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Abstract. Prescriptive process analytics aims to provide actionable recommen-
dations for process instances that are predicted to fall short of achieving satisfac-
tory outcomes. A common type of recommendation typically focuses on assign-
ing activities to specific resources, as it is a general task that naturally applies
across many domains. Given that processes may involve hundreds of resources,
brute-force approaches for evaluating all possible activity-resource combinations
are computationally infeasible. Current state-of-the-art techniques, conversely,
adopt a sequential approach that selects the most suitable activity and then allo-
cates it to one of the suitable resources: this is inherently sub-optimal. This paper
leverages counterfactual generation techniques to formulate recommendations.
Counterfactual-based methods offer innovative strategies that efficiently converge
to highly effective interventions. Experimental evaluations conducted on several
real-life case studies demonstrate that our counterfactual-based technique outper-
forms a baseline approach that follows a sequential activity-to-resource assign-
ment strategy.

Keywords: Process Mining · Resource Allocation · Process-aware Recommen-
dation Systems · Counterfactual Generation · Process Improvement.

1 Introduction

Process mining aims to discover and improve processes based on the analysis of pro-
cess transactional data that records how single executions have been carried out. Within
this field, prescriptive process analytics focuses on recommending actions to mitigate
“risky” executions that are predicted to lead to unsatisfactory outcomes, such as high
costs or poor customer satisfaction. One of the most common types of recommendations
is the real-time suggestion of resources to carry out certain activities [19]. Prescriptive
process analytics is currently gaining momentum, with several techniques having been
proposed over the years (see Section 2). This paper contributes by providing recom-
mendations to optimize process performance, with a particular focus on minimizing the
total execution time, aligning with a large share of the related work in the field.

Existing techniques typically leverage a divide-and-conquer approach: they first se-
lect the activity based on its potential to enhance the process efficiency, and then assign
it to a suitable resource [19]. While intuitive, this strategy can result in suboptimal
outcomes. Conversely, optimizing the activity-resource pair by evaluating all possible
combinations is often intractable in practice, especially in organizations with hundreds
of resources.



2 Le et al.

This paper proposes a technique based on counterfactuals [14,29] to recommend the
activity-resource pairs for each running process instance. We use the term counterfac-
tual in the context of explainable AI as introduced by [30]: a counterfactual identifies
the minimal changes to an input instance that would alter the prediction of the oracle
function toward a desired outcome. This extensive employment of counterfactual-based
approaches is linked to their nature of defining what-if scenarios, such as “You were de-
nied a loan because your loan duration was 20 years. If your loan duration had been 30
years, you would have been offered a loan” [30]. This capability makes counterfactual-
generation frameworks well-suited for recommending activity-resource pairs. The ad-
vantage of prescriptive process analytics is evident: frameworks for counterfactual gen-
eration are readily available and can be directly used to generate activity-resource rec-
ommendations along with explanations. Also, these frameworks can quickly generate
multiple counterfactuals, which translates in our setting to producing several alterna-
tive recommendations for the same process instance. Notably, while counterfactuals
have been used to explain predictions and recommendations, they have never been used
to generate recommendations themselves. This flexibility is beneficial because a rigid
resource-to-activity imposition is against the principles of resource-aware recommender
systems [9], which emphasize the need to support decision-makers with multiple viable
options rather than prescribing fixed assignments.

Our counterfactual-based technique for prescriptive process analytics has been eval-
uated on several real-life processes and event logs, and compared with a baseline where
the best activity is first chosen based on the best predicted next activity, and then it is
allocated to one random resource. This baseline is reasonable because, while the num-
ber of activities in the process is relatively limited, the number of process resources
can be very high, even reaching hundreds (cf. the case studies used in the experiments
reported in Section 5 and summarized in Table 1). It is indeed intractable to compute
the prediction for each of the hundreds of different resources separately. The evaluation
results show that the average potential reduction in process-instance total duration is
considerably higher than what the baseline can achieve. This is due to the use of coun-
terfactual generation, which can efficiently build effective recommendations in the form
of activity-resource pairs.

The remainder of this paper is organized as follows: Section 2 discusses related
works in the domain of prescriptive process analytics and the use of counterfactuals
in these fields. Section 3 introduces the necessary background concepts, while Sec-
tion 4 puts forward our framework that leverages counterfactuals. Section 5 reports on
the evaluation setup and results, while discussing limitations in the evaluation. Finally,
Section 6 concludes the paper, summarizing the contribution of our paper.

2 Related Works

Prescriptive process analytics has recently gained significant attention, with various
methods being applied to provide Key Performance Indicator (KPI)-driven recommen-
dations. Numerous data-driven frameworks have been proposed to recommend the opti-
mal next activity for KPI optimization [12], incorporating AI-based approaches such as
Reinforcement Learning [6], Generative Adversarial Networks [20], Linear Temporal
Logic formulas [10], and explainability techniques [25]. Adopting a different perspec-
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tive, different authors address the problem of correctly timing the interventions [5], aim-
ing to balance the risks of intervening too early (leading to unnecessary delays/costs)
or too late (diminishing effectiveness), also guaranteeing a white-box approach [27].
Beyond next-activity recommendations, researchers have demonstrated that KPI im-
provements can also result from enhanced resource allocation [3, 24, 26].

Literature proposes a few counterfactual frameworks [4,8,15–17,22] to explain the
predictions, namely the predictive-monitoring outcome. The work by Bhattacharya et
al. [4] is particularly noteworthy. They propose a counterfactual-based visual frame-
work designed to support patients and healthcare professionals in making decisions
aimed at improving patient outcomes. However, this framework is specifically tailored
to the healthcare domain. More critically, it is not process-centric: while it assists in
identifying potential next actions, it does not directly generate recommendations, in-
tended as pairs of suggested activity and performing resource. The same limitation also
holds for Mothilal et al. [22]. Furthermore, the effectiveness of the approach by Bhat-
tacharya et al. [4] is evaluated through subjective user feedback, rather than through
objective metrics that are measured on real(istic) process executions to assess the actual
process improvements.

This paper is the first to introduce a recommendation framework that utilizes coun-
terfactuals to explicitly suggest the next activities to be executed for various ongoing
process instances, as well as the resources that should carry them out. It is important
to emphasize that our problem setting differs fundamentally from job-shop scheduling,
where some counterfactual-based approaches have been proposed (see, e.g., [21]). In
job-shop scheduling, the sequence of activities is predetermined and cannot be altered,
whereas our approach allows for flexibility in recommending alternative next activities.

3 Preliminaries

The starting point for any process mining technique is an event log. An event log is a
collection of traces, where a trace is a sequence of events with their attributes. Each
trace describes the life-cycle of a particular process instance (i.e., a case) regarding the
activities executed by certain resources at specific timestamps and the process attributes
manipulated.

Definition 1 (Events). Let A be the set of process activities. Let T ⊂ N be the set of
possible timestamps. Let R be the set of possible resources. Let V be the set of process
attributes. Let WV be a function that assigns a domain WV(x) to each process attribute
x ∈ V . Let W = ∪x∈VWV(x). An event is a tuple (a, t, r, v) ∈ A × T × R × (V ̸→
W) where a is the event activity, t is the timestamp associated with the event, r is
the resource that performs it, and v is a partial function assigning values to process
attributes with v(x) ∈ WV(x).

Definition 2 (Traces & Event Logs). Let E = A×T ×R×(V ̸→ W) be the universe
of events. Let a trace σ be a sequence of events, i.e., σ ∈ E∗. An event-log L is defined
as a set of traces, i.e., L ⊂ B (E∗).

Without loss of generality, the events in each trace are considered sorted chronolog-
ically. Given an event e = (a, t, r, v), the remainder uses the following shortcuts:
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activity(e) = a, time(e) = t, resource(e) = r and variable(e) = v. Furthermore,
given a trace σ = ⟨e1, . . . , en⟩, prefix(σ) denotes the set of all prefixes of σ, including
σ, namely prefix(σ) = {⟨⟩, ⟨e1⟩ , ⟨e1, e2⟩ , . . . , ⟨e1, . . . , en⟩}.

In developing our technique, it is imperative to delineate the recommendation objec-
tive. We focus on minimizing the total execution time of a trace, as this is a general goal
that naturally fits many real-world settings where process efficiency is a priority. The to-
tal execution time can be defined as a function over a given trace σ = ⟨e1, . . . , en⟩ ∈ E∗

that returns the difference between the first and the last timestamp related to σ. Note
that the total time is assumed to be computed a posteriori when the execution is com-
pleted and leaves a complete trail of the timestamps for a particular trace σ. We can
now define the total time prediction problem as follows:

Let σ′ = ⟨e1, . . . , ek⟩ ∈ L be a prefix of a running case, which eventually will com-
plete as σ = ⟨e1, . . . , ek, ek+1, . . . , en⟩. The total execution time prediction problem
can be formulated as forecasting the value of Ttotal(σ′) = time(en)− time(e1). In the
process mining literature, this problem has been faced with different models [13,18,23].
We approach the model by estimating a Total Time Oracle function Φ : E∗×A×R →
N, which, for an incomplete trace σ′, an activity a and a resource r, forecasts the total
execution time Ttotal if the next event ek+1 satisfies the conditions: activity(ek+1) = a
and resource(ek+1) = r.

Each prediction technique requires the definition of the domain
X1 × . . .×Xm and a Trace-to-instance Encoding function ρ : E∗ → X1×. . .×Xm,
which maps each (prefix of a) trace σ in a vector ρ(σ) ∈ X1× . . .×Xm of m elements
that can be of different nature, such as a process attribute, a timestamp, or the number
of executions of an activity in σ.

This paper aims to provide a framework that recommends the most appropriate
activity-resource pairs for reducing the execution time of running instances. However,
to ensure domain validity, we assume that an activity is considered valid in a given
process state, which refers to the current execution context defined by the sequence of
past events, if it has been observed in similar past executions. This requires providing a
state-representation function, as we will explain in more detail below.

Definition 3 (State-representation Function). Let σ be a trace, and S a set of possible
state representations, where each representation corresponds to a unique state of the
process based on the observed events. The function lstate : E∗ → S is called the state-
representation function, where it returns the state for each (prefix of a) trace.

Determining the activities allowed after a sequence of events requires building a tran-
sition system where nodes represent the observed states, and arcs represent transitions
between states. Each arc corresponds to an event and is labeled with the name of the
associated activity [1]. Multiple arcs can bear the same label.

Definition 4 (Transition System). Let lstate be a state-representation function, L an
event log, and E its set of events over a set A of activities. A transition system abstract-
ing L is a tuple T SL = (S, T ) ⊆ S × (S ×A× S) where

– S = ∪σ∈L ∪σ′∈prefix(σ) l
state(σ′)

– T = ∪σ∈L ∪σ′⊕⟨e⟩∈prefix(σ) (l
state(σ′), activity(e), lstate(σ′ ⊕ ⟨e⟩)
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Figure 1 illustrates an example of a transition system in accordance with Definition 4. It
has been built on an event log Lex = {⟨a, b, c, d⟩ , ⟨a, c, e⟩ , ⟨a, e, b, d⟩ , ⟨a, b, d, e⟩}1 us-
ing a sequence-based state-representation lstatesequence_based(⟨e1, . . . , en⟩) =
⟨activity(e1), . . . , activity(en)⟩. Through this function, the state of a (prefix of a)
trace is identified with its ordered list of activities. In the example with Lex, the set
of possible states is thus S = {⟨a, b, c, d⟩ , ⟨a, b, d, e⟩ , ⟨a, e, b, d⟩ , ⟨a, c, e⟩ , ⟨a, e, b⟩ ,
⟨a, b, d⟩ , ⟨a, b, c⟩ , ⟨a, c⟩ , ⟨a, e⟩ , ⟨a, b⟩ , ⟨a⟩}. Transition systems are built based on his-
torical data, representing which activities are permissible following a given sequence of

Fig. 1: Transition system for an ex-
ample log.

activities. While these systems can become ex-
ceedingly large and unintelligible, this is not a
concern as they are used internally and are not ex-
posed to the actors involved in the process.

The purpose of this work, however, is not to
recommend the optimal next activity but rather to
identify the most suitable activity-resource pair,
ensuring feasibility from both activity and re-
source perspectives. This requires verifying if a
certain resource is eligible to perform a given ac-
tivity, according to the company and process con-
straints. The determination of whether a resource
r can perform an activity a is based on the infor-
mation in the event log L; namely, there must exist

an event e in the event log L such that activity(e) = a and resource(e) = r. At the
end, for each activity a ∈ Aσ′ , we identify the set of eligible resources Ra capable of
performing a, such that Ra = {r ∈ R : ∃σ ∈ L,∃e ∈ σ, where activity(e) = a and
resource(e) = r}.

4 A Counterfactuals-based Framework for Generating
Recommendations

In this section, we aim to propose a framework that leverages counterfactual generations
to recommend the next activities and resources.

Figure 2 depicts our proposed framework. The framework is structured into two
phases: Offline and Online. The starting point of the offline phase is a completed event
log L. From the event log, we build a transition system T SL (cf. Definition 4) based
on the sequence of activities in L. This transition system captures the sequential rela-
tionships between activities, representing how tasks are performed one after another.
In parallel, the event log is input into a Trace-to-instance Encoding function ρ (cf.
Section 3). These encoded traces are then used as input to a Predictive Oracle function
to estimate the relevant process-related outcomes for a given running instance. In this
work, we focus specifically on total execution time prediction, where the corresponding
Total Time Oracle function is defined in Section 3.

In the online phase, for every running trace σ′, let (anext, rnext) be the tuple of
the next activity and resource that will be followed if no recommendation is given.

1 For simplicity, events are referred to as activity names, and the event’s attributes are abstracted
out.
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Fig. 2: Schema of our Counterfactual-based Recommender Systems. The schema distin-
guishes the part executed off-line, namely before activating the system, and that on-line,
when recommendations are provided to running cases.

We aim to recommend a suitable activity-resource pair that minimizes the total execu-
tion time. The proposed framework takes as inputs a Total Time Oracle function Φ, a
transition system T SL, and a running trace σ′. We first generate a set of k counter-
factual examples (hereafter referred to as CFEs), C = {c1, c2, . . . , ch} (with h ≤ k),
such that ci = (ai, ri) and each example predicts a different outcome from σ′ (i.e.,
Φ(σ′, anext, rnext) > Φ(σ′, ai, ri) ∀i ∈ {1, . . . , h}).2

Assuming that the transition system T SL and the Total Time Oracle function Φ
are both constructed from an event log L. First, we build the set of possible next
activities Aσ′ that are allowed to occur after observing the events in σ′, assuming
those coincide with what is observed in L and thus modeled by T SL : Aσ′ = {a :
∃(lstate(σ′), a, lstate(σ′ ⊕ ⟨e⟩))}.

The Counterfactuals Recommendation Module aims to generate a set C of CFEs,
by modifying independently the next activity and resource in the running trace σ′. Each
CFE ci ∈ C represents a hypothetical scenario in which the next activity-resource
pair is replaced with (ai, ri), where ai ∈ Aσ′ and ri ∈ RAσ′ . The expected total
execution time for each ci is predicted through the Total Time Oracle function Φ as
defined in Section 3, evaluating Φ(σ′, ai, ri). However, there is a possibility that the
recommended resource ri is not allowed to perform the activity ai (i.e., ri /∈ Rai ). In
these cases, the recommended action (ai, ri) is discarded. The final recommendation is
the activity-resource pair (arec, rrec) that minimizes the expected total execution time
(i.e., (arec, rrec) = argmin

(ai,ri)∈C

Φ(σ′, ai, ri)). This ensures that the proposed next activity

and resource are both efficient and feasible from the organization’s perspective.
Our framework is equipped with a parameter, hereafter referred to as Reduction

Threshold, that indicates the minimum reduction of process-instance execution times
that the recommendation can provide when the activity-resource pair is perturbed. For
example, if we set this parameter to 5%, only recommendations that lead to a predicted

2 In contrast to classification-based counterfactuals, where a change in class label is sufficient,
our setting requires a numerically improved (i.e., lower) outcome prediction.
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Fig. 3: Example output of the recommendation module with 10% of reduction threshold.
The chosen counterfactual has been highlighted in the red box.

reduction in total execution time of at least 5% are allowed. It is worth noting that
the larger reduction thresholds would generally produce fewer counterfactuals, possi-
bly even none. While the proposed approach supports automated decision making, in
scenarios involving a human decision-maker, the system could present the top-k ranked
counterfactuals, allowing the user to choose the most appropriate one.

Figure 3 visualizes the output of the recommendation module for a query instance
in which anext = “Pending Request for Reservation Closure” and rnext = “BOC”.
The trace is initially predicted to complete in 30 days (2,634,175 seconds); the mod-
ule aims to reduce execution time by at least 10%, bringing it to a maximum of 27
days (2,370,757 seconds). Therefore, the algorithm modifies the next_activity and
next_resource fields in the original query to explore alternative combinations, generat-
ing viable counterfactuals, specifically c1 = (“Pending Request for Reservation Closure”,
“574”), c2 = (“Network Adjustment Requested”, “0”) and c3 = (“Pending Request for
Reservation Closure”, “SB23”). As depicted in the figure, all the counterfactuals satisfy
the target range, but c1 is chosen as it offers the lowest expected execution time.

5 Implementation and Evaluation

This section reports on the results of the proposed counterfactual-based framework for
generating recommendations introduced in Section 4. The assessment is conducted us-
ing four real-life processes that are outlined in Section 5.1. Section 5.2 discusses the
selection of the predictive model for implementing the Total Time Oracle function and
reports on the evaluation of its predictive quality across multiple case studies. Section
5.3 provides an overview of the experimental settings and configurations employed for
evaluation, while Section 5.4 details the evaluation metrics used. Finally, Section 5.5
reports the results to assess the effectiveness of the recommendations.
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Table 1: Descriptive Statistics of Event Logs
Event Log # cases # activities # resources mean case duration

Bank Account Closure 29194 15 654 16.4 days
BPIC13 7554 13 649 12.1 days

BPIC17AO - Before 12207 18 103 20.2 days
BPIC17AO - After 14164 18 119 21.9 days

Consulta 954 18 561 14.9 days

5.1 Case Studies

The validity of our framework was assessed using four real-life processes, which are
described below. The Bank Account Closure (BAC) is a process executed at an bank-
ing institution.3 The process deals with the closure of customer’s accounts, which may
be requested by the customer or the bank for several reasons. BPIC13 is a dataset
provided by Volvo IT Belgium that contains events from the incident management
system.4 BPIC17AO refers to a subprocess that includes application-relevant (A) and
offer-relevant activities (O) in the 2017 BPI Challenge. This dataset is derived from a
loan application process from a Dutch financial institution.5 Consulta is the Academic
Credentials Recognition (ACR) process of a Colombian University that was obtained
from its BPM system (Bizagi) for the fourth case study.6 A concept drift was found in
the event log BPIC17AO, in which an increase in the workload of resources at week
22 led to a decrease in the service times at week 28 (cf. [2]). Since our framework as-
sumes no concept drift appears in event logs, we partitioned the event log BPIC17AO
into two sub-logs: one contains traces before week 22, namely BPIC17AO - Before,
and the other contains those after week 28, namely BPIC17AO - After. This allows us
to experiment across five distinct logs. Table 1 shows the descriptive statistics for each
case study, where the mean case duration represents the average total execution time of
process instances in that event log.

Under the assumption of no concept drift, each event log is temporally split into a
training set Ltrain (first 75% of the traces) and a test set Ltest. This approach is useful
since predictions rely on past information to forecast future outcomes. Then, we create
a test log Lrun of running traces to evaluate the effectiveness of the recommendation
module. These running traces are derived from Ltest by truncating traces at a random
point to simulate the scenario of ongoing, incomplete executions.

5.2 Prediction Model and Quality

The framework is independent of the specific algorithm to instantiate the predictor
of the total execution time of process instances. However, to demonstrate its effective-
ness, we instantiated it using CatBoost [11], because of its excellent trade-off between

3 The BAC dataset is confidential and cannot be publicly shared
4 https://doi.org/10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee
5 https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
6 https://zenodo.org/records/11067569
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(a) Bank Account Closure (b) BPIC13

(c) BPIC17AO (Before) (d) BPIC17AO (After)

(e) Consulta

Case Study RMAE
BAC 0.215

BPIC13 0.555
BPIC17AO (Before) 0.145
BPIC17AO (After) 0.265

Consulta 0.753

(f) Relative Mean Absolute Error

Fig. 4: Report on prediction quality across different case studies. Subfigures (a) - (e) dis-
play the residual distributions (in days) for five case studies: (a) Bank Account Closure
(BAC), (b) BPIC13, (c) BPIC17AO (Before), (d) BPIC17AO (After), and (e) Consulta.
The dashed red line represents the median residual. Subfigure (f) shows the Relative
Mean Absolute Error (RMAE) for each case study.

predictive quality and training time [13] and the presence of an open-source implemen-
tation. Additionally, we employed a cross-validation approach to optimize the model’s
hyperparameters, ensuring robust generalization across different process instances. We
randomly picked the 20% of traces in Ltrain and used them as a validation set Lval to
apply a cross-validation approach to optimize the following training hyperparameters of
Catboost: learning_rate, depth, iterations. The framework has been fully implemented
in Python, and the implementation is available on GitHub.7

Figures 4a–4e visualize the residual distributions, namely the distribution of the
difference between the predicted and actual total execution times for each process in-
stance across the case studies. The nearly symmetric shape of the residuals and the

7 https://github.com/ngocdiemle296/CounterfactualsPrescriptiveAnalytics
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median close to zero highlight the validity of the predictor, indicating that the model
is not systematically over- or under-predicting. A model with systematic errors is more
predictable, thereby making counterfactual reasoning more effective. The strong per-
formance of the predictors is supported by the relative mean absolute error (RMAE)
results as shown in Table 4f, this value is computed by dividing the mean absolute error
between the predicted and actual values by the mean of the actual values, providing a
normalized measure of prediction error across different case studies. A lower RMAE
value indicates higher prediction quality.

5.3 Evaluation Methodology

The whole framework is independent of the specific technique to generate counter-
factuals. However, we need to leverage a specific framework, and we opted for DiCE
(Diverse Counterfactuals Explanations) [22], which has already been used in predic-
tive process monitoring but only for explanation generation purposes (cf. [7, 15]). In
our setup, we used DiCE’s random sampling method to generate counterfactuals. The
framework allows users to specify the maximum number of generated counterfactuals.
In our experiments, we set this limit to 100 to balance between diversity and computa-
tional efficiency. However, depending on process constraints and resource availability,
fewer counterfactuals may be generated in practice. Unlike many counterfactual meth-
ods that focus on producing a single optimal solution, DiCE can generate a diverse
set of counterfactuals. This diversity is essential in recommendation contexts, offering
a variety of actionable next activity-resource pairs, allowing flexibility in operational
decisions. By using the data about historical events and features, DiCE can generate a
series of what-if scenarios by altering features related to the next activity and resource
while keeping others constant.

The reduction threshold parameter of our framework directly maps to a correspond-
ing parameter of DiCE. In our experiment, we evaluate thresholds of 5%, 10%, 20%,
and 50%. A higher threshold results in greater potential improvements when a coun-
terfactual is found. However, increasing the threshold also reduces the likelihood of
generating recommendations, as more pairs of activity-resource may fail to meet the
stricter criteria. By varying these thresholds, we assess the framework’s ability to gen-
erate diverse recommendations under different levels of execution time reduction.

To evaluate the effectiveness of the proposed method, we compare it against a base-
line, referred hereafter to as Random Resource Assignment (RRA). In this method, given
a running trace σ′, we first extract the list of possible next activities using the transition
system. For each activity, we use the Total Time Oracle function to estimate the execu-
tion duration and select the activity that minimizes the predicted total time as the next
activity. Once the next activity is determined, a resource is randomly chosen from the
list of feasible resources to perform that activity.

To assess the effectiveness of our recommendation module, we compare the total
execution time of the process instances with and without following recommendations.
The best option would be to have an A/B testing with the system running, but that is
practically unfeasible. Therefore, building upon prior work in business process simu-
lation [28], this study employs simulation to generate process instances. We developed
simulation models for five case studies using established techniques to discover such
models [26]. In particular, for each running trace σ′ ∈ Lrun, the simulator is set to the
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process state (in fact, a Petri-net marking) that would be reached after performing the
activities in σ′ ⊕ ⟨(a, t, r, ∅)⟩ where the recommendation is to have resource r perform
activity a at simulation time t.8 From the reached state, the process instance was simu-
lated to reach the final state for 10 times, thus mitigating the potential consequences of
simulation stochasticity.

Note that the sequence σr = σ′ ⊕ ⟨(a, t, r, ∅)⟩ is sometimes not possible in the
simulation, namely when the sequence of activities in σr is not allowed according the
simulation model. If the issue is related to σ′ not being possible according to the sim-
ulation model, we compute the optimal alignment of σ′ [1] to determine the state (i.e.,
the marking) that would be reached by the execution closest to σ′: this state is thus used.
If (a, t, r, ∅) is not allowed by the simulator in the reached state, the recommendation is
discarded, and executions are simulated without following the recommendation.

5.4 Evaluation Metrics

The effect of recommending an activity-resource pair for the running trace is computed
as the average total execution time of that trace obtained through simulation. In contrast,
the effect of not following the recommendation is the actual average total execution time
observed in the test set without applying any intervention.

Let Ltest = {σ1, . . . , σn} be the test set, where each trace σi ∈ Ltest is associ-
ated with its actual total execution time Ttotal(σi) for i ∈ {1, ..., n} (cf. Section 3). Let
Lrun = {σ′

1, . . . σ
′
n} denote the set of running traces, where σ′

i ∈ prefix(σi). Then,
let Lsim = {σsim

1 , σsim
2 , . . . , σsim

n } be the set of simulated traces where σsim
i = σ′

i ⊕
⟨(arec, trec, rrec, ∅)⟩⊕σ′′

i is generated by following recommendation (arec, trec, rrec, ∅)
after σ′

i, and then simulating the continuation σ′′
i to reach the final state.

The effectiveness of the recommendations is evaluated based on the improvement
gained by following the activity-resource pairs generated by our proposed technique
compared to the case where no recommendations are applied. This requires to compute
average execution time of the traces in a log - say L - which is
avgtime(L) = 1

|L|
∑

σ∈L Ttotal(σ), where |L| denotes the number of traces in L.
The performance improvement is thus computed as follows:

∆perf_imp(Ltest,Lsim) =

(
1− avgtime(Lsim)

avgtime(Ltest)

)
which quantifies the relative gain in total execution time achieved by applying our
method over the ground truth performance, which was observed in the event log when
no recommendations are provided. We introduce a metric called relative improvement,
∆rel_imp, which measures the effectiveness of our method compared to the RRA ap-
proach:

∆rel_imp(Ltest,Lsim
counter,Lsim

RRA) = 1− ∆perf_imp(Ltest,Lsim
counter)

∆perf_imp(Ltest,Lsim
RRA)

where Lsim
counter and Lsim

RRA are the event logs obtained via simulation when the recom-
mendations are produced by our method based on counterfactual generations and by the
RRA method, respectively.

8 Symbol ∅ indicates a function with an empty domain.
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(a) (b)

Fig. 5: (a) Relative improvement related to the average total execution time when apply-
ing DiCE compared to the Random Resource Assignment method. On the x-axis, there
are the reduction thresholds, while on the y-axis, the relative improvement is computed
on the whole Lrun. (b) Percentage of traces without recommendations when applying
DiCE compared to the Random Resource Assignment method. On the x-axis, there are
the percentages of reduction thresholds (5%, 10%, 20%, and 50%) when applying DiCE
and the RRA column indicating the Random Resource Assignment method.

5.5 Results Analysis

This section reports on the main results of our counterfactuals recommendation module.
Figure 5a presents a comparative visualization of the relative improvement achieved

by our framework over the RRA method. Overall, our framework outperforms the RRA
approach, with particularly substantial gains observed in the Consulta process, where
improvements exceed 100% for the three lowest reduction thresholds. This confirms
how a poor choice of a resource to perform a recommendation activity may significantly
affect performance and how our framework efficiently generates recommendations in
the form of activities and corresponding allocated resources. A noticeable trend is ob-
served where the relative improvement for all methods declines at the 50% reduction
threshold. Moreover, when looking at the BPIC13 process, we observe that the proposed
method is not able to provide any relative improvement at the 50% total execution time.
The underlying reasons for this behavior will be discussed in the following paragraph.

Another aspect we want to take into account is the percentage of traces without
recommendations. This is important because the effectiveness of our framework is not
solely determined by the performance improvement but also by how many traces can
actually be optimized. This may be attributed to two different causes: (i) the model’s
threshold is set too high, resulting in no recommendations that meet this criterion, or,
conversely, (ii) the ongoing trace already represents the optimal execution for the model,
making further improvements practically unfeasible. From Figure 5b, we can notice that
if the percentage of the reduction threshold increases, there will be a decrease in the per-
centage of traces that receive recommendations. This highlights that if the threshold is
pushed too high, several process instances remain without potential recommendations,
which implies that the overall improvement for all running instances is more limited.
Since the framework generates recommendations based on patterns and relationships
identified in the event log data, setting a high percentage of reduction thresholds may



Leveraging Counterfactuals for Prescriptive Process Analytics 13

cause the algorithm to focus only on the most extreme cases - those that can achieve
significant improvements. As a result, the algorithm becomes more selective, filtering
out traces that do not meet the strict total time criteria. This leads to a decrease in the
number of eligible traces for recommendations. We are aware that choosing a higher
percentage for reduction may seem very optimistic. However, it requires balancing the
trade-off between achieving significant execution time improvements and finding a suit-
able number of recommendations for a substantial number of running cases.

As shown in Figure 5b, the RRA approach can consistently generate a higher num-
ber of recommendations. This is because RRA does not rely on complex optimization
techniques. Instead, it selects the next activity based on the smallest predicted total
time and assigns a resource randomly based on the chosen best activity. This random
allocation often results in suboptimal resource utilization.

In conclusion, our framework can effectively recommend activity-resource pairs
that significantly reduce the total execution time, even under strict constraints, result-
ing in substantial improvements across all five event logs and reduction thresholds.
Meanwhile, the random resource assignment prevents the RRA method from achieving
equally good results, especially when resource choice critically impacts outcomes. The
experiments show that setting overly high reduction thresholds may limit applicabil-
ity, as many traces cannot receive recommendations. This highlights a key strength of
the framework: the explicit tuning of the reduction threshold enables process experts to
balance applicability - the proportion of traces that can receive recommendations - and
utility - the magnitude of the improvements achieved through these recommendations.

6 Conclusion

This paper has put forward a framework for prescriptive process analytics that utilizes
counterfactuals to generate real-time recommendations for the next resource and activ-
ity. In particular, DiCE was employed as a framework to generate these counterfactuals.
In prescriptive process analytics, recommendations need to be given, usually in the form
of suggesting a certain activity to be assigned to a resource for those process instances
that are predicted to likely complete with unsatisfactory outcomes. In this paper, we
focus on total case duration as the outcome, which is aimed to be minimized.

The idea of using counterfactuals for generating recommendations in prescriptive
process analytics has stemmed from the idea that processes usually consist of dozens
of potential activities and even hundreds of potential resources to whom these activities
can be assigned. While brute-force approaches are not applicable in practice with these
numbers, several existing approaches use a divide-and-conquer approach in which, first,
the activity is chosen, and then it is assigned to a suitable resource. The leverage of
counterfactual generation has the advantage of relying on more innovative approaches
to converge to highly effective recommendations quickly.

Experiments were conducted on several real-life processes. These showed that our
technique, based on counterfactual generation, outperforms a natural baseline where
the best activities are first chosen and then allocated to resources. Experiments also
highlight the framework’s ability to be fine-tuned, providing a proper balance between
applicability, referring to the proportion of traces that receive recommendations, and
utility, which reflects the extent of the improvements achieved.
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We acknowledge that this is the first work in the literature to provide recommen-
dations based on counterfactual generation, and several avenues for future work exist.
Currently, we aim to reduce the execution time since, although simplistic, it is a general
indicator desired across various domains. However, extending it to other KPIs is con-
ceptually simple. Furthermore, since the proposed technique does not depend on the
method used for generating counterfactuals, we also plan to experiment with alterna-
tive counterfactual-generation frameworks, such as large language models, for explain-
ing/producing recommendations about activities and resources.
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