
Enhancing Process Models to Improve Business
Performance: A Methodology and Case Studies

Marcus Dees1,2, Massimiliano de Leoni2 and Felix Mannhardt2

1 Uitvoeringsinstituut Werknemersverzekeringen (UWV), The Netherlands
2 Eindhoven University of Technology, Eindhoven, The Netherlands

marcus.dees@uwv.nl,{m.d.leoni, f.mannhardt}@tue.nl

Abstract. Process mining is not only about discovery and conformance checking
of business processes. It is also focused on enhancing processes to improve the
business performance. While from a business perspective this third main stream
is definitely as important as the others if not even more, little research work has
been conducted. The existing body of work on process enhancement mainly fo-
cuses on ensuring that the process model is adapted to incorporate behavior that
is observed in reality. It is less focused on improving the performance of the pro-
cess. This paper reports on a methodology that creates an enhanced model that
limits the incorporated behavior to only those parts that violate no business rules
and, in light of keeping the model as simple as possible, that have a significant
improvement on the performance level. The practical relevance and feasibility
of the methodology is assessed through two case studies. The result shows that
the process model improved through our methodology still adheres to the desired
prescriptive model and guarantees better KPI levels, in comparison with what
observed using state-of-the-art techniques.

1 Introduction

One of the main targets of every company is to continuously improve its business pro-
cesses to lower the costs, increase the revenue, guarantee higher customer satisfaction,
etc. Nowadays, the amount of available data (e.g., event logs) has grown to gigantic
proportions, thus enlarging the range of possibilities of analysing how processes are
executed and of finding bottlenecks, pitfalls, etc.

Process enhancement/improvement belongs to the realm of process mining [1],
which aims to extract business knowledge from logging data that record the events
linked to executions of business processes. The lion’s share of attention of Process Min-
ing has typically been about discovering models representing the actual executions of
business processes as well as about checking the compliance/conformance of process
executions against predefined normative models. However, less attention has been paid
to process enhancement.

In this paper, we start from the belief that process improvement can happen through
improving process models. Different process models can be used to discuss alternative
ways to execute business processes. An improved process model describes an improved
way to execute business processes. Not only can process models have a descriptive na-
ture, but also a prescriptive purpose: process models can be used to automate the process
executions and enforce how processes are executed. An improved process model will
enforce a better way to execute business processes.



In this paper, improving a process model corresponds to repairing it to reflect reality.
As discussed in Section 5, the existing body of work focuses on ensuring that the re-
paired model allows for all behavior observed in a reference event log. However, this is
often too extreme. First, process models are initially designed to comply with laws and
regulations; therefore, new behavior can be incorporated into the model only if these
parts comply with laws and regulations. Second, one should include extra behavior that
is linked to significant improvement in the performance: Adding the behavior that is not
linked to significant better perform would just make the model unnecessarily complex.

This paper provides a methodology to enhance a process model so as to incorporate
observed behavior that is not allowed in the original model only if it is not in violation
with laws and regulations and provides significant improvement of performances. Our
methodology prevents behavior not related to good performance level from being in-
corporated into the model, so as to obtain models that are simple but, yet, guaranteeing
good performance levels. The starting point is an existing process model and an event
log. The event log consists of multiple traces, each of which records the events referring
to one execution of the process. A Key Performance Indicator (KPI) is attached to each
log trace and is typically associated to characteristics of the traces, such as its duration
(e.g. the difference between the timestamp of last and first event), the value of certain
attributes or the number of events (in total or related to a certain activity). The method-
ology builds on top of the model-repair techniques proposed by Fahland et al. [2]. In
order to determine which deviations to incorporate as part of the model, the model-
repair technique is combined with classification-tree learning techniques to determine
if and what kind of correlation exists between KPI levels and the observed behavior.
The model is enhanced by incorporating not-allowed behavior that is correlated with
better KPI levels and that is not violating laws and company regulations.

The benefits and the practical feasibility of the methodology are assessed through
two case studies. The first case study is performed with UWV, a company which pro-
vides unemployment benefits for Dutch residents. In particular, the case study illustrates
how certain deviations are worth including in the enhanced process model whereas oth-
ers must not be incorporated as they are either leading to poor KPIs or are not compat-
ible with the Dutch laws. To illustrate a more generally applicability beyond the single
case of interest, we also report on improvement for a SAP procurement process.

Section 2 introduces the existing body of work on which our methodology builds.
Section 3 illustrates the different steps of the methodology. Section 4 shows the ap-
plication of the methodology. Section 5 analyses the state of the art; finally, Section 6
concludes the paper.

2 Preliminaries

The research reported in this paper builds on a body of existing research in process
mining. We assume that models are represented as Petri nets (see Section 2.1). Our
methodology uses alignments of Petri nets and Event Logs to pinpoint deviations (see
Section 2.2).



a

b

c

dτ 

p2 end

p4

p3p1
start

e

(a)

γ1 =
a d b c �
a � b c d

γ2 =
a � d b c

a τ d � �

γ3 =
a � d � b c �
a τ � e b c d

(b)

Fig. 1. A Petri net (a) and three examples of alignments of trace 〈a, d, b, c〉 with it (b)

2.1 Petri nets and Event Logs

Process models describe how activities in the process must be performed. Our approach
is applicable to any modelling language. Here, we opt for the Petri net modelling lan-
guage because it has simple and clear semantics.

Definition 1 (Petri net). Let P be a set of places, T a set of transitions and F ⊆ (P ×
T ) ∪ (T × P ) a flow relation between places and transitions (and between transitions
and places). A Petri net N is a tuple N = (P, T, F ).

Figure 1(a) shows an example of a Petri net. In a Petri net, transitions represent pro-
cess activities. The only exceptions are the invisible transitions, which do not represent
pieces of the process’ work but are necessary to properly model the process. These
transitions are not recorded by the IT system. For further information, readers are re-
ferred to [1, 3]. For the Petri net in Fig. 1(a), transition names are depicted inside the
transitions.

Places contain tokens; while the structure of the Petri net never changes, tokens are
created and consumed. A transition is enabled if at least one token exists in each input
place of the transition. By executing (i.e., firing) a transition, a token is consumed from
each input places and a token is produced for each of its output places. The Petri net
structure is static but the number of tokens in each place can change over time. The state
of a Petri net is determined by the distribution of tokens over places, i.e. the marking.
Processes have a precise initial and final state. Hence, when Petri nets represent busi-
ness processes, they have an initial and a final marking. For the Petri net in Fig. 1(a),
the markings with respectively one token in place start or in place end are the initial
and final marking (and no tokens in any other place). A complete firing sequence is a
sequence of transitions leading from the initial marking to the final marking. It indicates
a complete execution of a process instance. The set of all complete firing sequences of a
Petri netM is denoted by ΨM . Real executions of processes are recorded by information
systems in event logs:

Definition 2 (Event, Trace, Log). Let N = (P, T, F ) be a Petri net. Let E be a set
of events. Each event e ∈ E corresponds to the firing of a transition trans(e) ∈ T . A



trace σ ∈ E∗ is a sequence of events. An event log L consists of a set of traces, i.e.
L ∈ B(E∗).

2.2 Aligning Petri Nets and Event Logs and Repairing Event Logs

Not all event traces in an event log may be reproduced by a Petri net, i.e. not all event
traces may correspond to a process trace, i.e. a complete firing sequence. Conformance
checking aims to verify whether the observed behavior recorded in an event log matches
the intended behavior represented as a process model. The notion of alignments [4] pro-
vides a robust approach to conformance checking, which makes it possible to pinpoint
the deviations causing nonconformity. For this aim, the events in the event log need
to be related to transitions in the model, and vice versa. Building this alignment is far
from trivial, since the log may deviate from the model at an arbitrary number of places.
We need to relate “moves” in the log to “moves” in the model in order to establish an
alignment between a process model and an event log. However, it may be that some of
the moves in the log cannot be mimicked by the model and vice versa. We explicitly
denote such “no moves” by�.

Definition 3 (Alignment Moves). Let N = (P, T, F ) be a Petri net and L be an event
log. A legal alignment move for N and L is represented by a pair (sL, sM ) ∈ (T ∪{�
} × T ∪ {�}) \ {(�,�)} such that:

– (sL, sM ) is a move in log if sL 6=� and sM =�,
– (sL, sM ) is a move in model if sL =� and sM ∈ T ,
– (sL, sM ) is a synchronous move if sL = sM .

An alignment is a sequence of alignment moves:

Definition 4 (Alignment). Let N = (P, T, F ) be a Petri net with an initial marking
and final marking denoted with mi and mf Let also L be an event log. Let LAN be the
universe of all alignment moves for N and L. Let σL ∈ L be a log trace. Sequence γ ∈
LA∗N is an alignment of N and σL if, ignoring all occurrences of�, the projection on
the first element yields σL and the projection on the second yields a sequence σ′′ ∈ T ∗

such that mi
σ′′

−−→ mf .

A move in log for a transition t indicates that t occurred when not allowed; a move
in model for a visible transition t indicates that t did not occur, when, conversely, ex-
pected. Many alignments are possible for the same trace. For example, Fig. 1(b) shows
three possible alignments for a trace σ1 = 〈a, d, b, c〉. Note how moves are represented
vertically. For example, as shown in Fig. 1(b), the first move of γ1 is (a, a), i.e., a syn-
chronous move of a, while the the second and fifth move of γ1 are a move in log and
model, respectively. We aim at finding a complete alignment of σL andN with minimal
number of deviations for visible transitions, also known in literature as optimal align-
ment. Aligning an event log L means to compute an optimal alignment for each trace
σL ∈ L. Clearly, different traces in L generally have different alignments, because they
contain different events and deviations. With reference to the alignments in Fig. 1(b),
γ1 and γ2 have two moves in model and/or log for visible transitions (γ1 has one move
in model for an invisible transition but it does not count for computing optimal align-
ments). Conversely, γ3 has three moves for visible transitions, specifically one log move



Algorithm 1: Repair Event Log
Input: Event Log L ∈ B(T ), a Petri Net Model N , a set of legal moves that should not be

repaired D ⊆ ALM .
Result: Repaired Event Log

L′ = {}
foreach σo ∈ L do

γ = computeAlignment(N,σ0)
σ ← 〈〉 // the repaired trace
for i← 1 to length (γ) do

(l,m)← γ(i)
if (l,m) ∈ D ∧m =� ∧ l 6=� then // if log move not to be repaired

σ ← σ ⊕ 〈l〉 // keep the event l
else if (l,m) /∈ D ∧m 6=� ∧ l =� then // if model move not to be repaired

σ ← σ ⊕ 〈m〉 // add the missing event m
else if m 6=� ∧ l 6=� then // if synchronous move

σ ← σ ⊕ 〈l〉 // keep the event l
end

end
L′ ← L′ ∪ {σ} // add the repaired trace to the repaired log

end
return (L′)

for d (3rd move) and two model moves for e (4th move) and d (last move). Since no
alignment exists with only one move in model and/or log for visible transitions, both γ1
and γ2 are optimal alignments and any can equally be returned. For the sake of space, we
assume here that all deviations (i.e., moves in model for visible transitions and moves
in log) have the same severity. In [4], we show how this assumption can be removed. In
the remainder, given a trace σ and a Petri net N , function computeAlignment(N, σ)
non-deterministically returns one of the optimal alignments for σ and N .

Alignments can be used to repair a process model. In Fahland et al. [2] tech-
niques are presented to repair a model so the it can replay all behavior of the event
log. Alignments can also be used to repair an event log. Repairing an event log con-
sists of repairing every trace of the log. A trace can be repaired by taking the process
projection of the computed optimal alignment after removing all moves on model for
invisible transitions. For example, trace σ can be repaired as 〈a, b, c, d〉 if we consider
alignment γ1 in Fig. 1(b) as optimal alignment. Please note that several optimal align-
ments are possible and, hence, the trace can be repaired in multiple ways. However, if
many optimal alignments are possible, each optimal alignment has the same probability
to be chosen. Because of this, given the large amount of traces, the choice would not
influence the applicability of the methodology discussed in Sect. 3. Repairing a model
move in a trace means adding the missing event to the original trace. A log move is
repaired by removing the event from the original trace. This means that, after repairing
the event log, the number of traces does not vary. However, traces can become shorter
or longer, depending on whether the alignment respectively contained moves on log or
moves on model. When repairing an event log wrt. an alignment, it is also possible to
not repair a selection of the deviations. For log or model moves, this respectively means
that the corresponding event is kept or not added. For trace σ, not repairing deviations



1. Deviation
Analysis

Event Log

Process
Model

2. Repair
and Merge

Log Clusters
Repaired
Event Log

3. Repair
Model

Improved
Process
Model

...

Event Log 1

Rule 1

Event Log 2

Rule N

Rule 2

Event Log N

Fig. 2. The general approach

for d, would lead to the following repaired trace: 〈a, d, b, c〉, i.e. event d is not added for
the corresponding move on model at the end of σ, nor is event d removed in the second
position of the trace. Algorithm 1 describes how repairing an event log is done.3 The
input consists of an event log to be repaired, a Petri net model and a set of legal moves,
i.e. deviations, that should not be repaired as inputs. The result is a repaired event log
where all deviations, except the ones used as input, are fixed.

3 The Methodology

Figure 2 shows the steps of our methodology to enhance a process model. The basic
inputs are an event log and a Petri net. The Petri net can be resulting from applying
process discovery techniques or may have been designed by process owners according
to how the process is expected to be executed.

Step 1. Deviation Analysis Deviations are detected and a set of rules is discovered that
correlate deviations to a selected KPI, which is an event log attribute. The event log
is clustered according to the rules: for each rule, the corresponding cluster contains all
traces that comply with the rule.

Step 2. Repair and Merge Log Clusters Traces in the different clusters are repaired to
only retain those deviations that have a positive impact on the value of the KPI. All log
clusters are then merged to obtain a single repaired event log.

Step 3. Repair Model Finally the repaired log is used as input to repair the model: the
process model is modified in such a way that it can replay all the behavior of the re-
paired event log. In the repaired event log we have repaired all deviations corresponding
to behavior that should not be incorporated in the model. In this way the repair-model
technique will only modify the model to make the desired deviating behavior possible.

Sections 3.1, 3.2 and 3.3 provide further details of each of the three steps of the method-
ology.

3 In the algorithm, symbol⊕ identifies the concatenation of two sequences. Given an alignment
γ, γ(i) denotes the i-th element of the alignment



1.1 
Conformance 

Checking

Event Log

Process 
Model

Alignment
Split Log

Rules

1.2 Correlate 
Deviations 
with KPI

1.3 Create 
Event Log 
Clusters ...

Event Log 1

Rule 1

Event Log 2

Rule N

Rule 2

Event Log N

Fig. 3. Details of the Deviation Analysis.

3.1 Deviation Analysis

The aim of the deviation analysis is to determine which deviations have a positive effect
on the process performance. To measure process performance, we introduce the concept
of Key Performance Indicators:

Definition 5 (Key Performance Indicator). Let L be an event log. Let U be the uni-
verse of possible values for a key performance indicator. A key performance indicator
is a pair (κ,K) consisting of a function κ : L → U that assigns a KPI value κ(σ) to
each trace σ and of a set K ⊂ U that contains the KPI values that are satisfactory from
a business viewpoint.

Typically, the KPI value of a trace corresponds to or is a function of the attributes present
in the event log. However, in this paper we remain general on how the KPI values of
process executions (i.e., traces) are computed.

Model Move
for Activity A

> 0

Log Move for
Activity B

Better value
KPI

� 0

Worse value
KPI

Better value
KPI

� 0 > 0

Leaf 1

Leaf 2 Leaf 3

Fig. 4. Example of a decision tree built only
upon model moves and log moves. A name
is assigned to leaves for easy reference.

Step 1.1 The first step is checking con-
formance of the event log and the pro-
cess model. This is done to determine all
deviations that are observed between the
log and the model. The result of confor-
mance checking is an alignment as dis-
cussed in Section 2.2.

Step 1.2 The number of model moves
and log moves for the recorded activi-
ties is correlated with the chosen KPI.
As indicated below, we want to ensure
that, when the model is improved, it re-
mains compliant with rules and regula-
tions. This step require analysts to pro-
vide us with a set of disallowed activities
(i.e., transitions) GD ⊆ T that should
never become part of the process model as well as with a set of mandatory activities be
GM ⊆ T , which should never become optional or be removed from the model.

During this step, we build a set of so-called observation instances, which are used
to train a classification tree. We build one observation instance for each trace σ ∈ L.



Given a trace σ ∈ L and a key performance indicator (κ,K), an observation instance
is built with the following features:

– The number of model moves in the optimal alignment of T for each allowed activity
a ∈ T \GD.

– The number of log moves in the optimal alignment of T for each non-mandatory
activity a ∈ T \GM .

– The KPI value for σ, namely κ(σ).

From the set of observation instance, we learn a classification tree, using the KPI
component as dependent variable, namely to be predicted, and the number of log and
model moves as independent variables.4

Consider, for example, the decision tree in Figure 4, which is possibly constructed
after computing the optimal alignments and, subsequently, the classification tree. Each
leaf is associated with a better or worse value of the KPI. In this example, to keep the
explanation simple, we assume to only have two values for the KPI (i.e., U contains two
values): a better value or a worse value. The leaves that are related to a better value are
selected and can be interpreted as follows: Activity A should never be skipped (leaf 1)
or when skipped, Activity B should be executed (leaf 3).

In the remainder, we represent the decision trees that are computed in this set as
classification rules:

Definition 6 (Classification Rule). Let AL and AM be the set of all log and model
moves, respectively. Let (κ,K) be a KPI defined over a universe U of possible values.
A classification rule is a tuple (f, v) ∈ ((AL ∪AM ) 6→ 2N0)× U .

For the example of Fig. 4 the leaves of the decision tree can be described as the follow-
ing classification rules:5

– Rule1 = ({(�, A) � {0}}, BetterKPI)
– Rule2 = ({(�, A) � N, (B,�) � {0}},WorseKPI)
– Rule3 = ({(�, A) � N, (B,�) � N}, BetterKPI)

The determination whether a given resulting decision tree is satisfactory, e.g. in terms
of f-score support, is here left to the analyst, who can use domain knowledge to assess
the quality of the tree.

Step 1.3. The classification tree can be seen as a clustering of the traces of an event log.
Each leaf is a different cluster and the path from the root to the leaf provides a clustering
rule. For reliability, for each cluster, we discard the event log traces that are wrongly
classified, namely which are classified to have KPI values that are actually different
from the actual observed values. The wrongly-classified traces might potentially affect
the repair-model phase by allowing behavior in the model that would not be actually
linked to good KPI values. The next definition defines how these log-trace clusters are
created:

4 Here we talk in term of classification tree, which can be a decision or regression tree. Decision
trees are used when the KPI values are discrete; otherwise, we use regression tree.

5 Notation {d1 � c1, . . . , dn � cn} indicates a function f with domain {d1, . . . , dn} in
which f(d1) = c1, . . . , f(dn) = cn.



...

Event Log 1

Event Log 2

Event Log N

2.1
Conformance

Checking

2.1
Conformance

Checking

2.1
Conformance

Checking

Alignment 1

Alignment 2

Alignment N

...

Repaired
Event Log 1

Repaired
Event Log 2

Repaired
Event Log N

2.3
Merge Log
Clusters

Repaired
Event Log

Process
Model

2.2
Repair Log

2.2
Repair Log

2.2
Repair Log

...

...

...

Rule 1

Rule 2

Rule N

Fig. 5. Details of Repair and Merge Log Clusters.

Definition 7 (Log Trace Clustering). Let (κ,K) be a KPI. Let {(f1, v1), ..., (fn, vn)}
be the set of decision tree rules for a tree with n leaves. For each (fi, vi), a log trace
cluster Li is created and contains all traces σ ∈ L such that κ(σ) = vn and, for each
move type a ∈ AL ∪ AM , the number of moves of type a in the optimal alignment
γ = computeAlignment(N, σ) is #a ∈ fi(a).

3.2 Repair and Merge Log Clusters

The log clusters that have been created in the Step 1.3 now need to be repaired to reflect
the repair rules. After that, the log clusters need to be merged to present a single repaired
log for usage in Step 3. Figure 5 shows the details of this phase of the approach.

Step 2.1 Conformance Checking is done with the original process model and each log
cluster. The alignment reproduces the deviations that were part of the Conformance
Checking result of Step 1.1.6

Step 2.2 This step is repeated for each cluster Li, associated with a classification rule
(fi, vi). If Li is linked with a satisfactory KPI value (i.e., vi ∈ K), we repair all devi-
ations in each trace of Li, except for those being part of the repair rule associated with
the log cluster. Otherwise, in case of unsatisfactory values, we repeat all deviations.
For each cluster, we repair all deviations linked to behavior that are not correlated to
improved KPI values and/or that would be violating laws and re. This guarantee that
each repaired log cluster only retains those deviations that, on the one hand, are worth
incorporating in the enhanced model and, on the other hand, would create a model that
still adheres to the applicable laws and regulations. The other deviations are repaired
and, hence, not eligible for repair in the next methodology steps. For instance, consider
Fig. 4. For the event log cluster associated with Leaf 3 we repair all deviations except
model moves for Activity A and log moves for Activity B, as the combination of model
moves for Activity A and log moves for Activity B leads to a better KPI value. For the
event log cluster associated with Leaf 2, we repair all deviations because the KPI value
is poor. For the event log cluster associated with Leaf 1, we also repair all deviations

6 Step 2.1 is a conceptual step. In practice, one does not need to recompute the alignments for
the cluster logs as one can simply reuse the alignments obtained as result of Step 1.1



except for ModelMoveforActivityA. However, the clustering rule says that all clus-
ter traces have no model moves for Activity A; hence, in fact, all deviations are also
repaired.

Definition 8 (Repaired Log Cluster). Let Li be an log trace cluster created on the ba-
sis of a classification rule (fi, vi). LetN be a Petri net model and (κ,K) a KPI. The cor-

responding Repaired-Log cluster is L′i =
{
repairLog(Li, N, dom(fi)) if vi ∈ K
repairLog(Li, N, ∅) otherwise

Step 2.3 We merge all repaired log clusters into a single event log. This is a requirement
to apply the next step, namely repairing the process model.

3.3 Repair Model

This phase repairs the model. The input is the original model and the repaired log ob-
tained as result of Step 2.3. The repaired log is equal to

⋃
L′i. The process model is

modified in such a way that it can play out all the behavior of the repaired event log.
Consider again the example in Fig. 4: the model is modified so that Activity A may be
skipped and Activity B is now allowed at certain points of the process (Leaf 3 in the fig-
ure). These modifications can be incorporated into the model because they have shown
to achieve better KPI values.

Unfortunately, we cannot always manually modify the model to allow for extra be-
havior because it is not always clear which part of the model should be modified. For
instance, for the example referring to Fig. 4, Activity B should become allowed at cer-
tain points of the process. But, at which points exactly? As another example, the same
activity - say X - may be prescribed to happen at different points of the process. From
the classification tree, we can hypothetically observe that activity X can be skipped
while the KPI becomes better. However, at which point can activity X be skipped? In
the light of above, we leverage on the repairing technique by Fahland et al. [2] to deter-
mine how to modify the model. This technique will modify the model so as to obtain
a new model that can replay all the behavior observed in the repaired event log. The
repairing technique allows one to apply a filtering such that the repaired model only
incorporates the behavior that is observed with a frequency higher than a given thresh-
old. For our methodology, this option is very interesting: if a certain deviating behavior
has shown to guarantee good KPI levels, that is allowed by the repaired model only if
it is sufficiently often recorded in the event log. Only behavior with enough evidence,
namely occurring in a sufficient enough number of traces, should be kept.

4 Implementation and Evaluation

The entire methodology can be carried out through ProM 6.67, which is an extensible
tool that supports a wide variety of process mining techniques in form of plug-ins. In
particular, Steps 1.1 and 2.1 can be carried on through the plug-in Replay a Log on Petri
Net for Conformance Analysis, which operationalizes the technique discussed in [4].
Steps 1.2 and 1.3 are implemented as plug-in Perform Predictions of Business Process
Features (see also [5]). Step 2.2 is implemented as plug-in Repair Log With Respect

7 http://www.promtools.org/doku.php?id=prom66



Claim
Change Form

OUT1

Change Form
IN

Change Form
OUT2

Letter
Request for
Information

Letter Claim
Received
and RFI

Letter Reminder
Request for
Information

Document IN

Claim Decision

Letter Claim
Accepted

Letter Claim
Rejected

Letter
Withdrawal

Claim

Letter Claim
Stopped

Fig. 6. The original process model of the unemployment benefits claim handling process at UWV.

to Alignment; step 2.3 is implemented through a number of plug-ins for log manipula-
tion. Finally, Step 3 is implemented as plug-in Repair Model, which operationalizes the
technique by Fahland et al. [2].

We assessed our methodology through two case studies. Section 4.1 reports on a
first case study in collaboration with UWV (Uitvoeringsinstituut Werknemersverzek-
eringen) and refers to the provisioning of unemployment benefits for the Netherlands’
residents. A second case study is presented in Section 4.2 and refers to a procurement
process as implemented in a SAP system.

4.1 UWV case study

UWV is the social security institute of the Netherlands and responsible for the execution
of a number of employee related insurances. The case study focuses on the unemploy-
ment benefits process of UWV. When employees become unemployed, they may be
entitled to the benefits. Employees have to file a claim at UWV. UWV then decides
whether they are entitled to benefits. When claims are accepted employees receive ben-
efits with a regular frequency until they find a new job or the maximum period for their
entitlements is reached. UWV refers to employees who are making use of their services
as customers, therefore we use the term customer in the remainder of the paper.

UWV translates the legal text of the law into a process design that is executable.
Within the boundaries of the law there is some flexibility in the way the process can
be designed and executed. UWV can for example choose how to communicate with its
customers. Communication can happen through several channels like internet, a letter
or a telephone call. On the other hand, some parts of the process need to adhere to the
Dutch laws.

Fig. 6 shows a prescriptive process model that encodes the relevant Dutch laws and
the UWV’s protocols. The process model was designed in collaboration with a UWV’s
process specialist.

In particular, UWV aims to improve the process by reducing the claim’s throughput
time, as this would likely reduce the costs and improve the satisfaction of customers,
who receive a faster answer to claims. Therefore, the throughput time is the KPI that
we aim to minimize by employing our methodology. Regarding the definition of KPI
(κ,K), κ(σ) is defined as the timestamp of the last event of σ minus the timestamp of
the first event in σ, and K contains any time interval smaller than 8 days.

Together with a process model, our methodology requires an event log. The event
log consists of 25476 traces and has 161365 events in total, which refer to 21 different
activities. The event log recorded executions of several activities that are not part of



Fig. 7. Regression Tree for the case study that correlation the deviations with the throughput time.
Two leaves with the lowest throughput time are selected as repair rules. They are highlighted with
a dashed box.

the original model, for example: Call Claim Received and RFI, Letter Information to
Customer, Call Information to Customer and Call OUT. These events were not foreseen
in the reference model, but, in fact, they were executed by UWV employees. During
the application of our methodology, we will hence investigate whether some of these
activities ought to be added to the process model. In particular, we aim to incorporate
any of those activities in the right positions if their execution has shown to lead to
good KPI levels. From a business perspective, only the following model activities can
be made optional or made possible at a different point of the process execution: Letter
Claim Received and RFI, Letter Request for Information, Letter Reminder Request for
Information. All other activities in the model are mandatory and may not be moved to
other positions or removed. Similarly, only the following log activities may be added to
model: Call Claim Received and RFI, Call Information to Customer, Call OUT, Letter
Information to Customer.

For the validation, the event log was randomly split in two groups: 80% of the traces
are used to improve the model using our methodology and 20% of the traces are used
later to test the quality of the improved model. This is, in fact, performed in line with
the validation techniques employed, e.g., in data mining.

The first step of the approach is the deviation analysis. It consists of building align-
ments between the model in Fig. 6 and the extracted event log (Step 1.1.). The align-
ments are used along with the event log to correlate the deviations with the KPI values
(Step 1.2 in Fig. 3). The resulting tree is shown in Figure 7. We used a regression tree
because the dependent variable, throughput time of the claim process, is an attribute that
has a numeric data type. The tree has six leaves. There are two leaves with an average
throughput time below the desired value of 8 days, i.e., the attribute used as KPI. For
those two leaves, we generated the corresponding log clusters and we repaired the de-
viations that are not present in the regression tree, in accordance with the methodology
step defined in Definition 8. Also, for the other leaves, we repair every deviation. Only
correctly classified traces for each leaf are selected to be exported into a log cluster.
The error threshold is set to 15%. In this way, we retain the traces referring to process
executions with a KPI value relatively close to the expected value of the log cluster.
The other traces are considered to be noise, which can negatively affect the final result
of Step 3 (the application of the model-repair technique), obtaining a model that incor-



Claim
Change Form

OUT1

Change Form
IN

Change Form
OUT2

Letter
Request for
Information

Letter Claim
Received
and RFI

Letter Reminder
Request for
Information

Document IN

Claim Decision

Letter Claim
Accepted

Letter Claim
Rejected

Letter
Withdrawal

Claim

Letter Claim
Stopped

Call Claim
Received
and RFI

Call OUT

Letter Claim
Received
and RFI

Call Claim
Received
and RFI

Fig. 8. Improved model using our methodology. The gray transitions are those which are added
to the model.

porates behavior that has not been associated with better KPI values. The log clusters
are merged into a new log (Step 2.3) that is compliant with the model, except for the
deviations that are correlated with a better KPI value.

Finally the repaired event log is used together with the original model as input to
improve the model. Figure 8 shows the improved model. Activities Call Claim Received
and RFI, Call OUT and Letter Claim Received and RFI are allowed to be executed
multiple times after the first change form has been sent. Before Change Form OUT2
now Call Claim Received and RFI is optionally allowed to be executed. Finally, the
activities Letter Claim Received and RFI and Letter Request for Information are now
allowed to be skipped. In essence, the repaired model represents the fact that calling the
customer for a confirmation of a claim reception along with, when necessary, asking for
extra information, is faster than sending a letter. This is also understandable: waiting for
a customer to respond to a letter would take time. When the customer ultimately does
respond the employee doing the handling has to get back into the details of the claim.
By calling the customers, the employee can, most of the time, handle the claim in one
go without having to wait.

We assessed the usefulness of our methodology by comparing this model with the
model obtained by only employing the model-repair technique by Fahland et al. [2].
For a fair comparison, the same parameters where used, namely only considering the
traces that occur at least 50 times. The model obtained without our methodology is
available in Figure 9. The model contains several activities that can be executed an
arbitrary number of times in any order; e.g. see the part of the model that is within the
dashed box. Clearly, this model is underfitting the event log because it allows for a lot
of behavior that is not observed in reality. Also, the model also allows behavior that
violates Dutch laws as well as UWV’s internal regulations and protocols. This clearly
manifests itself in the fact that sending one of the mandatory claim-outcome letters can
be skipped. As final validation, we measured the KPI level of the traces that record
executions compliant with the original model and we compared with the KPI levels
of the executions compliant with the enhanced model, both with our methodology and
with the technique by Fahland et al. [2]. As mentioned above, we employ the 20% of
log traces that were left aside, hereafter named test log.

If we consider the traces of the test log that are compliant with the original model
in Fig. 6, the average throughput time is 15.44 days. If we consider traces of the test
log that are compliant with the model enhanced with our methodology in Fig. 8, the
average throughput time is 10.88 days, leading to an improvement of 29.5%. With the
model enhanced with only the technique by Fahland et al. [2] in Fig. 9, the average is



Claim

Change Form
OUT1

Change Form
IN

Change Form
OUT2

Letter
Request for
Information

Letter Claim
Received
and RFI

Letter Reminder
Request for
Information

Document IN

Claim Decision

Letter Claim
Accepted

Letter Claim
Rejected

Letter
Withdrawal

Claim

Letter Claim
Stopped

Document IN
Claim Decision

Call Claim
Received and RFI

Income Form OUT

Letter UWV Internal

Letter Custom Made

Call OUT

Letter Claim
Received and RFI

Call Claim Decision
and Explanation

Letter Information
to Customer

Change Form OUT

Call Claim
Received and RFI

Call High Impact Decision
Call OUT

Letter Custom Made

Letter UWV Internal

Letter Claim
Received and RFI

Call Information
to Customer

Claim Decision

Document IN

Letter
Information
to Customer

Income Form OUT
Call Claim Decision

and Explanation

Letter Request for
Information

Letter Claim Accepted

Letter Reminder
Request for
Information

Letter Claim Rejected

Claim

Document IN

Call Claim
Received and RFI

Letter Claim Accepted

Call Claim Decision
and Explanation

Call OUT

Income Form OUT
Letter UWV Internal

Fig. 9. Improved model based on the Fahland technique. The gray transitions are those which are
added to the model.

11.18 days, leading to a decrease of throughput time of around 27.6% compared with
the original model. It is clear that the overall improvement with our methodology is
marginal compared with the technique by Fahland et al., if we look at the improvement
of the KPIs, only. However, first, our model is compliant with regulations, whereas the
other is not as discussed. Our model is clearly simpler and, very importantly, it is not
underfitting, allowing for a lot of behavior that should be disallowed. If that behavior is
incorporated, , the model becomes less insightful on which behavior is really linked to
better KPI levels. In other words, the extra allowed behavior is not really all guaranteed
to be connected to better KPI levels.

4.2 SAP Procurement case study

The procurement process is part of the SAP Material Management (SAP MM) module.
This module supports the procurement and inventory functions occurring in day-to-day
business operations. Figure 10 shows the process model we used in this case study.
During this process changes may occur to the price of the goods, the quantity and the
vendor where the goods are ordered. Changes incur higher costs. Therefore, the KPI
that we want to minimize is the number of purchase orders with a change.

All activities that are shown in the model in Fig. 10 are present in the event log.
Additionally there are some activities that are not part of the model, but exist in the event
log. Examples of these are Delete Purchase Order Item and Send Overdue Notice. The
event log is created consisting of 105708 traces. In the same way as for the case study
with UWV discussed in Section 4.1, we split the event log in a training log with 80% of
the remaining traces and in testing log that accounts for 20% of the traces. For the sake
of space, we cannot discuss all the intermediate steps and we limit ourselves to discuss
the final models. Fig. 11 shows the model obtained through the technique by Fahland et



Create Purchase
Requisition Item

Delete Purchase
Requisition Item

Create Purchase
Order Item

Change PR Approval
Change Quantity

Change Price
Change Vendor

Vendor Creates Invoice

Block Purchase
Order Item

Reactivate Purchase
Order Item

Receive Order
Confirmation

Print and Send
Purchase

Order (paper)

Send Purchase
Order Update

Cancel Goods
Receipt

Record Goods
Receipt

Cancel Invoice
Receipt

Record Invoice
Receipt

Clear
Invoice

Record
Invoice
Receipt

Adjustment
Charge

Clear
Invoice

Fig. 10. The original process model of the SAP procurement process.

Create Purchase
Requisition Item

Delete Purchase
Requisition Item

Create Purchase
Order Item

Change PR Approval

Change Quantity

Change Price

Change Vendor

Vendor Creates Invoice

Block Purchase
Order Item

Reactivate Purchase
Order Item

Receive Order
Confirmation

Print and Send
Purchase

Order (paper)

Send Purchase
Order Update

Cancel Goods
Receipt

Record Goods
Receipt

Cancel Invoice
Receipt

Record Invoice
Receipt

Clear
Invoice

Record
Invoice
Receipt

Adjustment
Charge

Clear
Invoice

Change
Vendor

Delete Purchase
Requisition Item

Create Purchase
Order Item

Receive Order
Confirmation

Record Invoice
Receipt

Clear
Invoice

Clear Invoice

Send Purchase Order Update

Adjustment Charge

Record Goods Receipt

Record Invoice Receipt

Receive Order
Confirmation

Delete Purchase
Requisition Item

Receive Order
Confirmation

Clear
Invoice

Fig. 11. The repaired process model of the SAP procurement process obtained by the Fahland
technique. The gray transitions are those which are added to the model.

al. whereas Fig. 12 illustrates the model obtained through our methodology. The model
obtained through our methodology is clearly simpler and easier to understand.

If we employ the testing log and apply it on the original model, then 52% of the
fitting cases has a change. When the same testing log is applied to the model in Fig. 11
obtained by the technique by Fahland et al., 38% of the cases have a change. Finally,
when it is applied to the model obtained through our approach in Fig. 12, 44% of the
cases have a change. While our methodology guarantees an improvement of KPI be-
tween the original model and the one enhanced by by the technique by Fahland et al.,
it is again clear that our model is more valuable, in term of simplicity and of capac-
ity of not being underfitting, with all the positive considerations drawn for the UWV
case studies at the end of Section 4.1. It is also worth highlighting that we still have an
improvement of 8% for what concerns the number of change/rework of the purchase
orders.



Create Purchase
Requisition Item

Vendor Creates
Invoice

Create Purchase
Order Item

Change PR Approval
Change Quantity

Change Price
Change Vendor

Vendor Creates Invoice

Block Purchase
Order Item

Reactivate Purchase
Order Item

Receive Order
Confirmation

Print and Send
Purchase

Order (paper)

Send Purchase
Order Update

Cancel Goods
Receipt

Record Goods
Receipt

Cancel Invoice
Receipt

Record Invoice
Receipt

Clear
Invoice

Record
Invoice
Receipt

Adjustment
Charge

Clear
Invoice

Delete Purchase
Requisition Item

Vendor Creates
Invoice

Fig. 12. The repaired model for the SAP procurement process using our approach. The gray
transitions are those which are added to the model.

5 Related Work

Section 1 has already discussed one limitation of the model-repair techniques by Fahland
et al. [2]: This technique considers all deviations to be eligible to be incorporated in
the model, independently whether or not a certain deviation typically causes poor per-
formance levels or violates laws and regulations. The evaluation showed that a lot of
behavior is actually not necessary to obtain a model with good performance levels.
The same limitation is also observed in works [6–8]; in particular, in [8] the decision
whether or not to incorporate certain deviations into the model is driven by many quality
dimensions that, however, do not include KPI fulfilment and adherence to legislations.

Schunselaar et al. [9] try to find a best configured process model given a set of
configurable process models and a set of KPIs. Using a Pareto front, they select those
process models that have the best performance on the set of KPIs. While this approach
needs a set of configurable process models to capture variation in the KPIs values, our
approach only needs one non configurable process model.

While our paper reports on the use of the techniques by Fahland et al. for repairing
the process model, our methodology is not bounded to that repair technique only. We
could alternatively use other techniques, such as that by Buijs et al. [8], which mediates
several model quality criteria.

Similarly to [2], in [10] authors propose to repair the model while improving the
correspondence, i.e. fitness, between model and log as much as possible. Costs are
associated with repair actions and an optimal strategy is determined to minimize the
costs of the repairs, but it is not possible to improve on a KPI. In [11], authors propose to
repair a process model to make it similar to a collection of process models. Differently
from our approach, they do not use an event log but a collection of models as input and
try to minimise the edit distance to all models in the collection.

Repairing a process model can also be regarded as ensuring that the model is sound
and, hence, does not contain deadlocks. Gambini et al. [12] and Lohmann [13] propose
techniques along these lines. Repairing a process model can also be seen as simplifying
the model while allowing for the same behavior, such as what is proposed by Fahland
et al. [14]. Clearly, ensuring soundness and simplifying models pursue a different goal
than what we aim at in our work.



The methodology proposed in this paper is also in line with the DMAIC method-
ology of Six Sigma [15], which comprises five steps: define the goals, measure key
aspects, analyse data, improve and control the improvement. In fact, the first step of
our methodology (Deviation Analysis) corresponds to the analyse data step of DMAIC
and the second and third step corresponds to improving (the model of) the process. The
DMAIC’s step of measuring key aspects corresponds to having the KPI values as an
event log attribute. The step of controlling the improvement is beyond the scope of this
paper but corresponds to the natural follow-up once the model is improved. Namely one
would like to verify whether the improved model actually leads to better KPI values.

6 Conclusion

Process mining is not just about discovering the control-flow or diagnosing non com-
pliance. Enhancing business processes to improve the performance is perceived equally
important. Enhancing a business process can be regarded from many perspectives. Here,
we aim to repair the model thus incorporating some of the behavior that is observed in
reality but disallowed by the model. However, the model should be extended so as to
only allow additional behavior that (i) does not violate company rules and national reg-
ulations and that (ii) has shown to lead to better KPI levels. As discussed in Section 5,
the existing body of work in the Process Mining context does not look at these aspects.

This paper has proposed a methodology that considers the two aspects above: the
adherence to rules/laws and the potential KPI improvement. The methodology unifies
an existing approach for model repair proposed by Fahland et al. [2] with other existing
works in the field of conformance checking and deviation-to-KPI correlation.

A detailed evaluation has been carried out through two case studies. One case study
based on the SAP procurement process and the other with UWV, a Dutch financial
institute that provides social security benefits to the residents in the Netherlands. The
results clearly show the practical usefulness of the methodology: we improve the SAP
model so less changes will occur during the process, leading to lower costs. The UWV
model is improved to allow all the behavior observed in the event log which is correlated
with better KPI levels, i.e. a lower throughput time, while preventing violations of the
Dutch unemployment-benefit laws.

As future work, we aim to extend our methodology so that the improved model
only retains the behavior allowed by the original model that yields better KPI levels.
Currently, our methodology only allows one to extend the model to incorporate behavior
observed in reality that led to KPI improvements. Our methodology should be extended
so that the new model forbids certain behavior allowed by the original model if it has
shown to yield worse KPI levels. Also, it is worthy working further on our methodology
to consider concept drift [16]. For instance, it would be relevant to investigate which
drifts contribute to improve KPIs and to only incorporate those into the model. Since
at the moment we can only improve one KPI at the time, we think that being able to
improve multiple KPIs at the same time, is also a direction for future work.

Whereas the paper shows the relevancy of the methodology, one of the drawbacks is
that all steps of the methodology need to be manually performed. This is clearly tedious
and error-prone. This can be automated through the use of scientific workflows. Scien-
tific Workflow Management systems help users to design, compose, execute, archive,
and share workflows that represent some type of analysis or experiment. The advan-



tages of using scientific workflows for process mining are discussed in [17]. As future
work, we will implement this methodology as an scientific workflow: This is far from
being difficult as every step can be easily automated as an activity of a proper scientific
workflow.

References
1. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Busi-

ness Processes. 1st edn. Springer Publishing Company, Incorporated (2011)
2. Fahland, D., van der Aalst, W.M.P.: Model repair - aligning process models to reality. Infor-

mation Systems (47) (2015) 220–243
3. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77(4)

(Apr 1989) 541–580
4. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on process

models for conformance checking and performance analysis. Wiley Interdisc. Rew.: Data
Mining and Knowledge Discovery 2(2) (2012) 182–192

5. de Leoni, M., van der Aalst, W.M.P., Dees, M.: A general process mining framework for
correlating, predicting and clustering dynamic behavior based on event logs. Information
Systems 56 (2016) 235 – 257

6. Kalsing, A.C., do Nascimento, G.S., Iochpe, C., Thom, L.H.: An incremental process min-
ing approach to extract knowledge from legacy systems. In: Proceedings of the 14th IEEE
International Enterprise Distributed Object Computing Conference (EDOC), IEEE (2010)
79–88

7. Sun, W., Li, T., Peng, W., Sun, T.: Incremental workflow mining with optional patterns and
its application to production printing process. Internation Journal Of Intelligent Control And
Systems 12(1) (2007) 44–55

8. Buijs, J.C.A.M., La Rosa, M., Reijers, H.A., van Dongen, B.F., van der Aalst, W.M.P.: Pro-
ceedings of the Second International Symposium Data-Driven Process Discovery and Anal-
ysis (SIMPDA 2012). Volume 162 of LNBIP., Springer (2013) 44–59

9. Schunselaar, D.M.: Configurable process trees : elicitation, analysis, and enactment. PhD
thesis, Eindhoven University of Technology, Eindhoven (2016)

10. Artem Polyvyanyy, Wil M.P. van der Aalst, A.H.t.H., Wynn, M.T.: Impact-driven process
model repair. ACM Transactions on Software Engineering and Methodology (TOSEM)
(2016)

11. Li, C., Reichert, M., Wombacher, A.: Discovering reference models by mining process vari-
ants using a heuristic approach. In: Proceedings of the 7th International Conference on
Business Process Management. BPM ’09, Berlin, Heidelberg, Springer-Verlag (2009) 344–
362

12. Gambini, M., La Rosa, M., Migliorini, S., Ter Hofstede, A.H.M.: Automated error correction
of business process models. In: Proceedings of the 9th International Conference on Business
Process Management. BPM’11, Berlin, Heidelberg, Springer-Verlag (2011) 148–165

13. Lohmann, N.: Correcting deadlocking service choreographies using a simulation-based
graph edit distance. In: Proceedings of the 6th International Conference on Business Process
Management (BPM 2008). Volume 5240 of LNCS., Springer (2008) 132–147

14. Fahland, D., van der Aalst, W.M.P.: Simplifying discovered process models in a controlled
manner. Information Systems 38(4) (2013) 585 – 605

15. International Organization for Standardization: ISO 13053:2011 quantitative methods in
process improvement - Six Sigma - part 1: DMAIC methodology (September 2011)

16. Bose, R.P.J.C., van der Aalst, W.M.P., Žliobaitė, I.: Handling concept drift in process mining.
Advanced Information Systems Engineering 6741 (2011) 391–405

17. Bolt, A., de Leoni, M., van der Aalst, W.M.P.: Scientific workflows for process mining:
building blocks, scenarios, and implementation. STTT 18(6) (2016) 607–628


