modify_pA, req_space} / { available = T }

{ write_pA } [available] / { pA = T }

{ compile_qB }

{ write_qB } / { qB = T }{ eval_pC } / { pC = F }

{ eval_pC } / { pC = T}

{ read_pC }

{ modify_pA }S1

{ move_A }

S2
{ modify_pA }

{ take_pA }

req_space / { available = T }

(a) Mobile Service MS1

{ take_pC }

S0S0

S5

S1

S6

S2

{ move_C }

{ modify_pC, req_space } / {available=T}

{ write_pC } [available] / { pC=T }

{ compile_qB }

{ write_qB } / { qB=T }{ eval_pB } / { pB=F }

{ eval_pB } / { pB=T }

{ read_pB }

S4

{ modify_pC }

S3

{ compile_qC }

{ write_qC } / { qC=T }
{ move_C }

(b) Mobile Service MS2

{ take_pB }

S0S0

S3

S1

S4

S2

{ move_B }
{ write_pB } [available] / { pB = T }

{ compile_qA }

{ write_qA } / { qA = T }{ eval_pA } / { pA = F }

{ eval_pA } / { pA = T }

{ read_pA }

{ modify_pB }

(c) Mobile Service MS3

S0S0

{ forward } / {available=T}

{ commit } /
{pA=pB=pC=qA=qB=qC=F} { forward } / {available=F}

(d) Repository Service RS

Figure 1. Mobile services

{ [¬qA] / compile_qA,
[¬qB] / compile_qB,
[¬qC] / compile_qC}

S0S0

S3

S1

S4

S2

S5

S6

S8

{ [¬qA] / write_qA,
[¬qB] / write_qB,
[¬qC] / write_qC,
/ forward }

{ [¬pA] / move_A,
[¬pB] / move_B,
[¬pC] / move_C }

{ [¬pA] / take_pA,
[¬pB] / take_pB,
[¬pC] / take_pC }

{ [¬pA] / modify_pA,
[¬pB] / modify_pB,
[¬pC] / modify_pC,
[¬available] / req_space }

{ [¬pA] / move_A,
[¬pB] / move_B,
[¬pC] / move_C }

{ [pA & pB & pC] / commit }

{ [¬pA] / write_pA,
[¬pB] / write_pB,
[¬pC] / write_pC,
/ forward }

{ [¬pA] / eval_pA,
[¬pB] / eval_pB,
[¬pC] / eval_pC }

S7

{ [¬pA] / read_pA,
[¬pB] / read_pB,
[¬pC] / read_pC }

Figure 2. The target workflow

Semantics of other actions, e.g. write qA, is straight-
forward and, consequently, diagrams of units MS2, MS3

and RS can be similarly interpreted. RS is a service repre-
senting an interface between mobile units and the commu-
nication channel used for sending data to remote storage.
In fact, task forward must be performed by RS when-
ever a mobile unit is asked for writing (e.g. write pC or
write qB) some data. Forwarding means receiving data
from mobile services and writing it to remote storage. For
security reasons, only mobile services are trusted systems
which can ask the storage for freeing space (req space)
and can access the storage for reading (e.g., read pC),
while sending data can be performed only by the reposi-
tory service.
After each forwarding, it may happen that the storage
becomes full. This is why the forward task is non-
deterministic and may yield either a {available=T} or
a {available=F} write on the blackboard. On the other
hand, a mobile service performing a {req space} guar-
antees that remote storage will free some space, conse-
quently it is deterministic and yields a {available=T}
write on the blackboard. Finally, RS is allowed to send the
remote storage a commit message, which asks the storage
for compressing last received data and consequently makes
files no longer available for reading.

The goal of the team is to collect both ques-
tionnaires and photos about all buildings. In Fig-
ure 2, a graphical representation of the desired work-
flow is shown where, initially: (i) all services are as-
sumed to be in state S0 and (ii) blackboard state is
{qA=qB=qC=pA=pB=pC=F, available=T}. Edges
outcoming from each state are labeled by sets of pairs
[C]/T , whith the following semantics: if, in current state,
condition (guard) C holds, then task T must be assigned
to some service. Hence, each state transition may require,
in general, the execution of a set of tasks. Observe that
the target workflow is deterministic, that is, no two guards
appearing inside different sets which label different edges
outcoming from the same state can be true at the same time.
Intuitively, after having filled all questionnaire and taken
one photo per building, the target workflow requires ser-
vices to iterate between states S3-S8 until a a good photo
for each building has been sent to the remote storage. Then,

the team must be ready to perform the operation again. In
order to guarantee that pictures actually capture relevant
aspects of the buildings, a sort of peer review strategy is
adopted, i.e., each photo a unit writes in the remote storage
must be read, evaluated and approved/rejected by a second
unit. Both approval and rejection are publicly announced
by writing a proper message on the blackboard (indeed,
it is sufficient {pC=F} or {pC=T}). When all documents
are sent (questionnaires are not subject to review process) a
commit message is sent to the remote storage and the team
can start a new iteration.

Finally, in Figure 3 a solution to the distributed compo-
sition problem is presented which consists of a set of lo-
cal orchestrators which, upon execution, coordinate the ser-
vices in order to realize the target workflow of Figure 2.
Recall that each mobile service is attached to a local or-
chestrator which is able to both assigning tasks to the ser-
vice itself and broadcasting messages. In order to accom-
plish their task, that is, realizing workflow transitions by
properly assigning a subset of workflow requests to the re-
spective services, local orchestrators need to access, for
each transition: (i) the set of workflow requests and (ii) the
whole set of messages other orchestrators sent. For this rea-
son, both workflow requests and orchestrator messages are
broadcasted. Each orchestrator transition is labeled by a
pair I/O, which means: if, in current state, I occurs, then
perform O, where I = 〈A,M, s〉 and O = 〈A′,M ′〉 with
the following semantics: A is the set of tasks the workflow
requests, M is the set of (broadcasted) messages the orches-
trator received (including its own messages), s is the state
reached by the attached service after tasks assigned by the
orchestrator (A′, see below) have been performed, A′ ⊆ A
is the subset of actions the local orchestrator assigns to the
attached service and M ′ is the set of messages the orches-
trator broadcasts after the service performed A′. Notation
has been compacted by introducing some shortcuts for set
representation. In details, (i) “. . .” stands for “any set of el-
ements”: for instance, in the transition between states S0
and S1 of local orchestrator for MS1 (Figure 3(a)), the
set {. . .commit} represents any set (of tasks) containing
commit; (ii) an element with the prefix “-” stands for “any-
thing but the element, possibly nothing”: for instance, in the
first (from top) transition between states S4 and S5 of Fig-
ure 3(a), the set {. . .modify pA,-req space} stands
for “any set (of tasks) not including req space and in-
cluding modify pA”.

Observe that local orchestrators are deterministic, that is,
at each state, no ambiguity holds on which transition, if any,
has to be selected. In general, this is due to the presence of
messages, which are useful for selecting which tasks are to
be assigned to each service. As an example, observe that
third and fourth transitions of Figure 3(a) can be performed
when a same set of tasks ({. . .req space,modify pA})
is requested by the workflow. The choice of which one
is to be assigned to attached service depends on the mes-
sages the orchestrator received, which somehow represent
other services current capabilities. So, in state S4, when
the set of requested tasks includes both req space and

modify pA: (i) if received messages include m1
3 (that is,

the message local orchestrator for MS1 sends when the ser-
vice reaches state S3 from S1), then the orchestrator as-
signs tasks {modify pA, req space} to the service;
(ii) otherwise, the set of assigned tasks is {modify pA}
and, consequently, there will be another local orchestrator
assigning a set of tasks including req space to its re-
spective service, basically depending on the messages it re-
ceived.

The orchestrators for MS2 and MS3 are roughly similar.
The only noticeable difference is in transition between state
S4 and S5 where the local orchestrator for MS3 assigns the
same action modify pB for the attached service, indepen-
dently of the other actions to be assigned. Indeed, orches-
trators MS1 and MS2 makes this assignment dependent of
the actions which are to be assigned to other services.

4 The Proposed Technique

The formal setting. A Workflow Specification Kit (WfSK)
K = (A,V) consists of a finite set of actions A and a finite
set of variables V , also called blackboard, that can assume
only a finite set of values. Actions have known (but not
modeled here) effects on the real world, while they do not
change directly the blackboard.

Using a WfSK K one can define workflows over K. For-
mally a workflow W over K is defined as a tuple: W =
(S, s0, G, δW , F), where:

• S is a finite set of workflow states;

• s0 ∈ S is the single initial state;

• G is a set of guards, i.e., formulas whose atoms are
equalities (interpreted in the obvious way) involving
variables and values.;

• δW ⊆ S ×G× 2A−{∅} ×S is the workflow transition
relation: (s, g, A, s′) ∈ δW denotes that in the state s,
if the guard g is true in the current blackboard state,
then the set of (concurrent) actions A ⊆ A is executed
and the service changes state to s′; we insist that such a
transition relation is actually deterministic: for no two
distinct transitions (s, g1, A1, s1) and (s, g2, A2, s2) in
δW we have that g1(γ) = g2(γ) = true, where γ is
the current blackboard state;

• finally, F ⊆ S is the set of states of the workflow that
are final, that is, the states in which the workflow can
stop executing.

In other words a workflow is a finite state program whose
atomic instructions are sets of actions of A (more precisely
invocation of actions), that branches on conditions to be
evaluated on the current state of the blackboard V .

What characterizes our setting however is that actions in
the WfSK do not have a direct implementation, but instead
are realized through available services. In other words ac-
tion executions are not independent one from the other but
they are constrained by the services that include them. A

service is essentially a program for a client (actually the
orchestrator, as we have seen). Such a program, however,
leaves the selection of the set of actions to perform next to
the client itself (actually the orchestrator). More precisely,
at each step the program presents to the client (orchestra-
tor) a choice of available sets of (concurrent) actions; the
client (orchestrator) selects one of such sets; the actions in
the selected set are executed concurrently; and so on.

Formally, a service S is a tuple S = (S, s0, G,C, δS , F)
where:

• S is a finite set of states;

• s0 ∈ S is the single initial state;

• G is a set of guards, as described for workflows;

• C is a set of partial variable assignment for V , that is
used to update the state of the blackboard;

• δS ⊆ S × G × 2A−{∅} × C × S is the service tran-
sition relation, where (s, g, A, c, s′) ∈ δS denotes that
in the state s, if the guard g is true in the current black-
board state and it is requested the execution of the set
of actions A ⊆ A, then the blackboard state is updated
according to c and the service changes state to s′;

• finally, F ⊆ S is the set of states that can be considered
final, that is, the states in which the service can stop
executing, but does not necessarily have to.

Observe that, in general, services are nondeterministic in
the sense that they may allow more than one transition with
the same set A of actions and compatible guards evaluat-
ing to the same truth value 2. As a result, when the client
(orchestrator) instructs a service to execute a given set of
actions, it cannot be certain of which choices it will have
later on, since that depends on what transition is actually
executed – nondeterministic services are only partially con-
trollable.

To each service we associate a local orchestrator. A lo-
cal orchestrator is a module that can be (externally) attached
to a service in order to control its operation. It has the ability
of activating-resuming its controlled service by instructing
it to execute a set of actions. Also, the orchestrator has the
ability of broadcasting messages from a given set of M af-
ter observing how the attached service evolved w.r.t. the del-
egated set of actions, and to access all messages broadcasted
by the other local orchestrators at every step. Notice that the
local orchestrator is not even aware of the existence of the
other services: all it can do is to access their broadcasted
messages. Lastly, the orchestrator has full observability on
the blackboard state.

A (messages extended) service history h+
S for a given

service S = (S, s0, G,C, δS , F), starting in a blackboard
state γ0, is any finite sequence of the form (s0, γ0,M0)·A1·
(s1, γ1,M1) · · · (s�−1, γ�−1,M �−1) ·A� · (s�, γ�,M �), for
some � ≥ 0, such that for all 0 ≤ k ≤ � and 0 ≤ j ≤ � − 1:

2Note that this kind of nondeterminism is of a devilish nature – the
actual choice is out of the client (orchestrator) control.

< { ... compile_qB }, { … m0
1 }, S4 > / < { compile_qB }, { m4

1 } >

S0

S3

S1

S4

S2

S5

S6

S8 S7

< { ... write_qB } , { ... m4
1} , S0 > / < { write_qB}, { m0

1 } >

< { ... move_A }, { ... m0
1}, S1 >

/ < { move_A }, { m1
1 } >

< { ... take_pA }, { ... m1
1 }, S2 >

/ < { take_pA }, { m2
1 } >

< { ... take_pA } , { ... m1
1 }, S3 >

/ < { take_pA }, { m3
1 } >

< {… - req_space modify_pA }, { ... m2
1 } ∪ { … m3

1 }, S3 > /
< { modify_pA }, { m3

1 } >

< { ... req_space }, { ... m0
1 }, S0 > /

< { req_space }, { m1
1 } >

< { ... req_space, modify_Pa }, { ... m3
1 }, S3 > /

< {modify_pA, req_space }, { m3
1 } >

< { … req_space, modify_pA }, { … m2
1, m0

2 }, S3 > /
< { modify_pA }, { m3

0 } >

< { … req_space, modify_pA }, { … m2
1, m6

2 }, S3 > /
< { modify_pA }, {m3

1 } >

< { …
move_A }, { …

m0
1 }, S

1 >/ < { m
ove_A }, {

m1
1 } >

< { … write_pA }, { … m3
1 }, S0 >

/ < { write_pA }, { m0
1 } >

< { … read_pC }, { … m0
1 }, S5 >

/ < { read_pC }, { m5
1 } >

< { … eval_pC }, { … m5
1 },S0 >

/ < { eval_pC }, { m0
1} >< { … commit }, { … }, { … } > / < { }, { } >

(a) Local orchestrator for MS1

< { ... compile_qC }, { … m0
2 }, S3 > / < { compile_qC }, { m3

2 } >

S0

S3

S1

S4

S2

S5

S6

S8 S7

< { ... write_qC } , { ... m3
2} , S4 > / < { write_qC}, { m4

2 } >

< { ... move_C }, { ... m4
2 }, S5 >

/ < { move_C }, { m5
2 } >

< { ... take_pC }, { ... m4
2 }, S6 >

/ < { take_pC }, { m6
2 } >

< {… - req_space modify_pC }, { ... m6
2 }, S6 > /

< { modify_pC }, { m6
2 } >

< { ... req_space, modify_Pa }, { ... m3
2 }, S6 > /

< {modify_pC }, { m6
2 } >

< { … req_space, modify_pA }, { … m2
1, m0

2 }, S6 > /
< { req_space }, { m6

2 } >

< { … req_space, modify_pC }, { … m2
1, m6

2}, S6 > /
< {req_space, modify_pC }, {m6

2 } >

< { … write_pC }, { … m6
2 }, S0 >

/ < { write_pA }, { m0
2 } >

< { … read_pB }, { … m0
2 }, S1 >

/ < { read_pC }, { m1
2 } >

< { … commit }, { … }, { … } > / < { }, { } >

< { ...
move_C }, { ..

. m4
2 }, S5 > / < { move_C }, { m5

2 } >

(b) Local orchestrator for MS2

< { ... compile_qA }, { … m0
3 }, S2 > / < { compile_qB }, { m2

3 } >

S0

S3

S1

S4

S2

S5

S6

S8 S7

< { ... write_qA } , { ... m2
3} , S0 > / < { write_qA }, { m0

3 } >

< { ... move_B }, { ... m0
3 }, S3 >

/ < { move_B }, { m3
3 } >

< { ... take_pB }, { ... m3
3 }, S4 >

/ < { take_pB }, { m4
3 } >

< { … write_pB }, { … m4
3 }, S0 >

/ < { write_pB }, { m0
3 } >

< { … read_pA }, { … m0
3 }, S1 >

/ < { read_pA }, { m1
3 } >

< { … eval_pA }, { … m1
3 }, S0 >

/ < { eval_pA }, { m0
3} >< { … commit }, { … }, { … } > / < { }, { } >

< { ..
. move_B }, {

... m
0
3 }, S

3 > / <
 { m

ove_B }, {
m3

3 } >

< { ... modify_pB }, { ... m4
3 }, S4 > / < { modify_pB }, { m4

3 } >

(c) Local orchestrator for MS3

S0

S3

S1

S4S2

S5

S6S8 S7

τ ≡ < { …} , { … }, { … } > / < { }, { } >

< { … forward } , { … }, S0 > /
< { forward }, {m0

4} >

τ
< { … forward } , { … }, S0 > /

< { forward }, {m0
4} >

τ
τ

ττ< { … commit } , { … }, S0 > / < { commit }, {m0
4} >

< { - commit } , { … }, S0 > / < { }, {m0
4} >

(d) Local orchestrator for RS

Figure 3. Local orchestrators

• s0 = s0;

• γ0 = γ0;

• Ak ⊆ A;

• (sj , g, Aj+1, c, sj+1) ∈ δi with g(γj) = true and
c(γj) = γj+1 that is, service S can evolve from its
current state sj to state sj+1 while updating the back-
board state from γj to γj+1 according to what speci-
fied in c;

• M0 = ∅ and Mk ⊆ M, for all k ∈ {0, . . . , �}.

The set H+
B denotes the set of all service histories for S.

Formally, a local orchestrator O = (P,B) for service S
is a pair of functions of the following form:

P : H+
B × 2A → 2A; B : H+

B × 2A × S → 2M.

Function P states what actions A′ ⊆ A to delegate to the
attached service at local service history h+

B when actions A
were requested. Function B states what messages, if any,
are to be broadcasted under the same circumstances and the
fact that the attached service has just moved to state s after
executing actions A′. We attach one local orchestrator Oi

to each available service Si. In general, local orchestrators
can have infinite states.

A distributed orchestrator is a set X = (O1, . . . ,On) of
local orchestrators, one for each available service Si.

We call device the pair D = (S,O) constituted by a
service S and its local orchestrator O.

A workflow mobile environment (WfME) is constituted
by a finite set of devices E = (D1, . . . ,Dn) defined over
the same WfSK K.

Local Orchestrator Synthesis. The problem we are in-
terested in is the following: given n services S1, . . . , Sn

over WfSK K = (A,V) and an initial blackboard state γ0,
and a workflow W over K, synthesize a distributed orches-
trator, i.e., a team of n local orchestrators, such that the
workflow is realized by concurrently running all services
under the control of their respective orchestrators.

More precisely, let S1, . . . ,Sn be the n services, each
with Si = (Si, si0, Gi, Ci, δi, Fi), γ0 be the initial state
of the blackboard, and W = (SW , sW0, GW , δW , FW) the
workflow to be realized.

We start by observing that the workflow (being deter-
ministic) is completely characterized by its set of traces,
that is, by the set of infinite action sequences that are faith-
ful to its transitions, and of finite sequences that in addi-
tion lead to a final state. More formally, a trace for W
is a sequence of pairs (g,A), where g ∈ G is a guard
over V and A ⊆ A is non-empty set of actions, of the
form t = (g1, A1) · (g2, A2) · · · such that there exists
an execution history 3 for W , (s0, γ0) · A1 · (s1, γ1) · · ·
where gi(γi−1) = true for all i ≥ 1. If the trace

3Analogous the execution histories defined for services except that they
do not include messages.

t = (g1, A1) · · · (g�, A�) is finite, then there exists a finite
execution history (s0, γ0)· · ·(s�, γ�) · · · with s� ∈ FW .

Now, given a trace t = (g1, A1) · (g2, A2) · · · of
the workflow W , we say that a distributed orchestra-
tor X = (O1, . . . ,On) realizes the trace t iff for all �
and for all “system history” h� ∈ H�

t,X (formally de-
fined defined below) with g�+1(γ�) = true in the last
configuration of h�, we have that Extt,X (h�, A�+1) is
nonempty, where Extt,X (h,A) is the set of (|h| + 1)-
length system histories of the form h · [A1, . . . , An] ·
(s|h|+1

1 , . . . , s
|h|+1
n , γ|h|+1,M |h|+1) such that:

• (s|h|1 , . . . , s
|h|
n , γ|h|,M |h|) is the last configuration in

h;

• A =
⋃n

i=1 Ai, that is, the requested set of actions A is
fulfilled by putting together all the actions executed by
every service.

• Pi(h|i, A) = Ai for all i ∈ {1, . . . , n}, that is, the
local orchestrator Oi instructed service Si to execute
actions Ai;

• (s|h|i , gi, Ai, ci, s
|h|+1
i) ∈ δi with gi(γ|h|) = true,

that is, service Si can evolve from its current state s
|h|
i

to state s
|h|+1
i w.r.t. the (current) variable assignment

γ|h|;

• γ|h|+1 ∈ C(γ|h|), where C = {c1, . . . , cn} is the set
of the partial variable assignments ci due to each of the
service, and C(γ|h|) is the set of blackboard states that
are obtained from γ|h| by applying each c1, . . . , cn in
every possible order;

• M |h|+1 =
⋃n

i=1 Bi(h|i, A, s|h|+1), that is, the set
of broadcasted messages is the union of all messages
broadcasted by each local orchestrator.

The set Hk
t,X of all histories that implement the first k

actions of trace t and is prescribed by X is defined as fol-
lows:

• H0
t,X = {(s10, . . . , sn0, γ0, ∅)};

• Hk+1
t,X =

⋃
hk∈Hk

t,X
Extt,X (hk, Ak+1), k ≥ 0;

In addition if a trace is finite and ends after m actions, and
all along all its guards are satisfied, we have that all histories
in Hm

t,X end with all services in a final state. Finally, we say
that a distributed orchestrator X = (O1, . . . ,On) realizes
the workflow W if it realizes all its traces.

In order to understand the above definitions, let us ob-
serve that, intuitively, the team of local orchestrators real-
izes a trace if, as long as the guards in the trace are satisfied,
they can globally perform all actions prescribed by the trace
(each of the local orchestrators instructs its service to do
some of them). In order to do so, each local orchestrator can

use the history of its service together with the (global) mes-
sages that have been broadcasted so far. In some sense, im-
plicitly through such messages, each local orchestrator gets
information on the other service local histories in order to
take the right decision. Furthermore, at each step, each local
orchestrator broadcasts messages. Such messages will be
used in the next step by all service orchestrators to choose
how to proceed.

Results. Our main technical results are summarized by
the next theorem.

Theorem 4.1 There exists a sound, complete and termi-
nating procedure for computing a distributed orchestrator
X = (O1, . . . ,On) that realizes a workflow W over a WfSK
K relative to services S1, . . . ,Sn over K and blackboard
stateγ0. Moreover each local orchestrator Oi returned by
such a procedure is finite state and require a finite number
of messages (more precisely message types).

Observe that we did not put any finiteness limitation on the
number of states of the local orchestrators nor on the num-
ber of messages to be exchanged. This theorem, by restrict-
ing oneself to finite number of states and messages, does
not loose generality.

The synthesis procedure is based on the general tech-
niques proposed in [3, 4, 6], based on a reduction of the
problem to satisfiability of a Propositional Dynamic Logic
formula [8] whose models roughly correspond to orchestra-
tors 4. From a realization point of view, such a procedure
can be implemented through the same basic algorithms be-
hind the success of the description logics-based reasoning
systems used for OWL5, such as FaCT6, Racer7, Pellet8,
and hence its applicability appears to be quite promising.
The reader should note that the technique is not exploited
at run-time, but before the execution of the services and
the local orchestrators effectively happens, therefore the re-
quirements of mobile scenarios are not violated (e.g., just
to have a concrete example, it can be run on a laptop on the
jeep taking the team on the operation field).

5 Conclusion

In this paper, we have studied the workflow composition
problem within a distributed general setting; the solutions
proposed here are therefore palatable to a wide range of
contexts, e.g., nomadic teams in emergency management,
in which we have multiple independent agents and a cen-
tralized solution is not conceivable. Indeed we plan to vali-
date the approach in the context of a research project about
emergency management, namely WORKPAD.

We close the paper by observing that the kind of prob-
lems we dealt with are special forms of reactive process

4We are also studying alternatives based on model checking techniques.
5http://www.omg.org/uml/
6http://www.cs.man.ac.uk/ horrocks/FaCT/
7http://www.sts.tu-harburg.de/ r.f.moeller/racer/
8http://www.mindswap.org/2003/pellet/

synthesis [14, 15]. It is well known that, in general, dis-
tributed solutions are much harder to get than centralized
ones [15, 9]. This has not hampered our approach since we
allow for equipping local controllers with autonomous mes-
sage exchange capabilities, even if such capabilities are not
present in the services that they control.
Acknowledgements. This work is supported by the Eu-
ropean Commission through the FP6-2005-IST-5-034749
project WORKPAD.

References

[1] B. Benatallah, M. Dumas, and Q. Sheng. Facilitating the
rapid development and scalable orchestration of composite
web services. Distributed and Parallel Databases, 17, 2005.

[2] D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, and
M. Mecella. Automatic composition of transition-based se-
mantic web services with messaging. In Proc. VLDB 2005,
2005.

[3] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini,
and M. Mecella. Automatic service composition based on
behavioural descriptions. International Journal of Cooper-
ative Information Systems, 14(4):333–376, 2005.

[4] D. Berardi, D. Calvanese, G. De Giacomo, and M. Mecella.
Composing web services with nondeterministic behavior. In
Proc. ICWS 2006, 2006.

[5] G. Chafle, S. Chandra, V. Mann, and M. G. Nanda. Decen-
tralized orchestration of composite web services. In Proc.
WWW 2004 – Alternate Track Papers & Posters, 2004.

[6] G. De Giacomo and S. Sardina. Automatic synthesis of new
behaviors from a library of available behaviors. In Proc. of
IJCAI 2007, pages 1866–1871, Hyderabad, India, Jan. 2007.

[7] F. De Rosa, A. Malizia, and M. Mecella. Disconnection
prediction in mobile ad hoc networks for supporting cooper-
ative work. IEEE Pervasive Computing, 4(3):62 – 70, 2005.

[8] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. The
MIT Press, 2000.

[9] O. Kupferman and M. Y. Vardi. Synthesizing distributed
systems. In Proc. of LICS 2001, page 389, 2001.

[10] U. Kuter, E. Sirin, D. Nau, B. Parsia, and J. Hendler. Infor-
mation gathering during planning for web service compo-
sition. In Proc. Workshop on Planning and Scheduling for
Web and Grid Services, 2004.

[11] S. A. McIlraith and T. C. Son. Adapting Golog for compo-
sition of semantic web services. In Proc. KR 2002, pages
482–496, 2002.

[12] B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid. Com-
posing web services on the semantic web. VLDB Journal,
12(4):333 – 351, 2003.

[13] A. L. Murphy, G. P. Picco, and G. C. Roman. LIME: A
Coordination Model and Middleware Supporting Mobility
of Hosts and Agents. ACM Transactions on Software Engi-
neering and Methodologies, 15(3):279 – 328, 2006.

[14] A. Pnueli and R. Rosner. On the synthesis of a reactive mod-
ule. In Proc. POPL 1989, pages 179–190, 1989.

[15] A. Pnueli and R. Rosner. Distributed reactive systems are
hard to synthesize. In Proc. of FOCS 1990, pages 746–757,
1990.

[16] P. Traverso and M. Pistore. Automated composition
of semantic web services into executable processes. In
Proc. ISWC 2004, volume 3298 of LNCS, pages 380–394.
Springer, 2004.

