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Abstract. Process mining aims to analyse business process behaviour
by discovering process models such as Petri nets from process execu-
tions recorded as sequential traces in event logs. Such discovered Petri
nets capture the process behaviour observed in a log but do not pro-
vide insights on the likelihood of behaviour: the stochastic perspective.
A stochastic Petri net extends a Petri net to explicitly encode the oc-
currence probabilities of transitions. However, in a real-life processes,
the probability of a trace may depend on data variables: e.g., a higher
requested loan amount will trigger additional checks. Such dependen-
cies are not described by current stochastic Petri nets and correspond-
ing stochastic process mining techniques. We extend stochastic Petri
nets with data-dependent transition weights and provide a technique for
learning them from event logs. We discuss how to evaluate the quality
of these discovered models by deriving a stochastic data-aware confor-
mance checking technique. The implementations are available in ProM,
and we show on real-life event logs that the discovery technique is com-
petitive with existing stochastic process discovery approaches, and that
new types of stochastic data-based insights can be derived.

Keywords: Stochastic labelled data Petri nets, Process mining, stochas-
tic data-aware process discovery, stochastic data-aware conformance check-
ing

1 Introduction

The largest portion of research in Process Mining has focused on the discovery,
conformance checking and enhancement of processes that do not consider the
likelihood of the behavior allowed by the process model. In other words, when
multiple activities are enabled according to the current state of the process
model, they are assumed to have the same probability to occur. This is often
unrealistic: even if multiple steps are possible as next, some are more common
than others. As an example, in a loan application, when the model allows the
notification of the application’s acceptance or rejection as next activities, they
cannot be associated with the same probability to occur.
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These considerations motivate the importance of stochastic process mining,
which little research has been carried on. Existing works on stochastic process
discovery [3,9,21] and stochastic conformance checking [16] take the frequencies
of the event log, which are a sample of the full process behaviour, into account
and enable several analysis tasks, e.g., computing the occurrence probability for
a trace or obtaining the probability that a marking can be reached [18].

These and other works on stochastic process mining have only focused on
mining the activity occurrence probabilities on the basis of the sequence of ac-
tivities that have happened beforehand. This is certainly valuable. However, in
reality, the computation of the probability of an activity to occur as next within
a set of enabled ones depends on the current state of the process data variables,
as well. For instance, the probability to execute the activity of acceptable noti-
fication of a loan applicant will likely depend on the amount requested by the
applicants, and on the his/her wealthiness.

We address this shortcoming and enable the discovery of models that, stochas-
tically, fit better to the underlying distribution of the actual process. In partic-
ular, the methods rely on process models that are implemented as stochastic
Data Petri nets, which are a variation on Data Petri nets [23] to encode the
occurrence probabilities of transitions. This requires new methods for both pro-
cess discovery and conformance checking. Our proposed discovery method learns
data-dependant weight functions by building a set of regression problems that
are fitted on the observed transition occurrences and the observed data values.
To determine the quality of the resulting discovered Stochastic Labelled Data
Petri nets (SLDPN), we design a new conformance checking technique that al-
lows to compare the learned process behavior expressed by an SLDPN with that
observed in an event log.

In contrast to existing work our methods leverage the information encoded
in data attributes from the event log. In particular, our conformance checking
technique overcomes the problem of stochastically comparing potentially infinite
behaviour defined by an SLDPN with finite and sparse behaviour observed in
an event log. The technique has been implemented as plug-ins of ProM, the
largest open-source process mining framework. The evaluation has been carried
out via a large set of publicly available event logs. For conformance checking,
we illustrate that the technique follows the intuition of stochastic conformance
and is a proper generalization of existing measures. For discovery of SLDPNs,
the inclusion of the data variables for the computation of the activity occurrence
probability is shown to improve the stochastic fitness for event logs. Of course,
this holds for event logs that include data variables.

Section 2 discusses related work on stochastic process mining. Section 3 re-
ports on the notation and concepts used in the paper. Section 4 introduces
SLDPN. Sections 5 and 6 illustrates the techniques proposed for discovery and
conformance checking methods of SLDPN. Section 7 reports on the evaluation
with many real-life process event logs, while Section 8 concludes this paper,
summarizing the paper’s contributions and delineating potential future work.
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2 Related Work

A large body of work exists on the discovery of data-dependent guards for ac-
tivities of business process models, including transitions. This research field is
often referred to as Decision Mining, starting from the seminal work by Rozinat
et al. [31]. Batoulis et al. [5] focus on extracting guards for the outgoing arcs of
XOR splits of BPMN models, while Bazhenova et al. [6] aims to discover Decision
Model and Notation tables. The discovery of guards for causal nets is discussed
in [24]. All of these approaches focus on ensuring that exactly one transition
is enabled when a decision point (i.e., an XOR split) is reached. Mannhardt
et al. [23] is the only approach that attempts to discover overlapping guards
for Petri Nets, namely such that multiple transitions may be enabled in certain
data states. However, this work does not provide a probability for transitions,
such that the most reasonable assumption is that every enabled transition has
the same probability to occur, whereas this paper aims to discover probabilities
of transitions to fire when being given a data state. Thus, this paper does not
consider guards, but generalisations of guards.

Within the realm of conformance checking, a few research works aim to check
the conformance of process executions with respect to a process model repre-
sented as a Data Petri Net [22,13], but the conformance of each event-log trace
is computed in isolation. This contrasts the notion of stochastic conformance
checking that this paper tackles: the determination of the suitability of the over-
all stochastic behaviour requires the consideration of all traces together.

Stochastic process discovery aims to find a stochastic model such as a stochas-
tic Petri net from an event log. Approaches include those that take a Petri net
and estimate their weights, using alignments or frequencies [8], or based on
time [29]. Our discovery technique falls into this category, but adds data aware-
ness. Another approach starts from a model with the stochastic behaviour of the
log, and reduces this into a smaller model repeatedly [9].

Examples of stochastic conformance checking techniques include the Earth
Movers’ Stochastic Conformance [20], Entropic Relevance [28] and Probabilistic
Trace Alignments [7]. It would be challenging to adapt these to data-aware set-
tings, as our models do not exhibit a stochastic language without data sequences
as input. Stochastic models that are declarative have been proposed in [3]; these
models express families of stochastic languages.

Key differentiators between stochastic process models and existing Markov-
based stochastic models are concurrency, silent transitions and arc-based labels,
the combination of which is not the focus of the latter [4,30]. Even though
stochastic model checkers such as [15] do not typically consider these three as-
pects, they could still be applicable after appropriate translations.

Stochastic process discovery also relates to building a model that can compute
the firing probability of each enabled transition, as a function of the sequence
of fired transitions and data variables. This falls into the realm of predictive
process monitoring (cf. [12,25,27]), and several techniques can be leveraged to
compute the transition weights. However, the predictive monitoring techniques
rely on the typical evaluation of machine-learning techniques, which looks at
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each transition in isolation and cannot be used for conformance checking against
stochastic process models, which is conversely a global property that looks at
traces as whole.

3 Preliminaries

In this section, we introduce required existing concepts.
A multiset is a function mapping its elements to the natural numbers. For

a set A, M(A) denotes the set of all multisets over A. For instance, [a2, b] is a
multiset containing two as and one b. Let X and Y be multisets, then X F Y if
and only if ∀aX(a) ≤ Y (a). The multiset union is ∀a(X ⊎Y )(a) = X(a)+Y (a).
The multiset difference is ∀a(X \ Y )(a) = max(0, X(a) − Y (a)). The set view

X̃ = {a | X(a) > 0}.
Let Σ be an alphabet of activities, i.e. process tasks, such that τ /∈ Σ. A data

state is an assignment to numeric4 variables; let ∆ be the set of all data states.
An event denotes the occurrence of an activity in a process, and a trace de-

notes the sequence of events that were executed for a particular case. A stochastic
language is a weighted set of traces, such that their weights sum up to 1.

A data event is an event annotated with a data state, which indicates the data
state after the event happened. A data trace denotes all data events belonging to
a particular case. Formally, let a1, . . . , an ∈ Σ and d0, . . . , dn ∈ ∆, then a data
trace is a pair of lists (⟨a1, . . . , an⟩, ⟨d0, . . . , dn⟩), in which each ai indicates that
event i involved activity ai, and in which d0 indicates the data state at the start
of the trace, while subsequent di>0 indicate data states after occurrence of event
i. Given a data trace σ = (⟨a1, . . . , an⟩, ⟨d0, . . . , dn⟩), we refer to the sequence
⟨a1, . . . , an⟩ as the activity sequence (σΣ) and to the sequence ⟨d0, . . . , dn⟩ as
the data sequence (σ∆). We refer to the multisets of activity sequences and data
sequences of a log L as LΣ and L∆.

For instance, (⟨a, b, c⟩, ⟨x = 10, x = 15, x = 20, x = 0⟩) indicates a data trace
with three activities (a, b and c), where the variable x is 10 before a, 15 after a,
20 after b and 0 after c.

A labelled Petri net (LPN) is a tuple (P, T, F, λ, S0), in which P is a set of
places, T is a set of transitions such that P ∩ T = ∅, F ∈ M(P × T ∪ T × P )
is a flow relation, λ : T → Σ ∪ {τ} is a labelling function, and S0 ∈ M(P ) is
an initial marking. For a node n ∈ P ∪ T , we denote •n = [n′ | (n′, n) ∈ F ]
and n• = [n′ | (n, n′) ∈ F ]. We assume the standard semantics of Petri nets
here: a marking consisting of tokens on places indicates the state of the net. A
transition t ∈ T is enabled in a marking S if •t F S. Let E(S) be the set of all
enabled transitions in a marking S. An enabled transition t can fire in a marking
S, which changes the marking to S′ = S ⊎ t• \ •t. The firing of a transition such
that λ(t) ̸= τ indicates the execution of the mapped activity. A path of the net
is a sequence of transitions that brings the marking from S0 to a marking in

4 Note that our technique only considers numeric variables. Other types of variables
can be mapped using a suitable encoding, such as one-hot-encoding.
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which no transition is enabled. The corresponding activity sequence is obtained
by mapping the path using λ, while removing all transitions mapped to τ :

⟨t1, . . . , tn⟩ ↓λ=


⟨⟩ if n < 1

λ(t1) · ⟨t2, . . . , tn⟩ ↓λ if λ(t1) ̸= τ

⟨t2, . . . , tn⟩ ↓λ otherwise

A stochastic labelled Petri net (SLPN) is a tuple (P, T, F, λ, S0, w) such that
(P, T, F, λ, S0) is an LPN and w : T → R+ is a weight function. In a marking

S, the probability to fire t ∈ E(S) is w(t)∑
t′∈E(S) w(t′) . Note that this probabil-

ity depends on all other enabled transitions, and as such also expresses likeli-
hoods on the order of transitions, even when they are concurrent. The probabil-
ity of a path ⟨t1, . . . , tn⟩ is, due to the independence of subsequent transitions,∏n

i=1
w(ti)∑

t′∈E w(t′) . Note that the silent transitions make this a little-studied class

of models [18].
In order to validate the quality of a stochastic model, a useful measure is

the overlap in probability mass between the stochastic language of an event log
and the stochastic language of the model. For stochastic process models, such
a measure has been defined as the Unit Earth Movers’ Stochastic Conformance
(uEMSC) measure [20]. uEMSC measures the overlap in probability mass be-
tween a log and a stochastic language, by, for each trace σ of the log L, taking
the positive difference between the probability of that trace in the log and the
probability of that trace in the SLPN M [20]:

uEMSC(L,M) = 1−
∑
σ∈L

max(L(σ)−M(σ), 0) (1)

This rather simple formula uses the probability of a trace σ in a stochas-
tic process model (M(σ)), which is not trivial to compute. M(σ) indicates the
sum of all paths through the model that yield the trace σ, however in case of
silent transitions labelled τ there may be infinitely many such paths. A solution
proposed in [18] – for bounded SLPNs – is to explicitly construct a state space
of paths, and compute the trace probability using standard Markov reduction
techniques.

The Earth Movers’ Distance (EMD) is also known as the Wasserstein dis-
tance (W1) of order 1. For the present special case where we consider unit
distances, the EMD is also equivalent to the total variation distance (TV). A
proof of the coupling between EMD and TV is for example shown in [14]. Thus,
uEMSC(L,M) = 1− TV(L,M).

4 SLDPN

In this section, we extend SLPNs with data-based weight functions to Stochastic
Labelled Data Petri nets (SLDPN). Syntactically, SLDPNs are similar to SLPNs,
but utilise a weight function that is dependent on a data state.
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Definition 1 (Stochastic Labelled Data Petri Net - syntax). A stochastic
labelled data Petri net (SLDPN) is a tuple (P, T, F, λ, S0, w), such that (P, T, F, λ,
S0) is a Petri net and w : T ×∆ → R+ is a weight function.

The state of an SLDPN is the combination of a marking and a data state
(d ∈ ∆). The marking determines which transitions are enabled, while the data
state influences the probabilities of transitions.

Definition 2 (Stochastic Labelled Data Petri Net - semantics). Let
(P, T, F, λ, S0, w) be an SLDPN, and let ⟨d0, d1, . . .⟩ be a data sequence. The
SLDPN starts in state (S0, d0). Suppose the SLDPN is in state (Si, di). The
probability to fire t ∈ E(Si) is:

w(t, di)∑
t′∈E(Si)

w(t′, di)
.

When a transition t fires, then the new state is (Si+1, di+1) with Si+1 = Si⊎t•\•t.

An SLDPN is not executable without further data modelling: the data state
influences the likelihood of decisions, but the model does neither describe how
the data state is initialised, nor how it changes with the execution of transitions.
Thus, an SLDPN potentially has infinitely many stochastic languages.

Furthermore, these definitions do not specify when the data state is consid-
ered. In a real-life process, the data state may change in between the executions of
visible transitions; for instance based on temperature, blood pressure or weather
events, time, etc. Our semantics abstracts from the timing of such a decision
point, however assumes that a stochastic decision between transitions is made
given a data state that does not change at the moment of choice. In future work,
this could be extended to choices at arbitrary moments.

Example. Figure 1 shows an example of an SLDPN. The control flow of this
SLDPN consists of a choice between a and b, followed by a choice between c and
d. The transitions are annotated with weight functions: the weight of a and b
depend on the continuous variable X, while c and d depend on the categorical
variable Y .

p0 a

1− 1
X

b

1
X

p1 c

0.2 + (0.6 if Y = k)

d

0.2 + (0.6 if Y = l)

p2

Fig. 1: Example of an SLDPN.
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4.1 Trace-Based Execution Semantics & XES Logs

In order to use SLDPNs in a process mining setting, we need to further oper-
ationalise the execution semantics. To this end, in this section, we draw links
with event logs of the XES standard [2] explicitly. Notice that we assume that
the log fits the LPN underlying the SLDPN.

An XES log (XLog) consists of XES traces (XTraces), which are sequences of
XES events (XEvents). All XLogs, XTraces and XEvents are annotated with key-
value pairs of data attributes. One of the attributes of an XEvent – typically
concept:name – is designated as the activity. There are also other attributes
indicating the time of occurrence and the identifier of the process case.

The activity sequences A and data sequences D of a trace σ can be directly
obtained from XES traces. The initial data state d0 is obtained from the at-
tributes of the XTrace. Note that in the context of our work typically a selection
of considered attributes will need to be made. Only attributes that can be as-
sumed to be available at the start of the process case should be considered;
however, XTraces of real-life logs may also contain attributes that are the result
of the process case executing (e.g., a decision or outcome of the case).

Subsequent data states di>0 are obtained by updating the previous data state
with the values from the numeric attributes of that each of the XEvents provides.
The activities ai>0 are obtained from the designed activity attribute, which is not
used for the data state. In our operationalisation, we assume that this data state
represents the data directly after the event happened. This is not limiting as the
mapping could be adapted for other interpretations. Finally, silent transitions
are not observed in event logs; thus, there is no information about the data state
at the moment of their execution. Therefore, in our operationalisation, silent
transitions do not change the data state.

Example. Table 1 shows an example of an event log. In this log, the attribute
X is continuously uniform distributed between 1 and 10, and Y is a categorical
attribute of {k, l} with equal likelihood. Their distribution is shown in Figure 3a.
The complete log has 10 000 traces.

Table 1: Running example of an event log with two attributes.

Trace attributes ⟨event #1, event #2⟩

X = 5.381523 ⟨aX=5.381523,Y =l, dX=5.381523,Y =l⟩
X = 8.214670 ⟨aX=8.214670,Y =l, dX=8.214670,Y =l⟩
X = 2.463189 ⟨bX=2.463189,Y =l, dX=2.463189,Y =l⟩
X = 6.361540 ⟨aX=6.361540,Y =k, cX=6.361540,Y =k⟩
X = 3.125406 ⟨aX=3.125406,Y =l, dX=3.125406,Y =l⟩
X = 4.099525 ⟨bX=4.099525,Y =k, cX=4.099525,Y =k⟩
. . .
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Alignment
[1]

Extraction
(5.1)

Regression
(5.2)

Event Log

Labelled
Petri net

Weight function

Discovered SLDPN

Aligned
event log

Observation
instances

Fig. 2: The proposed method uses an alignment between a Petri net and an
event log to extract observation instances for inferring a weight function through
regression. This weight function extend the input Petri net to an SLDPN.

5 Data-Based Stochastic Discovery

In this section, we define a method to discover an SLDPN: Data-Based Stochastic
Discovery (DSD). DSD takes as input an LPN N = (P, T, F, λ, S0) as well as an
event log L, as indicated in Figure 2. Our discovery method learns the weight
function w from the activity and data traces observed in the log and yields an
SLDPN = (P, T, F, λ, S0, w).

The weight function needs to be learned based on the data values and tran-
sition occurrences observed in the log, i.e., the data sequences σ∆ and their
corresponding activity sequences σΣ for each trace σ ∈ L. For a transition t, the
learned function w(t) should return a higher weight for those data states d ∈ ∆
for which t is more likely to occur compared to other transitions that may be
enabled in the same marking.

As shown in Figure 2, we transform this problem to a regression problem.
The first step is to build a set of observation instances (a training set) for each
transition t, where each instance is an observation in the log of t being enabled in
the LPN, with the corresponding data state. The second step is to fit a regression
model to each of the sets observations, and to combine the learned regression
models to the weight function of the SLDPN. Both steps are detailed in the
remainder of this section.

5.1 Extracting Observation Instances

To extract observation instances for the data traces in a log L and the transitions
of an LPN N we firstly relate the observed activity sequences LΣ to paths of N .
Secondly, we relate the observed data states in the data traces L∆ to sequences
of transition firings.

An activity sequence A ∈ LΣ has no direct correspondence to a path of the
LPN: there may be steps required in N that are not present in A, N may contain
silent transitions, or there may be activities in A that cannot be mapped to a
transition in N . Therefore, we use alignments [1] to establish a mapping between
LΣ and N . That is, each activity a ∈ A is either mapped to a transition t ∈ N
such that a = λ(t), or to a log move ≫. The thus-mapped transitions must form
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Table 2: Example of an alignment computed for a data trace and our example
LPN (Figure 1)

(a) Alignment notation.

model (transitions) a c
log (activity) a ≫
log (data) X = 10, Y = k ≫

(b) Matrix notation.

γ =

 a c
a ≫

X = 10, Y = k ≫


a path of N , and may need intermediate transitions that are not represented in
A (model moves ≫). An alignment is such a mapping , such that the number of
log and model moves is minimised. We provide an example in Table 2, but do
not further detail the computation of the alignments; please refer to [1] for more
details. Please note that we index the matrix notation starting from 1.

Without loss of generality, we may assume that the alignment γ does not
contain column vectors in which only the log has an activity, without the model
having a corresponding transition (∀iγ(i, 1) = ≫ ⇒ γ(i, 2) ̸= ≫). That is, that
the alignment contains no log moves. From such an alignment γ, we construct a
data sequence that corresponds to the followed path, by taking a previous data
state if none is present:

D(γ, 0) = σ∆0

D(γ, i ≥ 1) =

{
D(γ, i− 1) if γ(i, 1) = ≫∨λ(γ(i, 1)) = τ

γ(i, 3) otherwise

Then, we build observation instances for each transition. For a transition
t ∈ T , we collect all observations (d, t′) of transition t′ firing while t was enabled,
with the corresponding data state d. That is, here d ∈ ∆ is the observed data
state before transition t′ fired. Note that t′ may be the same as t. To collect
observations, we define an observation instance builder OΓ (t) that provides a
multiset of instances from a collection of alignments Γ .

O(Γ, t) =
⊎

γ∈Γ∧γ(i,1)=t∧t′∈E(Si)

[(D(γ, i− 1), t′)]

with

Si≥1 =

{
Si−1 if γ(i, 0) = ≫
Si−1 ⊎ γ(i, 1)• \ •γ(i, 1) otherwise

(2)

This gives us a multiset of data states with positive and negative samples
concerning transition t – that is, t was enabled and fired (positive) or t was
enabled but another transition fired (negative). The multiset frequencies also
inform on the occurrences of transitions.

Example. From our running example (Figure 1 and Table 1), consider the data
trace σe = (⟨a, d⟩, ⟨{X = 5.381523}, {X = 5.381523, Y = l}, {X = 5.381523, Y =
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l}⟩). The observation points derived from this data trace are ({X = 5.381523}, a)
and ({X = 5.381523}, b) for a; and ({X = 5.381523, Y = l}, c) and ({X =
5.381523, Y = l}, d) for d.

5.2 Learning Weight Functions

In this section, we use the multisets of observations to discover weight functions
for transitions. This involves two steps for each transition: 1) choosing a weight
function w, and 2) estimating the parameters of the weight function. In principle,
any machine learning approach could be used, including regression and classifi-
cation, that eventually provides a numeric value. The positive or negative cases
with their attached data states can be used to learn the chosen weight function.
The choice for a weight function w also sets the types of variables in the data
states that can be supported: in principle, any data type up to images, sound
and even video can be supported, as long as there is a weight function available
that transforms a datum into a numeric weight.

We do not aim to cover a broad range of possible weight functions, however,
in order to illustrate SLDPNs, we consider numeric, categorical and boolean
variables, as such variables are typically found as attributes in event logs. As
weight function, we choose the simple logistic model with parameters β0 (the
intercept) and β1, . . . , βn (coefficients). Let x1, . . . , xn be the variables of the
data state, then

w(t) =
1

1 + e−(β0+β1x1+...+βnxn)
(3)

As this weight function only supports numerical variables, categorical and
boolean variables are included using one-hot encoding. As such, in the remainder
of this paper, we only consider numerical variables. Variables that have not been
assigned a value, e.g., because they are only observed later in the process, are
handled in the learning procedure through mean imputation; to distinguish these
cases, an additional variable is recorded that indicates whether the variable has
been assigned in the data state.

The use of the simple logistic model also implies that there is no need to
consider all transitions together: global approaches could learn the entire weight
function for all transitions together. Instead, a local approach learns the weight
function for each transition in isolation, thereby limiting the search space con-
siderably.

To estimate the parameters of the simple logistic weight function – one for
each transition –, we leverage the observation instances. For each observation
instance (d, t′) ∈ O(Γ, t) we obtain a data point in our training set as (d, c) with
the to-be predicted independent variable c encoded as:

c =

{
0 if t ̸= t′

1 if t = t′
.

Using simple logistic regression, the intercept β0 and a set of coefficients β1, . . . , βn

are fitted.
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(a) Scatter plot of the example log.
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(b) Plot of the weight function of transi-
tions a and b in the discovered SLDPN.

Fig. 3: Distributions of our running example log and SLDPN.

There may be cases in which we cannot collect observation instances for either
the positive or the negative case, such as when no other transition is enabled
when t is enabled, when t was never observed, or when none of the variables
have been assigned (yet). In these case no sensible logistic weight function can
be learned from the data states and we resolve to setting w(t) to the support of
transition t, i.e., the relative frequency of occurrences of t when it was enabled.

Example. For our running example of (Figure 1 and Table 1), the regressed
parameters for transition a are as follows: The intercept β0 is −0.716, while
the coefficient on X β1 is 0.359. For b, this is 0.716 and −0.359, respectively.
Figure 3b shows that the weight of a and b depend on X, e.g., the weight of b
reduces with increasing X. Note that we started the example with a function
1 − 1

X for transition a, and the fitted logistic function 1
1+e−(−0.716+0.356X) on it;

this is the best-fitting logistic function, however it may be possible to fit other
functions as well.

6 Conformance Checking

In this section, we introduce a technique to check the conformance of an SLDPN
and an event log. If the SLDPN was discovered from an event log, preferably, a
test log that has not been used in the discovery of the SLDPN should be used
for conformance checking. To evaluate the agreement between an SLDPN and
a log, we need to compare their respective probability distributions: whereas a
trace has a certain probability in a log, an SLDPN expresses a trace having a
probability for a particular data sequence. In this section, we first derive condi-
tional probabilities for SLDPNs, then for logs, and we finish with a conformance
measure.

6.1 Conditional Probabilities in SLDPNs

Given an SLDPN M = (P, T, F, λ, S0, w) in a marking S, the probability of an
enabled transition t ∈ E(S) to fire can be determined from the weights of all
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enabled transitions given a data state d following Definition 2, i.e.,

pM (t | (S, d)) = w(t, d)∑
t′∈E(S) w(t′, d)

.

Given a data sequence D = ⟨d0, . . . , dn⟩ and a path P = ⟨t1, . . . , tk⟩ of M
where k ≤ n, the probability of that path is

pM (⟨t1, . . . , tk⟩ | (⟨S0, . . . , Sk⟩, ⟨d0, . . . , dk⟩)) =
k∏

i=1

pM (ti | (Si−1, di−1))

Given a path and the initial marking S0, the sequence of markings is determin-
istic (see Equation (2)). Thus, we may omit the sequence of markings.

However, in conformance checking we need to compare activity sequences
rather than paths of transitions. Given an activity sequence A, the conditional
probability pM (A | D) of the activity sequence given the data sequence D equals
the sum of the probabilities of all paths P such that P↓λ = A. However, there
may be infinitely many corresponding paths for a given activity sequence A,
due to duplicate labels, silent transitions and loops. We use the same technique
as in [20] to compute the conditional trace probability pM (A | D), which – for
bounded SLDPNs – explicitly constructs a state space of the cross product of A
and M under assumption of D, and then computes the probability of reaching
a deadlock state using standard Markov techniques. Note that the computation
requires the data sequence to be at least as long as the longest path taken into
consideration, which is easily guaranteed by replicating the last data state in D
a sufficient number of times.

Example. From our running example (Figure 1 and Table 1), consider again
the data trace σe = (⟨a, d⟩, ⟨{X = 5.381523}, {X = 5.381523, Y = l}, {X =
5.381523, Y = l}⟩). As ⟨a, d⟩ is the only path in our SLDPN that corresponds to
σe, we could directly compute pM (σeΣ | σe∆):

pM (⟨a, d⟩ | (⟨[p0], [p1], [p2]⟩, σe∆)) = pM (a | ([p0], {X = 5.381523}))
· pM (d | ([p1], {X = 5.381523, Y = l}))

=
1− 1

X
1
X + 1− 1

X

· 0.2 + (0.6 if Y = l)

0.2 + (0.6 if Y = k) + 0.2 + (0.6 if Y = l)

= 0.651

To compute this probability when multiple paths would be present, we com-
pute the cross product of the SLDPN and σe, which is shown in Figure 4.
The probability of reaching the end state [p3] from the initial state [p0] is
0.814 · 0.8 = 0.651. Thus, the conditional probability pM (σeΣ | σe∆) is 0.651.
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[p0] [p1] [p2]

dead

a

0.814

d

0.800

b 0.186
c 0.200

Fig. 4: Cross product of the likelihood of σe in our running example.

6.2 Conditional Probabilities in Logs

A log can be seen as a multiset of pairs of an activity sequence A and a data
sequence D:

L = [(A0, D0)
x0 , . . . , (An, Dn)

xn ].

From such a multiset, the probabilities we derive directly are conjunctive.
That is, each pair (A,D) is observed a number of times, and the corresponding
joint probability concerns both A and D:

pL(A ∧D) =
L((A,D))

|L|

The probability of a data sequence is therefore:

pL(D) =
∑

A∈LΣ

pL(A ∧D) =
|[D | (A,D) ∈ L]|

|L|

Their ratio is the conditional probability of a trace σ given a data sequence D:

pL(A | D) =
pL(A ∧D)

pL(D)

Notice, however, that if D is unique in L, then pL(A | D) = 1 for any A,
which makes direct comparisons with an SLDPN challenging.

Example. From our running example (Figure 1 and Table 1), consider again
the data trace σe = (⟨a, d⟩, ⟨{X = 5.381523}, {X = 5.381523, Y = l}, {X =
5.381523, Y = l}⟩). As X is continuous, the data sequence σΣ is unique in our
example log. Then:

pL(σeΣ ∧ σe∆) = 1/10 000

pL(σe∆) = 1/10 000

pL(σeΣ | σe∆) = 1
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6.3 A Conformance Measure

In this section, we adapt the uEMSC (Equation (1)) stochastic similarity mea-
sure to compare an event log L to an SLDPN M .

Since we need to account for the data sequences as well, the uEMSC measure
has to be extended to cope with the data-awareness of our approach. By adding
the data perspective as an additional dimension to the probability distributions
in the uEMSC measure, we directly obtain:

duEMSC(L,M) = 1−
∑

D∈L∆

∑
A∈L̃Σ

max(pL(A ∧D)− pM (A ∧D), 0)

We can rewrite the joint probabilities using conditional probabilities:

pM (A ∧D) = pM (A | D)pM (D)

In absence of a data distribution in M , pM (D) is not defined. However,

intuitively, we compare the likelihood of the activity sequences in L (L̃Σ) with the
likelihoods of those activity sequences in M , under the same data distribution.
Henceforth, we can assume the data distribution of L (L∆) for M , and thus
pM (D) = pL(D). Then, the duEMSC measure results to

duEMSC(L,M) = 1−
∑

D∈L∆

∑
A∈L̃Σ

max(pL(A ∧D)− pM (A | D)pL(D), 0) (4)

Notice that if all data sequences in the log are equal, then duEMSC is equal
to uEMSC, and as such, duEMSC is a proper generalisation of uEMSC, and
can be used interchangeably.

Example. For our running example (Figure 1 and Table 1), the overall value of
duEMSC is 0.997. This value is not precisely 1, which, given the large sample
size of the log (10 000), indicates that a logistic formula is not able to capture
the distributions in the log perfectly.

7 Evaluation

In this section, we validate our approach threefold: we show its feasibility using
an implementation, we compare the discovered models with existing stochastic
process discovery techniques, and we illustrate the new types of insights that
can be obtained using SLDPNs.

7.1 Implementation

We implemented discovery and conformance checking methods for SLDPNs as
plug-ins of the ProM framework5, in the StochasticLabelledDataPetriNet

5 Available in the nightly builds at https://promtools.org/

https://promtools.org/
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package. Further functionality for SLDPNs provided by the package are plug-ins
to import, export, and visualise and interact with SLDPNs (see Section 7.2). The
source code is available at http://svn.win.tue.nl/repos/prom/Packages/

StochasticLabelledDataPetriNet/Trunk.
The discovery plug-in first uses the alignments provided by ProM [1] to obtain

the observation instances, after which the logistic regression implementation
provided by Weka 3.8 [32] based on ridge regression [11] is leveraged for inferring
the weight function. A parameter adjusts the one-hot encoding for categorical
event log attributes: it sets a maximum on the number of categories that are
considered for one-hot encoding for a single variable. Another parameter avoids
using one-hot encoding altogether and only considers numerical variables. This
is useful to avoid attempting to create a model with a very large number of
variables which poses the risk of over-fitting and excessive run times.

The conformance checking plug-in implements duEMSC, by extending the
EarthMoversStochasticConformance [20] implementation.

7.2 Insights

We illustrate the kind of insights provided by the data-dependant stochastic
perspective by presenting an example of a discovered SLDPN on a real-life event
log indicating a road fines handling process that is known to contain process
relevant data attributes [23]. Using the Directly Follows Model Miner (DFM),
an SLDPN was discovered using our ProM plug-in using only numeric attributes.

In the interactive visualisation of our ProM Package the discovered SLDPN
can explore influence of data variables on the likelihood of transitions. Figure 5a
shows the stochastic perspective for the variable points being 0, while Figure 5b
shows the stochastic perspective for the variable points being 2 with all other
variables unchanged. This variable indicates the number of penalty points de-
ducted from the driving license. In total a driver has 20 points and a new driving
exam needs to be taken if all points are lost.

One can observe the difference in probability in the highlighted choice be-
tween Payment and Send Fine. Here the occurrence of Send Fine indicates that
the fine was not directly paid [23]. In the SLDPN, we can observe that if a fine
corresponds to 2 penalty points deducted from the license, then it is much less
likely that the fine is paid on the spot without being sent out (1%) vs. if the fine
does not correspond to any points (36%). These types of insights can be obtained
with neither common process mining techniques, nor stochastic process mining
techniques, nor data-aware process mining techniques.

7.3 Quantitative

In this experiment, we compare the models of our technique with existing stochas-
tic discovery techniques. Figure 6 shows the set-up of this experiment: from sev-
eral of real-life logs, we first discover control-flow models. Second, on a random
50% trace-based sample, we apply stochastic discovery techniques, including
ours. These stochastic process models are then measured with respect to the

http://svn.win.tue.nl/repos/prom/Packages/StochasticLabelledDataPetriNet/Trunk
http://svn.win.tue.nl/repos/prom/Packages/StochasticLabelledDataPetriNet/Trunk
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(a) Scenario 1: A fine with 0 points. (b) Scenario 2: A fine with 2 points.

Fig. 5: An SLDPN discovered by DFM from the road fines event log visualised
interactively in ProM. Variables are shown as yellow hexagon shaped nodes with
their assignment next to them. The assignment can be changed to investigate
the impact of a data state on the transition weights. Transitions are coloured
according to their weights. Note that to give a quick overview the marking is
not considered. Nodes have been repositioned for better legibility.
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log discovery stochastic discovery measure

50%

50%

Fig. 6: Set-up of a single quantitative experiment.

Table 3: Details of the quantitative experiment’s set-up.

(a) Logs.

Log traces events activities

bpic12-a 6562 30 541 10
bpic13-incidents 3786 32 825 13
bpic13-open problems 412 1 179 5
bpic13-closed problems 748 3 361 7
bpic17-offer log 21 455 96 752 8
bpic20-domestic declarations 5 228 28 108 16
bpic20-international declara-
tions

3 204 35 815 34

bpic20-prepaid travel cost 1 052 9 164 29
bpic20-request for payment 3 447 18 458 18
sepsis 526 7 7615 16
road fines 75 167 280 779 11

(b) Discovery techniques.

Directly Follows Model Miner [19] DFM
Inductive Miner - infrequent [17] (0.8) IMf
Flower model: a model that allows for any be-
haviour of the observed alphabet

FM

(c) Stochastic discovery techniques.

Baseline: uniform choices BUC
Alignment-based estimator ABE
Frequency-based estimator FBE
Data-based stochastic discovery without one-
hot encoding (Section 5)

DSDwe

Data-based stochastic discovery (Section 5) DSD

(d) Measures.

Number of transitions transitions
Number of transitions with non-1 weights weights
Number of transitions with data-
dependent weights

data weights

unit Eerth Movers’ Stochastic Confor-
mance [20]

uEMSC

Data-aware uEMSC (Section 6) duEMSC

remaining 50% of the log. The entire procedure is repeated 10 times to nullify
random effects. Table 3 shows the details of the set-up.

To study the impact of using more variables we not only use our technique
(DSD), but also include a variant (DSDwe) that does not use one-hot-encoding.
The stochastic discovery was bounded by a timeout of 6 hours, which was
never reached. The experiments were conducted on an AMD EPIC 2GHz CPU
with 100GB RAM available; the logs were taken from https://data.4tu.nl/

search?q=:keyword:%20%22real%20life%20event%20logs%22. We archived the
code and the full results at Zenodo6.

Results. Table 4 summarises the full results that are available in the Zenodo
archive. The values obtained by uEMSC for BUC, ABE and FBE were equivalent
to the values obtained by duEMSC for these stochastic discovery techniques, as
shown in Section 6. Therefore, uEMSC is not shown or further discussed.

From these summarised results, it is clear that the data-aware stochastic pro-
cess discovery techniques can compete with existing stochastic discovery tech-
niques on model quality. In particular, they are – in most cases – able to better
represent the behaviour in real-life event logs than existing stochastic discov-

6 https://dx.doi.org/10.5281/zenodo.7578655

https://data.4tu.nl/search?q=:keyword:%20%22real%20life%20event%20logs%22
https://data.4tu.nl/search?q=:keyword:%20%22real%20life%20event%20logs%22
https://dx.doi.org/10.5281/zenodo.7578655
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Table 4: Summary of our quantitative results for 36 experimental runs.

Stochastic algorithm Fastest Highest duEMSC

BUC 36 6
FBE 0 9
ABE 0 12
DSDwe 0 17
DSD 0 19

ery techniques. Out of 36 experiments DSD achieves most often the highest
duEMSC with 19 runs. Comparing to DSDwe it seems that considering cate-
gorical attributes is useful in two cases but has, overall, a limited impact. This
motivates future research on using categorical attributes. A potential pitfall is
that by adding more variables, or using other regression functions, the likelihood
of over-fitting increases, which would lead to lower scores in this experiment. Un-
surprisingly the state-of-the-art on non-data-aware discovery ABE is the second
best algorithm with several times achieving the same score. Note that in con-
trast to typical application scenarios we did not investigate or manually select
particular attributes for their relevance. Neither did we select event logs for
the suitability to data-aware techniques. Thus, it is expected that DSD cannot
always achieve better results.

We discuss the Sepsis log in a bit more detail. For IMf, the model contains
quite some concurrency, which involves many potential traces, especially with
local loops within concurrent blocks. As alignment-based stochastic discovery
techniques are not sensitive to concurrent behaviour – they only consider how
often transitions are executed, not when –, all tested stochastic discovery tech-
niques obtain low duEMSC scores. For the DFM miner, the poor performance
may be explained by the repeated blood, leucocytes, lactic acid and CRP mea-
surements are taken regularly throughout the process, which makes control-flow
without concurrency challenging. Furthermore, they are performed regularly,
that is, they are not dependent on data. For the flower model – in theory –
any activity that is executed based on data rather than other activities (control
flow), should contribute to the stochastic perspective. Hence, the low duEMSC
score for all stochastic models shows that the sepsis log describes a structured
process.

Figure 7 shows the distribution of stochastic discovery run times in the ex-
periment. We observe that it takes more time to discover an SLDPN compared
to the the non-data-aware approaches BUC, FBE and ABE. BUC does not con-
sider the log at all and simply assigns a weight of 1 to each transition, which
takes very little time. FBE traverses the log, and ABE creates an alignment.
Thus, DSD is expected to take at least as long as ABE. Still, all the SLDPNs
could be discovered within a maximum of 14 seconds, which is highly feasible.
Please note that for some logs, such as bpic11 and bpic15, alignments are hard
to compute, which keeps these logs out of reach for ABE and DSD.

Figure 8 shows the distribution of the the stochastic conformance checking
run times in our experiment. In the worst case the conformance checking took
573 798 milliseconds for the bpic20-international declarations event log and dis-
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Fig. 7: Run times of the stochastic process discovery.
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Fig. 8: Run times of stochastic conformance checking for different algorithms.

covered SLDPN, which took into account 24 variables. Overall, conformance
checking of the models discovered by FM takes consistently much longer than
their respective IMf and DFM counterparts. However, this difference can also
be observed in the non-data-aware approaches. With the exception of bpic20-
international declarations, the run times stay in most cases within a limit of 1 to
2 minutes. Notably, up to 80GB of RAM was required for these computations.

8 Conclusion

Process models that are typically used in business process management and
mining do not incorporate stochasticity: when multiple activities are enabled,
no information is incorporated into the model that defines the likelihood of each
activity to fire. As a consequence, each activity has the same probability to fire.
This is oftentimes not realistic: some activities are more probable than others.
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This paper is centered around stochastic process mining, and provides a
twofold contribution. On the one hand, it puts forward a technique to discover
stochastic models that incorporate a characterization of the probability of each
enabled activity to fire. On the other hand, it defines stochastic conformance
checking, which do not only aim to verify the compliance of each execution with
respect to a model, but also considers whether the distribution of traces in the
event log is consistent with the probability distribution of model executions.
Conformance checking thus requires to consider the whole event log together,
and cannot analyse each event-log trace in isolation.

Some research also exists in stochastic process mining (cf. Sections 1 and 2),
and aims to discover and check the conformance of stochastic models that corre-
late the activity occurrence probability to the activities performed beforehand.
This is often limiting, because this probability might be influenced by the current
values of the data variables of which process executions change the values.

This paper overcomes this limitation and incorporates the data variables
into stochastic process models. In particular, this paper introduces the notion
of SLDPN, which is conceptually simple but yet fully equipped to model the
process’ behavior, in terms of activities and manipulation of data variables, and
transition firing probabilities. The paper contributes techniques for discovering
and conformance checking of SLDPNs. About discovery, the experiments shows
that by including relevant data variables into the computation of the firing prob-
ability of SLDPN’s transitions can yield a more accurate characterization of
transition firing probabilities. In conformance checking, the technique follows
the intuition of stochastic conformance that computes metrics at event-log level,
rather than considering single traces in isolation.

SLDPNs are very suited to model business simulation models [26]. Business
Process Simulation enables to generate an arbitrarily large number of potential
process executions. It also allows process analysts to implement various process’
modifications with the aim to assess their correlation with process performance.
By trying several process modifications without putting them in real production,
analysts can determine those that improve the process’ performance with little
or no consequences. As future work, we plan to exploit the technique to discover
transition firing probabilities to mine more accurate and realistic simulation
models, compared with the state of the art (cf., e.g., [10]). Indeed, more accurate
firing probabilities allow analysts to better model the run-time characterisation
of business simulation models.

The discovery of the transition firing probabilities builds on logistic regression
as an oracle to find the transition’s weights and consequently the transition’s
firing probabilities. This has shown to be beneficial to better compute weights.
Logistic regression also has the advantage to naturally explain how weights are
computed in each and every case. However, generally it is not the best regression
technique in several settings, especially when the variables are correlated. Here,
we intend to evaluate alternative regression techniques, including those based on
neural networks, with the goal to improve the weight accuracy.
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