
Data-Aware Remaining Time Prediction of
Business Process Instances

Mirko Polato Alessandro Sperduti
Senior Member, IEEE

Andrea Burattin
Member, IEEE

Massimiliano de Leoni

Abstract— Accurate prediction of the completion time of a
business process instance would constitute a valuable tool when
managing processes under service level agreement constraints.
Such prediction, however, is a very challenging task. A wide
variety of factors could influence the trend of a process instance,
and hence just using time statistics of historical cases cannot be
sufficient to get accurate predictions. Here we propose a new
approach where, in order to improve the prediction quality,
both the control and the data flow perspectives are jointly
used. To achieve this goal, our approach builds a process
model which is augmented by time and data information in
order to enable remaining time prediction. The remaining time
prediction of a running case is calculated combining two factors:
(a) the likelihood of all the following activities, given the data
collected so far; and (b) the remaining time estimation given
by a regression model built upon the data.

I. INTRODUCTION

The number of companies adopting Process Aware In-
formation Systems to support their business processes is
constantly growing. All these systems leave traces of each
executed activity in the form of event logs, and these logs,
nowadays, have been analyzed under several aspects. The two
most important disciplines, in charge of such analysis, are
data and process mining. Data mining analyzes the so called
data perspective: set of values that are recorded and analyzed
independently from the business process they are coming
from. Process mining, on the other hand, considers the entire
business process as a whole, and therefore allows holistic
analyses on data that always are assumed coming from the
execution of a business process. Nowadays, several new
techniques are populating the family of multi-perspective
approaches. The basic idea, in these cases, is to define new
algorithms that are able to exploit and take advantage from
the combination of techniques that belongs to the data and
process mining fields.

It is possible to characterize process mining techniques
according to their “application time” (i.e. when the analysis
takes place). There are, basically, two possible categories: (i)
a-posteriori; and (ii) at runtime. The first case considers as
input a finite portion of historical data and tries to extract
knowledge out of it. The latter approach, on the other hand,
gives information as long as the business process is running.
From a business perspective, it is important to get new
information and new knowledge as soon as possible, in

All authors are with the Department of Mathematics, University of Padua,
Italy. M. de Leoni is also affiliated with the Department of Mathematics and
Computer Science, Eindhoven University of Technology, The Netherlands.

Corresponding author is M. Polato: mpolato@math.unipd.it.

ARunning case:

Amount: 1000$

B C

Payments required: 10

Customer category: "gold"

Current state

...

Comple�on �me

Time

Fig. 1. Graphical representation of the application scenario of the described
approach: given a running case we can predict its completion time. We
assume that each executed activity (represented as filled boxes) records some
additional attributes (represented as labels). Dashed boxes represent future
activities.

order to take the proper actions. For example, in a financial
institute, handling several business processes instances, it is
fundamental to identify frauds as soon as possible, in order
to avoid loss of important resources.

In this paper we are going to present a new technique that
can be used in operational settings. Specifically, we provide
an approach that is able, for a running (i.e. not yet completed)
case, to predict the completion time of such process instance.
The described prediction relies on multiple perspectives: it is
based on both the flow of the activities of the running case,
and on the data that the current process instance is generating.
A graphical representation of the typical application scenario
of our approach is shown in Fig. 1. Specifically, given a
partial trace containing the logs of already executed activities,
it is possible to collect all the data attributes observed until
that moment. Considering again the example in Fig. 1, after
the execution of A, B, and C, the following attributes are
available: Amount = 1000$; Customer category = gold; and
Payments required = 10. With all this information (history
of the trace and set of data attributes), we are able to predict
the completion time of the running instance. The reported
experimental results, both on artificial and real data, show
that prediction accuracy strongly benefits from the usage
of multiple perspectives, and that our approach outperforms
previous ones.

The remainder of this paper is structured as follows:
Section II reviews recent works concerning prediction tasks
in the framework of process mining. Section III gives some
essential definitions that are used throughout the paper,
while Section V defines the core framework and describes

the proposed approach in detail. Experimental results, on
artificial and real logs, are described in Section VI, and
conclusions are presented in Section VII.

II. RELATED WORK

The problem of accurate prediction of the completion time
of a business process instance has already been addressed by
various authors and different approaches have been proposed.
Here we summarize the most relevant ones.

One of the first tools capable of predicting the cycle time
of running process instances is TIBCO Staffware iProcess
Suite [1]. The prediction engine uses simulations to complete
the running case, without taking into account historical data.
This approach is based on a single run through the process
model using parameters provides at build time, such as
process routing and expected activity durations. In [2] and
[3], B.F. van Dongen et al. exploit all the data available
in the event log (not only the time information) and use
non-parametric regression to predict the cycle time of a
running case. Van der Aalst et al. [4] have shown how
historical information can be used to build a recommendation
system, which is able to predict the next activity of the
running instance. In [5] the problem of predicting execution
durations of process instances has been analyzed in a proper
way, with particular emphasis on issues related to cross-
trained resources, however no specific prediction algorithm
is proposed. In [6], Song et al. have shown an approach
which is not only based on event logs, but it also requires a
process model in terms of a transition system (built w.r.t.
a given abstraction level). The approach generates a new
transition system augmented with time information, learned
from historical cases, which can be used for prediction.
In [7], the data perspective is taken into consideration to
predict SLAs (Service Level Agreement) violations. In this
work, besides the explicit data obtained from the event
log (called facts), Leitner et al. estimate the amount of
unknown data in order to improve the prediction quality.
The prediction model is based on a regression technique,
i.e., a multilayer perceptron trained with the Backpropagation
algorithm. Folino et al. ([8], [9]) present an ad-hoc predictive
clustering approach, which exploits the method proposed in
[6]. Specifically, their approach partitions (i.e. clusters) the
log traces according to their associated context features, and
for each of these clusters a predictive model (see [6]) is built.
The actual prediction considers the cluster that is closest to
the partial trace of the running case, and the model associated
to that cluster is used to predict the remaining time. Finally,
an approach which employs the so called instance-specific
probabilistic process model (PPM) to predict the likelihood
of future tasks is described in [10]. The paper also demon-
strates that, on the basis of certain assumptions, the obtained
model is Markovian.

The novelty of the approach proposed in this paper, with
respect to the ones described above, lies in considering the
values of data attributes to predict the remaining time of
a running case. The intuition is that the remaining time
of a case depends on the event just observed, and on the

data attribute values collected until that moment. Different
data attribute values, typically, can lead to different paths
through the process model, and each path can have a different
completion time. Moreover, the same path can have different
durations depending on the observed values of the data at-
tributes. With this in mind, our approach uses a representative
set of training event logs to build up a process model (i.e.
transition system) enriched by regression models trained with
the information extracted from the event log.

Once the enriched process model are built, remaining time
predictions can be performed by replaying the activities of
the running cases over the model, and using the regression
models belonging to each reached state.

III. PRELIMINARIES

This section reports the basic notations and definitions that
are required to understand our approach. Specifically, how to
build a transition system annotated with regression models.

Given a set K, a finite sequence over K of length n is a
mapping s ∈ ([1, n] ⊂ N) → K, and it is represented by a
string, i.e., s = 〈s1, s2, . . . , sn〉. Over a sequence s we define
the following functions:
• selection operator (·): s(i) = si, ∀ 1 ≤ i ≤ n;
• hdk(s) = 〈s1, s2, . . . , smin(k,n)〉;
• tlk(s) = 〈sw, sw+1, . . . , sn〉

where w = max(n− k + 1, 1);
• |s| = n (i.e. the length of the sequence).
Let us now define the notions of event, trace and event

log.
Definition 1 (Event): An event is a tuple

e = (a, c, t, d1, . . . , dm), where:
• a ∈ A is the process activity associated to the event;
• c ∈ C is the case id;
• t ∈ N is the event timestamp (seconds since 1/1/19701);
• d1, . . . , dm is a list of additional attributes, where
∀ 1 ≤ i ≤ m, di ∈ Di, Di being the domain of the i-th
attribute.

We call E = A×C×T ×D1×· · ·×Dm the event universe.
Over an event e we define the following projection

functions: πa(e) = a, πc(e) = c, πt(e) = t and
πdi(e) = di,∀ 1 ≤ i ≤ m. If e does not contain the attribute
value di for some i ∈ [1,m] ⊂ N, πdi(e) =⊥.

Definition 2 (Trace, Partial Trace): A trace is a finite se-
quence of events σc = 〈e1, e2, . . . , e|σc|〉 ∈ E∗ such
that ∀ 1 ≤ i ≤ |σ|, πc(ei) = c ∧ ∀ 1 ≤ j < |σc|,
πt(σc(j)) ≤ πt(σc(j + 1)). We define a partial trace of
length i as σic = hdi(σc), for some i ∈ [1, |σc|] ⊂ N. We
call T the set of all possible (partial) traces.

An event log L is a set of traces, L = {σc | c ∈ C}.
Let us now define a transition system (TS) [6], [11], and

how one TS can be constructed starting from an event log.
Definition 3 (Generic Transition System): A transition

system is a triple (S,E, T), where S is the set of states
(i.e. possible state of the process), E is the set of events

1We assume this representation according to the Unix epoch time.

(i.e. transition labels), and T ⊆ S × E × S is the set of
transitions which describe how a system can move from one
state to another one. Sstart ⊆ S is the set of initial states,
and Send ⊆ S is the set of final states.

A walk, in a Generic Transition System, is a
sequence of transitions 〈t1, t2, . . . , tn〉 such that
t1 = (s1 ∈ Sstart, e, s′1), tn = (sn, e, s

′
n ∈ Send) and

∀ 1 < h < n, th = (sh, e, s
′
h) s.t. s′h /∈ Send ∧ s′h = sh+1.

We say that a trace is compliant with the transition
system if it corresponds to a walk from si ∈ Sstart

to se ∈ Send. Given a state s ∈ S, it is possible to
define the set of reachable states from a given state s as:
s• = {s′ ∈ S | ∃t ∈ T, ∃e ∈ E s.t. t = (s, e, s′)}. Given a
state s ∈ S we define the set of transitions enabled by s as
Ts = {(s, e, q) ∈ T | q ∈ s • ∧ e ∈ E}.

According to Song et al. [6], to construct a transition
system which maps each partial trace in the log to a state, we
need the so called state and event representation functions.

Definition 4 (State representation function): Let Rs be
the set of possible state representations, a state representation
function f state ∈ T → Rs is a function that, given a (partial)
trace σ returns some representation of it (e.g., the set of
included activities, the multiset of included activities, the
sequence of included activities, ..).

Definition 5 (Event representation function): Let Re be
the set of possible event representations, an event represen-
tation function f event ∈ E → Re is a function that, given an
event e produces some representation of it (e.g., πa(e)).

Definition 6 (Transition System): Given a state represen-
tation function f state, an event representation function f event

and an event log L, we define a Transition System as
TS = (S,E, T), where:
• S = {f state(hdk(σ)) | σ ∈ L ∧ 0 ≤ k ≤ |σ|}

is the state space;
• E = {f event(σ(k)) | σ ∈ L ∧ 1 ≤ k ≤ |σ|}

is the set of event labels;
• T (⊆ S × E × S) = {f state(hdk(σ)), f event(σ(k + 1)),
f state(hdk+1(σ))) | σ ∈ L ∧ 0 ≤ k < |σ|}
is the transition relation.

Sstart = {f state(〈〉)} is the set of initial states, and Send =
{f state(σ) | σ ∈ L} is the set of final states.

Choosing the right functions f state and f event, also re-
ferred to as abstractions, is not a trivial task [12], [6].
A conservative choice (e.g., no abstraction: f state(σc) = σc,
f event(e) = e) can lead to a transition system which
does overfit the log L, because the state space be-
comes too large and specific. An aggressive choice (e.g.,
f state(σc) = {σc(|σc|)}), instead, can lead to a transition sys-
tem that overgeneralizes the log L, allowing too much behav-
ior. In this latter case the transition system is underfitting L.
Some possible good choices for f state and f event are described
and discussed in [12] and [6]. A common event abstraction
is f event(e) = πa(e), which maps an event onto the name of
the activity, while commons state abstractions are: the set ab-
straction (i.e., f state(σc) = {πa(e) | e ∈ σc}) and the list ab-
straction (i.e., f state(σc) = 〈πa(σc(1)), . . . , πa(σc(|σc|))〉).

Algorithm 1 shows how to construct a transition system
from an event log.

Algorithm 1: Construction of a Transition System
Input: L: event log; f state: state representation function;

f event: event representation function
Output: TS: transition system

1 S,E, T ← ∅
2 foreach σ ∈ L do

3 for k ← 0 to |σ| do
4 if s = f state(hdk(σ)) /∈ S then
5 S ← S ∪ {s}
6 end
7 end
8 end

9 foreach σ ∈ L do
10 for k ← 0 to |σ| do
11 s← f state(hdk(σ))
12 e← f event(σ(k + 1))

13 s′ ← f state(hdk+1(σ)))

14 if e /∈ E then
15 E ← E ∪ {e}
16 end

17 if t = (s, e, s′) /∈ T then
18 T ← T ∪ {t}
19 end
20 end
21 end
22 TS ← (S,E, T)
23 return TS

IV. MACHINE LEARNING BACKGROUND

A. Naı̈ve Bayes classifier

Classification is a machine learning task that consists
in predicting category membership of data instances. More
formally, given a “concept” F : X → Y that maps elements
of the domain X into a range Y = {y1, y2, . . . , ym} (i.e.,
the possible categorizations), the classification task consists
in learning a function F̃ which constitutes a good approxi-
mation of F .

Naı̈ve Bayes (NB) [13], [14], [15] is a probabilistic classi-
fier which is based on the application of Bayes’ theorem. This
classifier belongs to the family of the so called supervised
algorithms. These algorithms need a set of pre-classified
instances in order to learn how to classify new, unseen,
instances.

Let ~x = (x1, x2, . . . , xn) ∈ X be an n-dimensional vector.
From a probabilistic point of view, the probability that ~x
belongs to a category yi ∈ Y is given by the Bayes’ theorem:

P (yi | ~x) =
P (yi)P (~x | yi)

P (~x)

where P (yi) is the a-priori probability of yi and P (~x) is the
a-priori probability of ~x. The estimation of the conditional
probability P (~x | yi) can be very hard to compute. In
order to simplify this problem, it can be assumed that the
components xi of the vector ~x (viewed as random variables)
are conditionally independent each other given the target
information yi. With this assumption we can rewrite P (~x|yi)
as:

P (~x | yi) =

n∏
k=1

P (xk | yi).

However, the assumption just presented is quite strong and in
most cases it does not hold. That’s why the described method
is usually named naı̈ve.

To get the computed classification of the vector ~x, we have
to find out the maximum a posteriori (MAP) class yMAP :

yMAP = arg max
y∈Y

P (y | x1, x2, . . . , xn) (1)

= arg max
y∈Y

P (x1, x2, . . . , xn | y)P (y)

P (x1, x2, . . . , xn)
(2)

= arg max
y∈Y

P (x1, x2, . . . , xn | y)P (y) (3)

= arg max
y∈Y

P (y)

n∏
k=1

P (xk | y) (4)

the last step (3 to 4) is correct because of the independence
assumption. We have to notice that in (4), if one (or more)
probability P (xk | y) is zero the whole product goes to zero.
In order to avoid this situations, it is possible to apply the
Laplacian (or additive) smoothing (see, for example [15]) to
the conditional probabilities P (xk | y). It is also possible,
given a vector ~x, to get the category distribution, computing
P (y)

∏n
k=1 P (xk | y)/P (x1, . . . , xn) for all y ∈ Y .

The training phase of this method consists in the collection
of the statistics, from the training set, necessary to calculate
(4). The classification is simply the application of (4) over
the input vectors.

B. Support Vector Regression

Regression analysis is a statistical process for estimating
the relationships among variables. This approach is widely
used for prediction and forecasting. One of the most recently
proposed approaches is the Support Vector Regression (SVR)
[16], [17], [18], which is, as the name suggests, based on
Support Vector Machines (SVM).

Let Tr = {(~x1, y1), (~x2, y2), . . . , (~xl, yl)} ∈ X × R be
the training data, where X denotes the space of the input
vectors. In ε-SVR [17], the goal is to find a function f(~x)
that deviates from the target yi by at most ε, for all the
training instances. In addition to that, the function f has to
be as “flat” as possible. Let’s start considering the linear case,
in which f has the following form:

f(~x) = 〈~w, ~x〉+ b with ~w ∈ X , b ∈ R (5)

where 〈~w, ~x〉 is the dot product between ~w and ~x in X . In
(5) flatness means that the norm of ~w has to be as small

as possible. A possible way to cope with this problem is to
minimize the Euclidean norm, i.e., ‖~w‖2. Formally, this can
be written as a quadratic constrained optimization problem:

minimize
1

2
‖~w‖2

subject to
{
yi − 〈~w, ~xi〉 − b ≤ ε
〈~w, ~xi〉+ b− yi ≤ ε

This convex optimization problem is feasible whether a
function f actually exists approximating, with an error less
or equal than ε, all pairs (~xi, yi). However, in real world
problems it is not always possible to get such approximation,
and hence some errors (grater than ε) should be permitted.
The introduction of slack variables ξi, ξ∗i is useful to allow
the violation of some constraints, but all these violations
must pay some cost. Now the optimization problem can be
rewritten as:

minimize
1

2
‖~w‖2 + C

l∑
i=1

(ξi + ξ∗i)

subject to

 yi − 〈~w, ~xi〉 − b ≤ ε+ ξi
〈~w, ~xi〉+ b− yi ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0

where the constant C > 0 represents a trade-off between the
amount of allowed deviations, greater than ε, and the flatness
of f . The dual formulation of this convex optimization
problem [17], [16], [18] provides the key for extending SVM
to nonlinear functions. The dual form, passing through the
Lagrange multiplayers and applying partial derivatives, is:

maximize

{ ∑l
i,j=1(αi − α∗i)(αj − α∗j)〈~xi, ~xj〉

−ε
∑l
i=1(αi + α∗i) +

∑l
i=1 yi(αi − α∗i)

subject to
{ ∑l

i=1(αi + α∗i) = 0
αi, α

∗
i ∈ [0, C]

The nonlinearity of this algorithm could be achieved mapping
(Φ : X → S) the input vector ~x to a highly dimensional space
S (i.e. feature space) and then applying the standard SVR
method. Unfortunately this direct approach is, in most cases,
infeasible from a computational point of view. However, it
is worthwhile to note that the dual form depends only on the
dot product between the input vectors. Hence, to achieve the
nonlinearity, it is sufficient to know the dot product of the
input vectors in the feature space k(~x, ~x′) = 〈Φ(~x),Φ(~x′)〉.
Then, it is easy to rewrite the dual form with k(~x, ~x′)
instead of 〈~xi, ~xj〉. Exploiting the Mercer’s Theorem [18]
it is possible to characterize these type of functions k,
called kernel functions. After some other simplifications it
is possible to get the so called support vector expansion:

f(x) =

l∑
i=1

(αi − α∗i)k(~xi, ~x) + b.

During the training phase the SVR model learns the αi, α∗i
and b values by solving the optimization problem. The
regression phase simply applies f to the input vector.

V. WORKING FRAMEWORK

The previous section reported a technique to build a tran-
sition system out of an event log. In this section, instead, we
show how to enrich such transition system with classification
and regression models, and how to use these models to
predict the remaining time of running cases of the business
process.

The approach presented in this paper exploits the same
idea described in [6]. The core difference is the introduction
of classification and regression models. Once the standard
transition system is built, we enrich each state with a Naı̈ve
Bayes classifier and each transitions with a Support Vector
Regressor trained with historical data. The intuition is that
the Naı̈ve Bayes classifier is used to estimate the probability
of transition from state s to state s′, while the SVR regressor
is used for predicting the remaining time from s′. Formally,
let p̂s′ be the Naı̈ve Bayes estimated probability to reach
state s′ ∈ s• from state s, and τ̂(s, e, s′) the estimated
time returned by the SVR associated to transition (s, e, s′).
Moreover, given a trace σ 6= 〈〉 ∈ T and an event index
i ∈ ([1, |σ| − 1] ⊂ N), we define soj as:

soj (σ, i) = πt(σ(i+ 1))− πt(σ(i)).

If σ = 〈〉 ∨ i /∈ ([1, |σ| − 1] ⊂ N) then soj (σ, i) = 0.
At this point, given the state s reached after observing

a (partial) trace σ, the prediction returned by the annotated
transition system is:∑

(s,e,s′)∈Ts

p̂s′ · τ̂(s, e, s′) + ÊL [soj (σ, |σ|)] ,

where ÊL refers to the estimated expected value computed
over the training log L.

For training we also need to define the remaining time
function rem . Given a trace σ 6= 〈〉 ∈ T and an event index
i ∈ ([1, |σ|] ⊂ N), we define rem as:

rem(σ, i) = πt(σ(|σ|))− πt(σ(i)).

If σ = 〈〉 ∨ i /∈ ([1, |σ|] ⊂ N) then rem(σ, i) = 0.
In order to exploit the classification and regression models

we need some preprocessing to extract data from the event
log. In particular, given a partial trace σic we have to extract
the last values (in temporal order) of all the additional
data attributes d1, . . . , dm, and then put these values into a
numerical vector. As mentioned in Section I, in an event log,
additional attributes may belong to a continuous data domain,
to a discrete numerical, or to a discrete nominal data domain.
In the first two cases, data values are simply put into a single
component vector without any further processing. In the third
case (i.e., discrete nominal data) we use a one-hot encoding,
in which the nominal data value di is represented as a binary
vector v ∈ {0, 1}|Di|, with all values set to 0 except for
the component referring to di, which is set to 1. Finally,
all these vectors are concatenated together. Let us recall the
example depicted in Fig. 1. We suppose that events have
timestamps respectively 0, 3, 7 and case id equals to 17. We
assume also that the Customer category attribute can assume

this set of values D = {gold, silver, bronze}. Let’s call
σ17 = 〈e1, e2, e3〉, where e1 = (A, 17, 0, 1000,⊥,⊥), e2 =
(B, 17, 3,⊥, gold,⊥) and e3 = (C, 17, 7,⊥,⊥, 10). The
attributes Amount and Payments required are both numerical,
while Customer category is nominal. For this last attribute,
applying the one-hot encoding means to translate the domain
D into a vector v ∈ {0, 1}|D|, with all components set to
0 except one. In this example, |D| = 3, so v belongs to
{0, 1}3 and πCustomer category(e2) is translated into v = [0, 1, 0].
Considering the last values of all additional attributes, we get
the three vectors [1000], [0, 1, 0] and [10]. The concatenation
of these vectors returns the desired vector [1000, 0, 1, 0, 10].

Formally, we define a function last which, given a
(partial) trace σc ∈ T and an additional attribute index
i ∈ [1,m] ⊂ N, returns the last value assigned to the di
attribute:

last(σc, i) = max
1≤j≤|σc|

πdi (σc(j))6=⊥

πdi(σc(j)).

If there is no index j such that πdi(σc(j)) 6=⊥,
last(σc, i) =⊥.

Now each attribute must be represented in a vectorial form.
In particular, given a (partial) trace σc, for each attribute we
need to consider the last assigned value. In order to convert
all attributes d1, . . . , dm into a single numerical vector, we
check their domains and:
• if Dj is a numerical domain, we project the value

last(σc, j) into a vector with one corresponding com-
ponent;

• otherwise, we use the one-hot encoding for representing
last(σc, j): we consider a vector with size |Dj | where
each component refers to one element in Dj ; the vec-
torial representation for v ∈ Dj is given by the vector
with all zeros except for the one referring to v.

If last(σc, j) =⊥ then the null vector, of the right size, is
considered. The final vector γ∗(σc) is built considering the
concatenation of the representations just mentioned for all
attributes dj .

Let us now define the three kinds of annotation used in
this work to enrich the transition system model. In general,
an annotation, over a transition system TS = (S,E, T), is a
function which associates some data to a state s ∈ S or to a
transition t ∈ T .

Definition 7 (Sojourn Time Annotation): Let TS be a tran-
sition system, obtained from an event log L, based on an
event representation function f event and a state representation
function f state. A Sojourn Time Annotation is a function
A : S → R, which returns the average sojourn time for
a given state s ∈ S, based on the event log L.

Definition 8 (Naı̈ve Bayes Annotation): Let TS be a tran-
sition system, obtained from an event log L, based on an
event representation function f event and a state representation
function f state. Let’s call k the size of the γ∗(σ) vector
calculated for traces σ ∈ L. A Naı̈ve Bayes Annotation is

a function NB : S×Rk×S → [0, 1] ⊂ R, which, given two
states si, sj ∈ S and a data attribute vector v ∈ Rk, returns
the probability to reach the state sj starting from si through
a single transition, applying Naı̈ve Bayes (see Section IV).

Definition 9 (SVR Annotation): Let TS be a transition sys-
tem, obtained from an event log L, based on an event repre-
sentation function f event and a state representation function
f state. An SVR Annotation is a function R : T × Rk → R,
which, given a transition t ∈ T and a data attribute vector
v ∈ Rk, applies Support Vector Regression (see Section IV)
to return an estimation of the remaining time.

Using these three annotations, we define an annotated
transition system as follows:

Definition 10 (Annotated TS): Let TS = (S,E, T) be a
transition system, obtained from an event log L, based on an
event representation function f event and a state representation
function f state. A Annotated Transition System is a tuple
PTS = (S,E, T,A,NB , R) where, A, NB , R are respec-
tively a sojourn time, a Naı̈ve Bayes and a SVR annotation,
based on the event log L and the transition system TS.

Training

In this section, we describe how to construct an Annotated
Transition System. Algorithm 2 summarizes the construction
procedure.

Steps 1 to 3 intializes the training set for each transition to
the empty set. The external loop (Steps 4-18) goes through
the log, extracting one trace σc at a time, while the inner
loop (Steps 5-17) replays the trace σc over the transition
system. For each partial trace the newest attributes data (i.e.,
currentData) are collected, and the corresponding state is
identified in the transition system (Steps 6 and 9). Steps
11 and 12, respectively, calculates the remaining time (i.e.,
currentRem), and adds the pair (currentData, currentRem)
as training instance to the SVR associated to the current
transition. Then the average sojourn time of the current state
is updated, and the training instance (currentData, state) is
added to the Naı̈ve Bayes associated to the current state.
Within the last loop (Steps 19-21) all the SVR are trained
using the training sets built in the previuos steps. Finally,
the annotated transition system is constructed, using the
predictors and the collected statistics.

Prediction

In this section, we describe how to predict the remaining
time for a running case using an Annotated Transition
System. Algorithm 3 summarizes the prediction procedure.

First of all (in Steps 2-3), the algorithm identifies the state
reached by the current partial trace (i.e., σp) and extracts
the additional data attributes. Within the if branch of the
condition (Steps 6-9), the algorithm treats the case in which
the current state originates more than one transition. In this
case, the Naı̈ve Bayes classifier calculates the probability
to reach any following state (i.e., NB(state, data, s)). Such
probabilities are used to weigh the remaining time estimation
returned by the regression model (Steps 6-8). Finally, the

Algorithm 2: Construction of an Annotated Transition
System
Input: L: event log; TS = (S,E, T): transition system
Output: T ′: annotated transition system

/* Initialization */
1 foreach t ∈ T do
2 svrTrain[t] = ∅ /* Training set for t */
3 end

4 foreach σc ∈ L do
5 for i← 1 to |σc| − 1 do
6 currentState← f state(σic)
7 nextState← f state(σi+1

c)
8 nextEvent← f event(σc(i+ 1))
9 currentData← γ∗(σic)

10 trans← (currentState, nextEvent, nextState)
11 currentRem← rem(σc, i)
12 svrTrain[trans]←
13 svrTrain[trans]∪ (currentData, currentRem)

/* Update statistics A */
14 currentSoj← soj(σc, i)
15 Update average sojourn time for currentState

with currentSoj
/* Update NB, function NB */

16 Update NB for state currentState with the
training instance (currentData, nextState)

17 end
18 end

19 foreach t ∈ T do
/* Train SVR, function R */

20 Train SVR for transition t with training set
svrTrain[t]

21 end

22 T ′ ← (S,E, T,A,NB , R)
23 return T ′

average state sojourn time is added to the time prediction. In
the else branch, instead, the time prediction comes directly
from the regression model associated with the previous
transition (Steps 11-14), since there is just a single transition
from state s to state s′.

VI. IMPLEMENTATION AND EXPERIMENTAL RESULTS

The technique has been implemented for the ProM
framework [19]. To mine the transition systems, we rely
on the miner’s implementation available in ProM. Naı̈ve
Bayes Classifications and the Support Vector Regressions
are performed using the implementation in the Weka frame-
work [20].

We also aimed to minimize the configuration requirement
and, thus, the number of parameters to be set up. The Naı̈ve
Bayes Classifier requires no parameters, whereas Support
Vector Regression requires to choose the kernel type: ei-
ther polynomial or RBF [21]. The first kernel requires, as

TABLE I
RESULTS ON TWO REAL-LIFE CASE STUDY. FOR COMPARISON, THE MEAN ABSOLUTE PERCENTAGE ERROR (MAPE) AND THE ROOT MEAN SQUARE

PREDICTION ERROR (RMSPE) HAVE BEEN USED. RESULTS ARE ASSESSED USING A 5-FOLD CROSS VALIDATION. BETTER RESULTS ARE

HIGHLIGHTED IN BOLD.

Data-aware Polynomial Data-aware RBF van der Aalst et al.
Transition System Abstraction MAPE RMSPE MAPE RMSPE MAPE RMSPE

Event Log with 1500 Traces

Set with Limit 1 8.93% 2.69% 9.13% 2.73% 23.04% 3.53%
Set with No Limit 7.61% 1.96% 7.60% 1.80% 22.95% 3.48%
List with No Limit 7.68% 1.97% 7.61% 1.80% 22.90% 3.41%

Event Log with 5000 Traces

Set with Limit 1 5.78% 1.87% 7.42% 2.14% 9.98% 2.33%
Set with No Limit 5.07% 1.13% 6.68% 1.37% 9.82% 2.37%
List with No Limit 5.08% 1.13% 6.69% 1.38% 9.13% 2.27%

Algorithm 3: Remaining time prediction for a running
case
Input: σp: (partial) trace; TS: annotated transition

system
Output: P : remaining time prediction

1 P ← 0
2 state← f state(σp)
3 data← γ∗(σp)
4 exiting← Tstate

5 if |exiting| > 1 then
6 foreach (state, trans, nextSt) ∈ exiting do
7 P ← P +NB(state, data, nextSt) ·R(trans, data)
8 end
9 P ← P +A(state)

10 else
11 prevSt← f state(σ

|σp|−1
p)

12 prevTrans← (s, e, s′) ∈ TprevSt s.t.
13 s = prevSt ∧ s′ = state
14 P ← R(prevTrans, data)
15 end
16 return P

parameter, the polynomial degree; the latter requires the γ
value.

The improvement in the prediction with respect to existing
approaches is assessed by comparing our technique versus
the technique reported in van der Aalst et al. [6]. We
also aimed to compare our approach versus the techniques
proposed in [8], [9]. Unfortunately, up to this date, neither
an implementation of these approaches nor the event logs
used in the papers are publicly available. Of course, it is not
possible to compare results obtained through different event
logs, as the quality of a prediction heavily depends on the
information available in the event log.

The comparison with the technique in [6] was made using
a real-life case study. It concerns the execution of process
instances in an information system for the management of

road-traffic fines by a local police of an Italian municipality.
The management of road-traffic fines has to comply with
Italian laws, which detail the precise work flow. Usually,
when a driver commits a violation, a policeman opens a new
fine’s management and leaves a ticket on the car’s glass. The
fine’s amount depends on the violation performed. Within
180 days, the fine notification must be sent to the offender.
The payment can occur in any moment, i.e. before or after
that the fine notification is sent by post. If the offender
does not pay within 60 days since the reception of the fine
notification, the fine doubles. If the offender never pays,
eventually the fine is sent to a special agency for credit
collection.

In particular, from the Information Systems we extracted
two event logs that refer to executions that end with sending
for credit collection, i.e. the offenders have not paid the fine
in full. These event logs refer to non-overlapping periods
in time and contains 1500 log traces and 5000 log traces,
respectively. The experiments were performed using the
Weka default value for the C SVR hyper-parameter, and
two kernel types: polynomial with degree 3 and RBF with γ
equal to 10. The transition system was mined using different
abstractions, namely set with limit 1 or no limit and list with
no limit. Since, in the event logs, for 99% of traces, every
activity was performed at most once, the multi-set abstraction
was not considered to perform experiments.

Table I reports the results of the experiments for the
polynomial and RBF case. For both of cases, the values
in the table refers to a 5-fold cross validation. The results
are also compared with those obtained by the technique
in [6]. To measure and compare the accuracy, we used two
indicators: the Mean Absolute Percentage Error (MAPE) and
the Root Mean Square Prediction Error (RMSPE). Let n be
the number of samples and let Ai and Fi be respectively
the actual value and the predicted value for the i-th sample.
MAPE usually expresses the accuracy as a percentage:

MAPE =
100%

n

n∑
i=1

∣∣∣∣Ai − FiAi

∣∣∣∣

RMSPE is also defined as a percentage:

RMSPE = 100%

√∑n
i=1(Ai − Fi)2

n

The experimental results show that, especially for the poly-
nomial case, the predictions have been improved quite signif-
icantly, thus reducing them to half or, even, to one third for
the smaller log. The RBF case returns slightly less accurate
predictions. On the other hand, the training is accomplished
in one fourth of time with respect to the polynomial case.
Therefore, our data-aware approach can provide significantly
better predictions with respect to the technique in [6].

Readers can observe that the results are similar for the
different transition-system abstractions that were taken into
account. This suggests that, for the specific case study,
only the last performed activity is relevant when performing
predictions.

Last but not least, we aimed to verify whether the data
awareness can really help the prediction. For this purpose,
we removed every data attribute from the event log and we
applied our technique again. In this case, we obtain similar
mean percentage errors for both the technique in [6] and
ours. This confirms once more that the consideration of data
attributes can greatly improve the predictions.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a new approach for the predic-
tion of the completion time of running process instances.
The prediction is based on multiple perspectives: on one
hand a transition system encodes information coming from
the control-flow perspective; on the other hand all the data
recorded by each activity are collected and used to refine the
forecast. Approaches already available in the literature use
the transition system to store some information associated
to a specific trace. Starting from this transition system,
we annotate it with three more entities. The first extension
encodes the average time spent on every state. The second
extension consists of a Naı̈ve Bayes classifier, associated
to every state, which, given the set of data attributes, is
useful to determine the probability distribution over the set
of states reachable from the current one. The last extension is
a Support Vector Regressor which, for each transition, given
the set of data attributes, predicts the completion time.

Given a partial trace, leading to a particular state of the
annotated transition system, its completion time consists of
the average time spent on the current state, summed up to
the weighted average (with weights coming from the Naı̈ve
Bayes) of the predictions (performed by the Support Vector
Regressor) of all the reachable states.

Experimental validation is perform on real datasets and,
in all cases, our approach outperforms the baseline [6].
Moreover, the improvement of our approach, over the same
baseline, seems to reach higher values with respect to the
work reported in [8], [9].

Possible future work includes the automatic fine tuning of
the parameters of the SVR, in order to simplify the usage

of this approach for not-expert users and the improvement
of the prediction quality for traces that are not completely
fitting the transition system.

ACKNOWLEDGMENT

The work reported in this paper is supported by the Eurostars-
Eureka project PROMPT (E!6696).

REFERENCES

[1] B. Schellekens, “Cycle time prediction in Staffware,” Master Thesis,
Technische Universiteit Eindhoven, 2009.

[2] B. F. van Dongen, R. Crooy, and W. M. P. van der Aalst, “Cycle
Time Prediction: When Will This Case Finally Be Finished?” in
Proceedings of the 16th International Conference of Cooperative
Information Systems, OTM 2008, vol. 5331, no. Chapter 22. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 319–336.

[3] R. Crooy, “Predictions in Information Systems - A process mining
perspective,” Master Thesis, Technische Universiteit Eindhoven, 2008.

[4] H. Schonenberg, B. Weber, B. F. van Dongen, and W. M. P. van der
Aalst, “Supporting flexible processes through recommendations based
on history,” in Proceedings of 6th International Conference BPM.
Springer, 2008, pp. 51–66.

[5] H. Reijers, “Case prediction in BPM systems: a research challenge,”
Journal of the Korean Institute of Industrial Engineers, vol. 33, no. 1,
pp. 1–10, 2006.

[6] W. van der Aalst, M. Schonenberg, and M. Song, “Time prediction
based on process mining,” Information Systems, vol. 36, no. 2, pp.
450–475, Apr. 2011.

[7] P. Leitner, B. Wetzstein, F. Rosenberg, A. Michlmayr, S. Dustdar,
and F. Leymann, “Runtime prediction of service level agreement
violations for composite services,” in International Workshops, IC-
SOC/ServiceWave. Springer, 2009, pp. 176–186.

[8] F. Folino, M. Guarascio, and L. Pontieri, “Discovering context-aware
models for predicting business process performances,” in Proceedings
of On the Move to Meaningful Internet Systems Conference: OTM,
vol. 7565. Springer Berlin Heidelberg, 2012, pp. 287–304.

[9] ——, “Discovering High-Level Performance Models for Ticket Res-
olution Processes,” in Proceedings of On the Move to Meaningful
Internet Systems Conference: OTM, vol. 8185. Springer Berlin
Heidelberg, 2013, pp. 275–282.

[10] G. T. Lakshmanan, D. Shamsi, Y. N. Doganata, M. Unuvar, and
R. Khalaf, “A markov prediction model for data-driven semi-structured
business processes,” Knowledge and Information Systems, Oct. 2013.

[11] W. M. P. van der Aalst, Process Mining - Discovery, Conformance
and Enhancement of Business Processes, 1st ed. Springer, 2011.

[12] W. M. P. van der Aalst, V. Rubin, E. Verbeek, B. F. van Dongen,
E. Kindler, and C. W. Günther, “Process mining: a two-step approach
to balance between underfitting and overfitting,” Software & Systems
Modeling, vol. 9, no. 1, pp. 87–111, Nov. 2008.

[13] J. Han, M. Pei, and K. Jian, Data Mining Concepts and Techniques,
3rd ed. Elsevier Science Publishers B. V., 2012.

[14] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Infor-
mation Retrieval, 1st ed. Cambrige University Press, 2008.

[15] T. M. Mitchell, Machine Learning, 1st ed. McGraw-Hill, 1997.
[16] D. Basak, S. Pal, and D. C. Patranabis, “Support Vector Regression,”

Neural Information Processing - Letters and Reviews, vol. 10, no. 10,
pp. 203–224, 2007.

[17] H. Drucker, C. Burges, L. Kaufman, A. Smola, and V. Vapnik, “Sup-
port Vector Regression Machines,” Neural Information Processing
Systems, vol. 1, pp. 155–161, 1996.

[18] A. J. Smola and B. Schölkopf, “A Tutorial on Support Vector Regres-
sion,” Statistics and Computing, vol. 14, no. 3, pp. 199–222, 2004.

[19] H. M. W. Verbeek, J. C. A. M. Buijs, B. F. V. Dongen, and W. M. P.
van der Aalst, “ProM 6 : The Process Mining Toolkit,” in BPM 2010
Demos. Springer, 2010, pp. 34–39.

[20] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The WEKA data mining software,” ACM SIGKDD
Explorations Newsletter, vol. 11, no. 1, pp. 10–18, Nov. 2009.

[21] J. Shawe-Taylor and N. Cristianini, Kernel methods for pattern ana-
lysis. Cambridge University Press, 2004.

