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Abstract. Business process simulation is a methodology that enables analysts
to run the process in different scenarios, compare the performances and con-
sequently provide indications into how to improve a business process. Process
simulation requires one to provide a simulation model, which should accurately
reflect reality to ensure the reliability of the simulation findings. This paper pro-
poses a framework to assess the extent to which a simulation model reflects reality
and to pinpoint how to reduce the distance. The starting point is a business sim-
ulation model, along with a real event log that records actual executions of the
business process being simulated and analyzed. In a nutshell, the idea is to simu-
late the process, thus obtaining a simulation log, which is subsequently compared
with the real event log. A decision tree is built, using the vector of features that
represent the behavioral characteristics of log traces. The tree aims to classify
traces as belonging to the real and simulated event logs, and the discriminating
features encode the difference between reality, represented in the real event log,
and the simulation model, represented in the simulated event logs. These fea-
tures provide actionable insights into how to repair simulation models to become
closer to reality. The technique has been assessed on a real-life process for which
the literature provides a real event log and a simulation model. The results of the
evaluation show that our framework increases the accuracy of the given initial
simulation model to better reflect reality.

Keywords: Business Process Simulation · BPMN Model · Decision Tree ·
Declarative Language · Event Log Comparison

1 Introduction

Business process simulation refers to techniques for the simulation of business process
behavior on the basis of a process simulation model, a process model extended with ad-
ditional information for a probabilistic characterization of the different run-time aspects
(case arrival rate, task durations, routing probabilities, resource utilization, etc.). Simu-
lation provides a flexible approach to analyse and improve business processes. Through
simulation experiments, various ’what if’ questions can be answered, and redesigning
alternatives can be compared with respect to some key performance indicators. The
main idea of business process simulation is to carry out a significantly large number
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Fig. 1: The framework of the proposed approach.

of runs, in accordance with a simulation model. Statistics over these runs are collected
to gain insight into the processes, and to determine the possible issues (bottlenecks,
wastes, costs, etc.). By applying different changes to the simulation model, one can
assess the consequences of these changes without putting them in production, and con-
sequently can explore dimensions to possible process improvements.

A successful application of business process simulation for process improvement
relies on a simulation model that reflects the real process behavior; conclusions are
drawn on an unrealistic simulation model lead to process redesigns that may not yield
improvements, or even may worsen the performances.

This paper puts forward a framework to assess and improve the accuracy (i.e., the
realism) of a simulation model M starting from the differences figured out by our frame-
work.

Along with M , the framework requires an event log Lr that records executions of
the process modelled by M . The framework is based on the idea that many process runs
are carried out using M , thus generating a simulated event log Ls. If Ls is similar to Lr,
then M is accurate. To compute the similarity, the framework builds a decision tree that
classifies the traces of Lr or Ls. If the two logs are similar, the decision tree is unable
to discriminate and, hence, correctly classify. The decision tree features encode the
behavior observed in traces, such as whether two casually dependent activities follow
in traces, activity durations, or certain declarative rules based on Linear Temporal Logic
(LTL) formula.

Section 2 further introduces the framework, using an intuitive example. Section 3
introduces the basic concepts that are used throughout the paper. Section 4 reports on
the discriminating features used to create the decision tree model from the two logs,
and on a final data preprocessing step before training the model. Section 5 discusses on
the use of decision trees for event logs discrimination. Section 6 illustrates the results of
our evaluation, while 7 discusses related work. Section 8 summarizes the contributions
and outlines future work directions.

2 Overall Idea and Motivation

The framework proposed in this paper can be summarized as in Figure 1. The starting
point is an initial simulation model and a real event log. The simulation model can
be drawn by process analysts on the basis of insights from stakeholders, or it can be
discovered using combinations of Process Mining techniques [9, 11]. The simulation
model is used to generate the traces composing a simulated log. After generating the
simulating model, the framework aims to compare the two logs for differences; to do
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Fig. 2: BPMN model of process order.

(a) (b)

Fig. 3: Decision trees obtained from the comparison between the real log and the simu-
lation log originated from the simulation model over the BPMN in Figure 2.

so, a decision tree is built that highlights the differences and indicates how close our
simulation model represents reality. If the decision tree indicates that the simulation
model accurately reflects reality, the application of the framework concludes, and the
model is deemed as appropriate. If the decision tree highlights significant differences,
the model is modified, using the differences as guidelines for improvement. The new
simulation model can be used to generate a new simulation log and compared with the
real log for the difference. It follows that the simulation model is improved iteratively
through a sequence of improvement steps: the framework more and more improves the
accuracy of the simulation model, until the differences are considered negligible.

As an example, let us consider the BPMN model in Figure 2, which refers to a
purchase-order process composed of five activities. In particular, the exclusive gateway
routes the control flow of the process based on the result of the previous activity Check
Credit. If the Check Credit is successful, the order is carried; otherwise, the order is
canceled. Let us suppose to have a real event log Lr. The simulation model, composed
by the BPMN in Figure 2 and the simulation parameters (e.g., case arrival rate, branch-
ing probabilities), is simulated as many times as the number of traces in Lr in order to
generate a simulated event log Ls. The framework builds a decision tree that is trained
via a multiset of feature vectors, one vector for each trace in Lr and Ls. Let us sup-
pose to obtain the decision tree in Figure 3a. The root of the tree contains the feature
CheckCredit→CancelOrder. For a given trace σ, this feature value is equal to
the number of times that the activity Check Credit is followed by the activity Cancel
Order and the opposite never happens in σ. Traces of Lr and Ls are then associated to
decision tree leaves, depending on the values of the features that appear in the traces.
Each leaf of the tree is represented as a pie chart, which describes the fractions of the
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traces inside the leaf that belong to Lr and Ls. The right leaf in Figure 3a contains
the traces with the root feature equal to 1, i.e., the traces containing the activity Check
Credit followed by Cancel Order. This leaf contains the traces for orders that are can-
celed, while the left for completed orders. The pie chart of the right leaf contains more
traces from Ls log with respect to Lr log, which indicates that the simulation model
sets a too high probability to cancel more orders than the real process. Starting from
this rule, we can improve and fix the simulation model in order to have the same per-
centage of completed orders. In this case, the mistake is very likely associated with the
branching probability of the exclusive gateway Check Credit. We can hence improve
the model by better tuning the probability at the gateway. The new simulation model is
run to obtain a simulated log to repeat the comparison based on the decision tree con-
struction. The new decision tree is, e.g., as in Figure 3b: now the leaves almost contain
the same numbers of traces from Lr and Ls. It follows that the decision tree model is
not able to well discriminate whether a trace belongs to the real or simulated event log,
thus positively confirming the accuracy of the simulated model.

3 Preliminary

This section introduces the preliminary concepts to later illustrate the technique’s de-
tails. First, we present the concepts of events, traces and event logs, and some related
notations.

Definition 1 (Events). Let A be a set of activity labels. Let T be the universe of
timestamps. Let I = {start, complete} be the life-cycle information. An event e ∈
A×T ×I is a tuple consisting of an activity label, a timestamp of occurrence, and the
life-cycle information.

In the remainder, given an event e = (a, t, i), act(e) = a returns the activity label,
time(e) = t returns the timestamp, and life(e) = i is the information whether e refers
to the starting or completion of an activity. In practice, several event logs are composed
of events where the life-cycle information is not present. In this case, we assume that
those events refer to the completion. There might be events other than related to the
starting or completion of activities: those events are simply ignored. Events also carry
a payload consisting of attributes taking on values: they are also ignored.

Definition 2 (Traces and Event Logs). Let EA the universe of the events defined over
a set A of activity labels. A trace σ = ⟨e1, . . . , em⟩ ∈ E∗

A is a sequence of events, with
the constraint that, for all 0 < i < j ≤ m, time(ei) ≤ time(ej). An event log LA is a
set of traces, namely LA ⊂ E∗

A.

In the remainder, we use the shortcut e ∈ LA to indicate that there is a trace σ ∈ LA
such that e ∈ σ. Also, we drop the subscript A when it is clear from the context. Finally,
given a trace σ, the notation complete(σ) refers to the sequence of events in σ after
removing the events referring to the starting of activities, and retaining the same order,
i.e. complete(σ) = {e ∈ σ| life(e) = complete}. Table 1 shows an example of an
event log related to the management of order requests.



A Framework to Improve the Accuracy of Process Simulation Models 5

Case ID Activity Timestamp Life-cycle
12 Receive Order 16-08-20 08:30 start
12 Receive Order 16-08-20 08:45 complete
13 Receive Order 16-08-20 10:30 start
13 Receive Order 16-08-20 10:45 complete
12 Check Credit 17-08-20 12:27 start
12 Check Credit 17-08-20 12:32 complete
12 Fulfill Order 17-08-20 14:40 start
12 Fulfill Order 17-08-20 14:50 complete
13 Check Credit 17-08-20 16:40 start
13 Check Credit 17-08-20 17:40 complete
13 Cancel Order 17-08-20 17:56 start

Case ID Activity Timestamp Life-cycle
14 Receive Order 17-08-20 18:00 start
14 Receive Order 17-08-20 18:45 complete
13 Cancel Order 17-08-20 18:56 complete
12 Send Invoice 18-08-20 10:40 start
12 Send Invoice 18-08-20 10:42 complete
14 Check Credit 18-08-20 13:11 start
14 Check Credit 18-08-20 13:32 complete
14 Fulfill Order 18-08-20 14:25 start
14 Send Invoice 18-08-20 14:27 complete
14 Send Invoice 18-08-20 14:40 complete
14 Fulfill Order 20-08-20 10:50 complete

Table 1: A fragment of an event log of a process about dealing with orders.

Constraints Description
Init(a) a should be the first activity in a trace
End(a) a should be the last activity in a trace
CoExistence(a, b) If one of the activities a or b is executed, the other one also has to be executed
Response(a, b) When a is executed, b has to be executed after a
AlternateResponse(a, b) When a is executed, b has to be executed after a and no other a can be executed in

between
Precedence(a, b) b has to be preceded by a
AlternatePrecedence(a, b) b has to be preceded by a and another b cannot be executed between a and b
Succession(a, b) a occurs if and only if it is followed by b

Table 2: List of DECLARE constraints used in our techniques.

Some of the differences can be given as constraints of DECLARE, i.e., a declarative
process modeling language [1]. This language indeed defines the behavior of the busi-
ness process as a set of constraints. An example of DECLARE constraint is Init(a) and
it states that every instance must start with the execution of activity a. Another example
can be Precedence(a, b), and it imposes that the activity b occurs only if preceded by
the activity a. The full list of DECLARE constraints can be found in [1]. The list of
constraints and the related descriptions that are used in this paper are listed in Table 2.
Given this framework, we can notice that each DECLARE constraint can be formally de-
fined as a LTL formula, which can ultimately be represented as a final state automaton
over the alphabet of activities.

Definition 3 (DECLARE Constraint as Final State Automaton). Let A be a set of
activity labels. The DECLARE constraint can be formulated as a final state automaton
C = (A, Q, q0, δ, E) over a set A of activities, where: (i) A is the activity labels; (ii) Q
is a finite, non-empty set of states; (iii) q0 ∈ Q is an initial state; (iv) δ ∈ Q ×A → Q
is the state-transition function; (v) E ⊆ Q is the set of final states.

The automaton that represents a DECLARE constraint accepts all and only those log
traces that satisfy the constraint. Note how the state-transition function is total: log
traces can always be replied on the automaton.

Example 1. Given the set of activity labels related to the event log in the Table 1. Figure
4 shows the automaton C = (A, Q, q0, δ, E) for the DECLARE constraint CoExistence
(Receive Order, Fulfill Order). This DECLARE constraint states that if one of the two
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Fig. 4: This figure shows the automaton for the DECLARE constraint CoExis-
tence(Receive Order, Fulfill Order), where A is the who set of activity labels.

activities, Receive Order or Fulfill Order, is executed, then the other also has to be
executed. As an example, the trace with the CASE ID = 12 in the Table 1 is accepted
by the automaton, while the trace with CASE ID = 13 is not accepted.

4 Our Framework

Our framework requires a simulation model and a real event log Lr as input. The basic
idea is to verify the quality of the simulation model by generating an event log Ls from
the latter and find the event log features that discriminate Lr and Ls. These features can
range from the occurrences of activities and their sequencing to DECLARE constraints,
and temporal features i.e. the activity durations. The discriminating features pinpoint
the differences between the two event logs and provide valuable insights into repairing
the simulation models.

In this structure, we employ decision tree learning to find the discriminating fea-
tures. Given a set of features F , and their potential values V . Decision trees are learned
from a multiset of pairs (x, y) where x ∈ F → V is a function that assigns values to (a
subset of) the features, and y is the class value. The label y is whether the trace belongs
to the real or simulated event log. In our framework, the feature function is extracted
from an event log via a customizable mapping function:

Definition 4 (Trace-to-Feature Mapping Function). Let L be an event log. Let F
be a set of features. Let V be the set of potential values. A trace-to-features mapping
function is a function ρL : L → (F → V) such that, for each trace σ ∈ L, it returns
a feature-to-value function z = ρL(σ) that assigns a value z(f) ∈ V to each feature
f ∈ F .

With these concepts at hand, given a real event log Lr and a simulated event log Ls

the training set TLr,Ls
of the decision tree is constructed as follows where real and

sim denote the two possible class values for respectively real and simulated log trace:3

TLr,Ls
=

⊎
σr∈Lr

(ρL(σr),real) ⊎
⊎

σs∈Ls

(ρL(σs),sim) (1)

3 Symbol ⊎ indicates the union of multisets where duplicates are retained.
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In the remainder, from Sections 4.1 to 4.3, we introduce several trace-to-features
mapping functions supported in our implementation to construct the training sets for
the decision tree algorithm, i.e., Basic Features, Extended Features for Declare Rules
and Temporal Features.

4.1 Basic Features

In this section, we describe the features related to the control-flow perspective. First
of all, we define the features related to the activities occurrences, i.e., if an activity is
performed in the given trace or not.

Definition 5 (Activity Function). Let L be an event log over the set A of activities.
Let define a trace-to-function mapping function ρLactivity : L → (F → V) in which the
set of features F is A. For each trace σ ∈ L, it returns a function z = ρLactivity(σ) that
assigns a value z(f) ∈ V for each activity feature f ∈ F . The value z(f) is the number
of times an activity a is executed within the trace, i.e. |e ∈ complete(σ) : act(e) = a|.

Example 2. Let σ the trace with the CASE ID = 12 in the Table 1. Let fix the set
of features F equal to the set A, i.e. F = {ReceiveOrder, CheckCredit,
FulfillOrder, SendInvoice, CancelOrder }. Given the trace σ, the func-
tion ρLactivity maps the trace into a function z that assigns for each f ∈ F a value in
{0, . . . , n}. The trace contains the activities: Receive Order, Check Credit, Fulfill Order,
and Send Invoice. Therefore we have that z( ReceiveOrder)=1, z(CheckCredit)=
1, z(FulfillOrder)=1, z(SendInvoice)=1, and z(CancelOrder)=0.

In the following, we define the second type of features related to the control-flow
perspective, i.e., these features encoded the causality relation between activities:4

Definition 6 (Causality Relation). Given an event log L defined over a set A of activ-
ities. a →L b is a causality relation in L iff there is a trace σ = ⟨e1, . . . , em⟩ ∈ L s.t
⟨ei, ei+1⟩ ⊆ complete(σ) | act(ei) = a ∧ act(ei+1) = b and ∄σ′ = ⟨e′1, . . . , e′m⟩ ∈ L
s.t ⟨e′i, e′i+1⟩ ⊆ complete(σ′) | act(e′i) = b ∧ act(e′i+1) = a.

Definition 7 (Causality Relation Function). Let L be an event log defined over a set
A of activities. We introduce a trace-to-feature mapping function ρL→ : L → (F →
V) in which the set of features F coincides with the set of causality relation in L.
The causality relation function ρL→(L) returns a function z(f) that, to each causality
relation f = (a →L b) ∈ F , assigns the numbers of times an event for activity a is
followed by an event for activity b in L.

Example 3. Let σ the trace with the CASE ID = 12 in the Table 1. Let fix the set of fea-
tures F equal to the set of all possible causality relation in L, i.e. F = { ReceiveOrde
r→CheckCredit,. . .,CheckCredit→CancelOrder}. In this case we have
for instance that z(CheckCredit→FulfillOrder) = 1, and z(CheckCredit→
CancelOrder) = 0.

4 Given two sequences s and s′, s′ ⊆ s indicates that s′ is a sub-sequence of s.
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4.2 Extended Features for Declare Rules

We also want to support more complex features related to the control-flow perspec-
tive using the DECLARE constraints. Given a real event log Lr and the simulated event
log Ls as in our framework, we compute the sets of DECLARE constraints over these
two event logs via MinerFul Miner [8]. We denote these constraint sets are Dr and
Ds respectively. As mentioned in Section 3, we only support the constraints in Table
2, excluding the constraints already covered or extended by the Basic Features dis-
cussed in Section 4.1. For instance, the Activity Features already cover the constraint
Participation(a) and AtMostOne(a). The first constraint requires that the activity a oc-
curs at least once and the other that the activity a occurs at most once. However, the
Activity Feature related to the number of occurrences of the activity a is certainly
more detailed. Also, we decide to remove the negative DECLARE constraints because
they might be overly complex and not give useful insight. After removing these con-
straints, we perform the symmetrical difference between the two sets of constraints, i.e.,
(Dr ∪Ds)∖(Dr ∩Ds) = Dt, obtaining the final set of constraints to consider. In fact,
the constraints in common cannot pinpoint differences. Note also that for each dj ∈ Dt

we have the corresponding constraint automaton Cj = (Aj , Qj , qj0, δ
j , Ej).

Definition 8 (DECLARE Function). Let L be an event log over a set A of activities.
Let define a trace-to-function mapping function ρLdeclare : L → (F → V) in which
the set of feature F is the set of DECLARE constraints Dt. For each trace σ ∈ L, it
returns a function z = ρLdeclare(σ) that assigns a value z(f) ∈ V to each DECLARE
constraint f ∈ F . The value z(f) ∈ {True,False} corresponds to the evaluation of
the trace complete(σ) on the respective automaton, i.e. set to True if the automaton
of the DECLARE constraint accepts the trace, and False otherwise.

Example 4. Let σ the trace with the CASE ID = 12 in the Table 1. Let fix the set of
features F equal to the set of the DECLARE constraints Dt. For instance, let take the DE-
CLARE constraint CoExistence(Receive Order, Fulfill Order) represented in the automa-
ton in the Figure 4. In this case we have that z(CoExistence(ReceiveOrder,
FulfillOrder) is equal to True.

4.3 Temporal Features

In this section, we describe the features related to the time perspective. For each a ∈ A,
we define the activity duration feature pa that represents the duration of the activity a
in the trace. Let define with P the set of all the activity duration features related to A,
i.e., P =

⋃
a∈A pa .

Definition 9 (Activity Duration Function). Let σ a trace in L. Let define a trace-to-
function mapping function ρLduration : L → (F → V) in which the set of features F
is equal to the set of activity duration P . For each trace σ ∈ L, it returns a function
z := ρLduration(σ) that assigns a value z(f) ∈ V for each feature f ∈ F . The value
z(f) ∈ [−1,∞) corresponds to the activity duration.

Example 5. Let σ the trace with the CASE ID = 12 in the Table 1. Let fix the set of fea-
tures F equal to the set P , i.e. F = {time:ReceiveOrder,time:CheckCredi
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time:Fulfill Order ... Check Credit→Cancel Order ... CoExistence(Fulfill Order, Send Invoice) ... Class Label
10 min ... 0 ... true ... real
-1 ... 1 ... false ... sim

25 min ... 0 ... true ... real

Table 3: The corresponding training set of the fragment event log in Table 1.

Fig. 5: The framework of the proposed iterative approach. The inputs are the real and
the simulated event logs. We have two phases, related to the control-flow and the time
perspectives respectively. The blacks-box refer to the framework in Figure 1.

t,time:FulfillOrder,time:SendInvoice,time:CancelledOrder}.
Therefore, for example, we have that z(time:ReceiveOrder) = 15 minutes, and
that z(time:CancelledOrder) = −1 due to the absence of the activity Cancel
Order in the trace.

Using these trace-to-features mapping functions, we can construct the multiset TLr,Ls

as in Equation 1. Table 3 represents an example of the resulted multiset for the traces
contained in the Table 1.

4.4 Application of the Framework using Different Features

As mentioned in Section 2, our framework improves the simulation model by repeat-
edly comparing the same real event log with different simulated event logs obtained via
more and more accurate simulation models. Since the control-flow of the simulation
models (the activities, events, gateways, etc.) is tightly correlated to the temporal fea-
tures (e.g., the time elapsed between the execution of two non-consecutive activities),
we separately employ the framework using control-flow and temporal features.

The framework is firstly applied to consider the Basic and Extended features for
Declare rules (cf. Sections 4.1 and 4.2). Subsequent iterations are carried out to improve
the simulation model, until a decision tree is constructed that shows an accurate model
(namely the tree is unable to distinguish the traces of the simulation log from those of
the real event log), as in Figure 5. Then, we reapply the framework, focusing on the
temporal features discussed in Section 4.3. Section 6 discusses a case-study assessment
where we indeed employ the framework where we first focus on the control flow of the
simulation model, and then on the temporal features.
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4.5 Feature Selection and Normalization

The multiset TLr,Ls
obtained from the Equation 1 encoding basic, extended and/or tem-

poral features is used to train a decision tree model. As last step beforehand, we pre-
process TLr,Ls to improve the quality of the trained decision tree. Initially, we perform
feature selection and remove those features do not show sufficient variability. Features
over discrete and numerical domains (e.g., the number of occurrence of activities in
a trace) are filtered out if more than X% of the set elements take on the same value,
where X is customizable and typically is around 90%. Any feature defined over contin-
uous domains (e.g., temporal features) is removed if the mean and standard deviation
considered for the multiset elements related to the real event-log traces are distant less
than (1 − X)% from the mean and standard deviations for the elements related to the
simulated event-log traces, with X customizable. Then, we normalize the values of the
features of the elements of the multiset, using a traditional z-score normalization[2]:
the values are transformed into distribution with a mean of 0 and a standard deviation
of 1, i.e., a common scale. For each value, we subtract the mean value and divide it
by the standard deviation of the respective feature. Normalization may be useful when
learning a decision tree because the learning algorithms tend to give more weight and
importance to features characterized by larger values.

5 Discussion

Our technique aims at a business simulation model that is able to generate traces that
exhibit all and only the behavioral characteristics of the traces of the real event log. The
behavioral characteristics of interest can be customized, such as with those in Section 4.
Note that, however, the real event log does not need to contain every potential trace, but
it is enough to just contain traces that exhibit these behavioral characteristics. It follows
that the simulation model does not need to generalize beyond the real event log. This
explains why we use the entire feature vector multiset for training: the tree needs to just
classify the traces in the real and simulated event log, and can ignore potential future
traces that exhibit characteristics not observed in the real and simulated event log. We
however acknowledge the importance to have simulated models that generalize beyond
the real event log, and we aim to investigate the generalization question as future work.

Training on the entire dataset might lead to an overfitting decision-tree model,
namely with an excessive number of nodes and with leaves associated to single traces.
We implemented decision-tree pruning by limiting the maximum depth of the tree and
the maximum number of leaves, in order to mitigate overfitting. Pruning also improves
the decision-tree clarity and readability.

Recall that we aim at a decision tree that cannot distinguish traces of the two event
logs. Considering the real and simulated event log have the same number of traces, the
most favourable tree is such that each leaf is associated to the same number of real
and simulated log traces. This leads to a metrics for log similarity that considers the
weighted average of the distribution of the classes in the leaves. The metric can take on
values between 0 and 1. Value 0 means that the decision tree is able to distinguish each
trace of the real-life event log from each trace of the simulated one, i.e., the simulation
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Fig. 6: The initial BPMN model for the simulation of an order purchase process [5],
used in our case study.

model does not reflect the real process behavior. In the opposite case, Value 1 means
that the two event logs are indistinguishable.

Definition 10 (Log Similarity). Let B = {β1, . . . , βn} the set of all leaves in the
decision tree model DT . Let be ηr ∈ TLr,Ls

instances of multiset with the class label
equal to real and ηs ∈ TLr,Ls

instances with sim as class label. For each βi ∈ B,
mβi

is the total number of instances in βi, of which ηri and ηsi are the percentage of
instances with real and sim label, respectively. The similarity of Lr,Ls with respect
the decision tree DT is the follow:

Log Similarity(DT Lr,Ls) =
(1−|ηr1

−ηs1
|)·mβ1

+...+(1−|ηrn−ηsn |)·mβn

mβ1
+···+mβn

Example 6. The log similarity related to the decision tree model in Figure 3a is:

Log Similarity(DT Lr,Ls) = (1−|0.58−0.42|)·11679+(1−|0.37−0.63|)·8321
11679+8321 = 0.80

Note how the above-defined metrics is tightly coupled with the typical decision-tree
accuracy metrics: the higher is the log-similarity metrics, the lower is the accuracy. In-
deed, less accuracy means that the decision tree has lower capabilities to classify traces.
This implies that simulated and real logs are similar, and consequently the simulation
model is capable to generate all and only the traces in the real event log.

6 Implementation and Experiments

Our approach has been implemented as a Python command-line tool.5 Python language
provides the main libraries and frameworks for process mining and machine learning.
In particular, the libraries scikit-learn and PM4py are used to implement our approach.6

5 https://github.com/francescameneghello/A-Framework-to-Improve-the-Accuracy-of-Process-
Simulation-Models.git

6 scikit-learn: https://scikit-learn.org/stable/, PM4py: https://pm4py.fit.fraunhofer.de/
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Fig. 7: The initial BPMN model for the simulation. The elements colored with green
represent the changes derived from the first iteration, while those colored with purple
are derived from the second iteration. The last, third iteration produced no change.

As input, the tool takes the real and the simulated event logs in XES format, together
with the respective declare-constraints set in CSV format. These sets were discovered
via MinerFul Miner [8]. The output of our implementation is a decision tree model such
as those in Figure 8.In order to test the applicability of our approach, we conducted a
case study related to an order purchase process. We used a real event log and an existing
accordant simulation model coming from literature by Camargo et al. [5].7 The latter is
composed of the BPMN model in Figure 6 and several simulation parameters. Hence,
we run this simulation model to obtain the simulated event log. In the remainder, we
iteratively apply our technique to further improve the existing simulation model.

First Step: Control Flow Perspective. The first step of the improving iterative process is
the analysis of the control-flow perspective using the Basic Features and the Extended
Features for Declare Rules. Figure 8a shows the first comparison result a Log Similarity
equal to 0.38, which illustrates the need to improve the simulation model. We leveraged
on the rules discovered by the decision tree model in Figure 8a. The CoExistence con-
straint in the root highlights that for 374 traces in the real log, the activities Settle Con-
ditions With Supplier and Analyze Purchase Requisition do not coexist while the model
requires both activities to occur. In fact, by analyzing the real log, we observed that
the Analyze Purchase Requisition activity is not always executed. Hence, an exclusive
gateway is introduced before this activity to make it optional (see Figure 7). When both
activities are performed, the decision tree pinpoints via the node of the AlternatePrece-
dence constraint that the activity Release Supplier’s Invoice is more often preceded by
Analyze Request For Quotation in the simulated log, compared with the real event log.
This is actually caused by having more traces in the real event log where Analyze Re-

7 The event log is available at http://fluxicon.com/academic/material/ while the accordant simu-
lation model is available at https://github.com/AdaptiveBProcess/Simod
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(a) The decision tree obtained at the first iteration (Log Similarity 0.38).

(b) The final decision tree obtained at the third and last iteration (Log Similarity 0.91).

Fig. 8: Decision trees generated at the first and last iteration of the framework, using the
Basic Features and the DECLARE features.

quest For Quotation is not followed by the other activity. This might trigger at a first
glance to make Release Supplier’s Invoice optional via an exclusive gateway. We tried
to do so, and we saw that an alternate-precedence constraint remained in the decision
tree between Analyze Request For Quotation and any of the other activities following
it (e.g., Send Invoice). We thus concluded that the real process allows for termination
after Analyze Request For Quotation: therefore, we added an exclusive gateway before
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Fig. 9: Decision trees are generated at the first iteration of the second step of our iterative
framework, using the Activity Duration Features.

Send Request for Quotation to Supplier to the model, along with a BPMN’s end event
(see Figure 7).

We iterated once more the procedure. Space limitation prevents us from showing the
new decision tree and discussing it. The new iteration led to some changes in the routing
probabilities, as shown with purple in Figure 7. This second iteration was followed by
a third associated with the decision tree in Figure 8b: even if the decision tree contains
a few branches, one can see that the distribution of traces at leaves is well balanced.
Indeed, the Log Similarity is 0.91. So, we proceeded with the second phase regarding
the analysis of the time perspective through the Activity Duration Features.

Second Step: Time Perspective. The first iteration of time analysis produced the de-
cision tree in Figure 9 with Log Similarity equal to 0.42, so we tried to improve the
simulation model. The root’s feature time:AnalyzeRequestForQuotation ev-
idences that only in the real log the activity Analyze Request For Quotation takes more
than 26 minutes to complete. The remaining nodes pinpoint several deviations also
about the processing time of the activity Create Request for Quotation. Moreover, each
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Fig. 10: Decision trees are generated at the last iteration of the second step of our itera-
tive framework, using the Activity Duration Features.

node presents a histogram that underlines the variations in the distribution of processing
times for both logs. For the first activity, we changed the distribution of activity dura-
tion from a uniform distribution to a custom discrete distribution, that assigns a sample
of points to the corresponding probability. For the second one, we retained the same
normal distribution and we only adjusted the mean and standard deviation. After two
iterations, we obtained the decision tree in Figure 10 with Log Similarity equal to 0.94.

7 Related Works

Our technique is centered around comparing a real and a simulated event log to pin-
point common, behavioural differences. Several approaches exist for the comparison of
two event logs from the same process [3, 4, 6, 10, 12]. Bolt et al. propose an approach
where pairs of event logs are shown as automata and statistically-significant differences
are highlighted through different colors [4]. Since transitions systems explicitly repre-
sent all the interleavings of execution of activities, differences are usually captured at
low level. Low-level differences are also returned by the technique Nguyen et al. [10],
where a differential graph of the differences between two event logs is constructed. As
also highlighted in the evaluation presented in Taymouri’s work [12], the two aforemen-
tioned research works yield an explosion of differences, which provide few actionable
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insights into how to improve a simulation model. In contrast, a decision tree model is
able to detect the main differences between the logs, i.e., differences affecting a signif-
icant number of traces, and to return them in form of compact and high-level behav-
ioral rules, which help process analysts to improve a simulation model. Beest et al. [3]
present a method for diagnosing the differences between two event logs via natural lan-
guage statements capturing behavior present in one log but not in other, but they only
consider differences related to the ordering of activities and to branching probabilities.
Taymouri et al. [12] proposed a hybrid machine learning approach for process vari-
ant analysis based on Discrete Wavelet Transformation (DWT). This approach uses a
Support Vector Machine (SVM) to extract the features that provide enough information
to discriminate the two process variations, and they are plotted using directly-follows
graphs. The above-mentioned research stop at considering the Basic Features as intro-
duced in Section 4.1, thereby ignoring DECLARE features, which allow one to capture
and compare more complex behavioral patterns. Cecconi et al. [6] is the only work
that consider DECLARE features when comparing two event logs. However, it does
not consider the Temporal Features, nor does it attempt to filter out non-discriminating
DECLARE rules. The latter also implies that a DECLARE miner may potentially mine
redundant and inconsistent rules, which are subsequently returned (see [7]).

8 Conclusion

A successful application of process simulation to analyze and improve a process passes
through a realistic simulation model, namely which accurately represents the potential
real process executions. This enables analysts to improve the real process and not the
supposed one. This paper has proposed a framework to assess and improve the accuracy
of a simulated model to reflect the real behavior. The input is the simulation model
and an event log that records real process executions. The simulation model is run
to generate simulated event logs that are compared with the real log for differences.
Differences are shown in form of a decision tree that classifies traces from the real
event log and those from the simulated log. The tree provides actionable insights into
how to modify the model to be more accurate. By repeatedly comparing with more and
more accurate models and by using different behavioral dimensions of comparison, the
framework aims to obtain an accurate simulation model which analysts can rely on.

The framework has been applied on a purchasing process, for which a simulation
model and event log were available from literature. Our framework was able to fur-
ther improve the accuracy of the simulation model, thus illustrating the benefits of the
framework proposed.

There are multiple directions of future work. First, we want to investigate the ques-
tion of simulation-model generalizability (cf. Section 5). Second, we aim to extend the
set of decision tree features available in our operationalization of the framework, which
now refers to control-flow and time: we also want to explicitly consider the resource,
cost, and data perspectives. Second, we want to investigate how statistical approaches
determine the number of traces in the event log: we presently simulate as many traces
as the real event log, but it is possible to a small number would be statistically suffi-
cient. Fourth, we want to extend the framework to provide concrete recommendations
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on how to modify the simulation model: the current framework focuses on providing
insights, but the effort of transforming those insights into actual modifications is left to
the process analysts.
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