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Abstract. Predictive Process Monitoring is a process-mining research direction
that aims to predict the future of an uncompleted process execution. The vast ma-
jority of research work focuses on techniques that are “data greedy” and require
a lot of event data to be sufficiently accurate. However, the recent development of
Large Language Models presents significant opportunities and potential benefits
across various industrial and research domains. They are capable of leveraging
their pre-trained knowledge to understand and complete tasks effectively. This
paper reports on the design and implementation of a Predictive Process Moni-
toring framework based on Large Language Models. Experiments on multiple
event logs confirm our hypothesis that Large Language Models are capable of
providing very accurate predictions, even with as few as 10 training traces.

Keywords: Predictive Process Monitoring · Large Language Models · Few-Shot
Prompting · Small-Scale Event Log

1 Introduction

Predictive Process Monitoring (PPM) is a family of techniques that leverages event logs
from business processes to generate predictions about the future states or properties of
ongoing process instances [12]. PPM methods vary depending on the prediction target,
which can include times [35], next activities [18], or process outcomes [31].

Literature has extensively explored Machine and Deep Learning models to enhance
prediction quality [4]. However, these models typically require large amounts of data
for effective training. When the available event log is limited in size, the applicability
of such techniques becomes constrained, reducing the overall potential of PPM. As
highlighted in [37], data availability remains one of the most significant challenges
faced by researchers and practitioners in this domain.

This paper puts forward a framework for PPM that leverages the potentials of Large
Language Models (LLMs) to estimate the duration of process executions. LLMs can
leverage their embedded knowledge to generate accurate predictions while demonstrat-
ing robustness in handling noisy and unstructured data [23]. Their ability to operate ef-
fectively with limited training examples makes them a promising alternative for improv-
ing PPM in data-scarce environments [11]. Since LLMs rely on prompts to process and
generate responses, designing an effective prompt is crucial for encoding process traces.
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The prompt must structure the input data in a way that preserves the sequence, depen-
dencies, and relevant attributes of events while remaining concise and interpretable for
the LLM. To answer this question, we designed the framework with two possible encod-
ings: (i) an encoding in which traces are provided as vectors in which each component
refers to one activity and indicates the number of occurrences of that activity in the
trace, as extensively employed in the literature [7,19,30,29] (ii) a second encoding in
which the trace itself is given to the LLM in a novel, purpose-built function, which only
maintains global attributes, activities, and times.

The framework was instantiated for Gemini1: a freely-available LLM that performs
the best, according to the recent standard benchmarks.2 Experiments were conducted
on five processes and event logs, which were temporally divided into training and test
logs. Multiple, random sub-logs with 2, 10, and 100 traces were extracted from the
training log. These sub-logs have been provided as input to Gemini in order to enable
the predictions on the test traces.

Results show that our LLM-based framework is capable of generating accurate pre-
dictions with fewer than 100 trace examples. In some cases, accurate predictions were
achieved with as few as two traces. By contrast, a Catboost-based benchmark, which is
known to be among the best-performing PPM predictors [24,3,10], demonstrated low
accuracy when trained on the same amount of traces. Notably, even if only employing
a few traces, our LLM framework consistently outperformed the benchmark predictor
trained on the complete dataset.

The remainder of this paper is organized as follows: Section 2 analyzes the relevant
literature in LLMs and PPM. Section 3 introduces the preliminary knowledge needed
for the development of the approach, outlined in Section 4. Experiments on five case
studies are reported in Section 5, while Section 6 resumes the paper and highlights next
potential research directions.

2 Related Works

In this Section, we report the literature relevant for PPM and the application of LLMs
within business process management. Section 2.1 reports on the relevant literature in
PPM, Section 2.2 deals with the significant literature of LLMs, while Section 2.3 pro-
vides an overview of the application of LLMs in the business process management field.

2.1 Predictive Process Monitoring

Over the years, PPM frameworks leveraged Machine learning, Deep Learning, and en-
semble methods. Deep learning techniques, such as Long Short-Term Memory net-
works [1] and Process Graph Transforming models [8], have shown strong performance,
with research also focusing on improving training efficiency [26] and robustness [27].
Despite their success, alternative methods, including Local Process Models [34], Sup-
port Vector Machines [18], and Random Forest [5], remain relevant, particularly for

1Gemini Technical Report: https://arxiv.org/abs/2312.11805
2See https://llm-stats.com for an overview of the most popular LLMs

https://arxiv.org/abs/2312.11805
https://llm-stats.com
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real-time applications due to their lower computational demands. However, boosting
on decision trees, such as XGBoost and CatBoost, has emerged as a best approach,
striking a balance between predictive effectiveness and efficiency [24,3,10].

2.2 Large Language Models

LLMs have gained prominence for their performance, versatility, and ability to gen-
erate modular responses through chat interfaces. Research shows they can effectively
predict time series using text tokenization of numerical data [11], by leveraging contex-
tual information to enhance predictions [32]. These approaches circumvent limitations
of traditional forecasting by eliminating models’design and manual encoding of pri-
ors. Requeima et al. [23] demonstrated that zero-shot sequence completion can produce
accurate forecasts while incorporating textual side information. Additional studies con-
firm that integrating contextual information in prompts significantly improves LLMs’
forecasting capabilities [2].

2.3 Large Language Models in Business Process Management

LLMs are recently attracting growing focus in business process management as well [9].
They have proven to be significantly useful for many process mining tasks, such as pro-
cess modeling [13], log extraction [6], anomaly detection [33] and they have also been
used for assessing the validity of some traces for a given process [22]. Lashkevich et
al. in [16] provide a state-of-the-art approach that leverages LLMs for enhancing the
optimization of waiting times and, on the other hand, it relies on user-prompted feed-
back for recommending more effective re-design options. Rebmann et al. [22] present
an approach for extracting knowledge from textual data, also providing some textual
and synthetically generated datasets for extracting event logs trying to assess if there
are missing activities in the extracted processes and eventually generating them. In the
meanwhile, the work in [20] leverages LLMs to transform textual data into process rep-
resentations, followed by training a text-encoding technique BERT-based deep learning
model to predict the next-activity in a process. Finally, Kubrak et al. [14] developed
an approach based on a chatbot for process analysis in which the LLM is used for ex-
plaining the recommendations provided by a model, enhancing their explainability. The
method proposed in this study advances the field in two aspects: it introduces a general
prompting framework that enables prediction using LLMs and shows that it maintains
its predictive efficiency even under conditions of limited log training data.

3 Preliminaries

The starting point for a process mining-based system is an event log. An event log is a
multiset of traces. Each trace is a sequence of events, each describing a particular pro-
cess instance (i.e., a case) in terms of the activities executed, the associated timestamps
and other different domain-related attributes.
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Definition 1 (Events). Let A be the set of process activities. Let T be the set of process
timestamps. Let V = V1×V2× . . .×Vm be the Cartesian product of the data attribute
sets. An event is a tuple (a, tstart, tend,−→v ) ∈ A×T 2×V where a is the event activity,
tstart and tend the associated timestamps, and −→v the vector of associated attributes.

A trace is a sequence of events. The same event can occur in different traces. Namely, at-
tributes may be given the same assignment in different traces. This means that the same
trace can appear multiple times, although admittedly under extremely rare conditions,
and motivates why an event log has to be defined as a multiset of traces:

Definition 2 (Traces & Event Logs). Let E = A× T 2 × V be the universe of events.
A trace σ is a sequence of events, i.e. σ ∈ E∗.3 An event log L is a multiset of traces,
i.e. L ⊂ B (E∗).4

Given an event e = (a, tstart, tend,
−→v ), the remainder uses the following shortcuts:

activity(e) = a, start(e) = tstart, end(e) = tend, duration(e) = tstart − tend,
attr(e) = −→v . Also, given a single attribute set Vi it can be classified as global or
local, depending on whether the values in it can vary or not in the same trace. We
refer to this attributes as global(σ) = −→g and local(e) =

−→
l , and so the equation

global(σ) ⊕ local(e) = attr(e) holds.5 Furthermore, given a trace σ = ⟨e1, . . . , en⟩,
prefix(σ) denotes the set of all prefixes of σ, including σ, namely prefix(σ) =
{⟨⟩, ⟨e1⟩ , ⟨e1, e2⟩ , . . . , ⟨e1, . . . , en⟩}.

The goal of a time prediction framework is to forecast the total execution time of
a running process instance that has not completed yet, namely a running trace. In this
paper, the problem is modeled as the estimation of a Total Time Function T : X → N0

that given a running trace σ′ = ⟨e1, . . . , ek⟩ eventually completing as ⟨ek+1, . . . , en⟩,
returns the value end(en)− start(e1). The input of the Total Time function is a set X ,
since not every approach shares the same encoding for event logs. For instance, in [1]
the authors encoded traces in an LSTM compatible input, while in [25] the traces are
encoded in a comma-separated values file suitable for a predictor based on a Decision
Tree. This requires defining the trace-to-instance encoding function ρ : E∗ → X with
the goal of accurately translating every trace of the event log into an input suitable for
the model. This function has proven to be significantly different based on the chosen
predictive approach (cf. [28]).

Figure 1 depicts an example of a trace-to-instance encoding function. In it, the trace
is preprocessed by adding the past activities in newly generated columns. For each
activity in the trace, the number of previous occurrences of that activity is reported in a
dedicated column, encoding the number of past executions of the activity. This encoding
allows tracking the frequency of all past activities but does not maintain information
about their sequential order, recording only the most recent one.

To formally define this encoding function we have to first define ρhistA (⟨e1, . . . , en⟩).
Here, for each activity a ∈ A, one dimension exists in ρhistA (σ) : E∗ → (N)|A|

3The operator * refers to the Kleene star: given a set A, A∗ contains all the possible finite
sequences of elements belonging to A.

4B(X) indicates the set of all multisets with the elements in set X .
5Considering ⊕ as the concatenation of vectors e.g.

[1, 3,′ request_created′]⊕ [2, T rue] = [1, 3,′ request_created′, 2, T rue]
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Dept Activity Start
Time

End
Time

Resource

D1 A1 S1 E1 R1

D1 A2 S2 E2 R1

D1 A3 S3 E3 R1

D1 A4 S4 E4 R2

D1 A5 S5 E5 R3

Dept Activity Start
Time

End
Time

Duration Res #A1 #A2 #A3 #A4 Total
Time

D1 A5 S5 E5 T5 R3 2 1 1 1 E5-S1

Fig. 1: Output example of a Aggregated History encoding function.

that takes on a value equal to the number of events ei ∈ σ such that activity(e) =
a for i = 1, . . . , n. The function ρaggr is then defined as: ρaggr(⟨e1, . . . , en⟩) =
global(⟨e1, . . . , en⟩)⊕activity(en)⊕start(en)⊕end(en)⊕duration(en)⊕local(en)⊕
ρhistA (⟨e1, . . . , en⟩)⊕ end(en)− start(e1). As reported in the Section 1, this function
has been widely adopted in the literature [24,3,10]

Since this paper aims to leverage a LLM to estimate the total time of a running
trace σ′, we introduce a general definition of it to establish the necessary conceptual
framework:

Definition 3 (Large Language Model). Let Σ∗ be the set of all finite strings over an
alphabet Σ. A Large Language Model (LLM) is here modeled as a function LLM :
Σ∗ → Σ∗ that, given an input s ∈ Σ∗, returns a string LLM(s), which depends on
the specific interpretation of the model.

We are aware that this is a simplification of the actual reality; however, as this paper
seeks to propose a method for enhancing prediction quality through the use of an LLM,
we provide a broad, simplified mathematical definition of LLMs, solely for the purpose
of providing a reference function. This prediction method has been adapted from a more
formal framework introduced in [23].

It is worthwhile pointing out that the reminder of this paper uses the term training
to refer to both LLMs and Machine- and Deep-Learning models, to keep the discus-
sion simple. However, we acknowledge that LLMs are already pre-trained: traces are
provided to the LLMs as background, and are not formally used to train its internal
parameters.

4 Approach For Small-Scaled Prediction Based on LLMs

This study seeks to leverage the potential of LLMs to develop a framework for PPM,
particularly in scenarios where only a small amount of example traces are accessible.
Leveraging their embedded knowledge, LLMs can extract and use additional informa-
tion beyond the event data by incorporating the semantics of events, such as activity
names, that traditional models cannot. Figure 2 depicts the proposed approach. Given
an event log of completed traces L and a running trace σ′, a trace-to-instance encoding
function ρ is applied to transform them into a structured prompt. This prompt, com-
posed of multiple components, is then used to enable the LLM to estimate the Total
Time function T .
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Fig. 2: Pipeline outlining the proposed method using LLMs for PPM.

In the remainder of this Section a new trace-to-instance encoding function ρseq
suitable for LLM is introduced in Section 4.1, while Section 4.2 defines a context-
based prompt suitable for employing an LLM for implementing the Total Time function
defined in Section 3.

4.1 An Encoding Function for LLMs

Exploiting an LLM for developing a PPM framework is a topic that has not yet been
explored in process mining (cf. Section 2). This section introduces a new LLM-suitable
trace-to-instance encoding function ρseq : E∗ → Σ∗ that is associated to an encoding
that will be referred as Sequential.

The input of the ρseq function is a trace, while the output is a textual prompt that
will be later enhanced to become suitable as input for the LLM function defined in
Definition 3, that will be used as Total Time function T . Specifically, in this case the
generic input set of the Total Time function X is equal to Σ∗. In ρseq , each trace σ =
⟨e1, . . . , en⟩ is mapped into a string composed of three main elements:

– The values of the global attributes of the trace global(en).
– A sequence of tuples (activity(ei), duration(ei)) for i = 1, . . . , n.
– The actual value of Total Time end(en)− start(e1).

Formally:

ρseq(⟨e1, . . . , en⟩) =global(⟨e1, . . . , en⟩)⊕ (activity(e1), duration(e1))⊕ . . .⊕
(activity(en), duration(en))⊕ end(en)− start(e1)

The sets of local attributes have been intentionally excluded, as it has been demon-
strated that LLMs are constrained by two primary factors: technical limitations and
methodological considerations. From a technical perspective, an LLM can only pro-
cess a certain number of characters; so it becomes necessary to reduce the size of the
input to stay within this maximum quantity, namely the Context Length.6 Note that the
Context Length of an LLM is not just a limitation per interaction (e.g., in a chatbot) but
an inherent architectural constraint. Additionally, from a methodological standpoint, re-
search demonstrates that the data in an LLM input does not equally impact the model’s
processing, and the significance of individual data points reduces as the input lengthens,
even degrading its performance [15,17]. Therefore, we opted to omit local attributes.
Conversely, global attributes were retained since they incorporate domain knowledge
and have proved to retain more predictive power than local ones (cf. Galanti et al. [10]).

6See https://llm-stats.com/ for an overview of Context Lengths of the latest models.

https://llm-stats.com/
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Fig. 3: Output example of a Sequential trace-to-instance encoding function ρseq .

An example of application of the Sequential trace-to-instance encoding function
ρseq is depicted in Figure 3, where the example trace reported in Figure 1 has been
processed as a string. The result is a string-form Python object primarily composed of
three keys: i) Dept, associated with the value of the corresponding global attribute; ii)
ActTimeSeq, associated with the list of tuples where each activity and its duration are
recorded; and iii) TotalTime, representing the total duration of the trace.

It is important to note that the Sequential is not the only suitable encoding for LLMs.
In fact, the proposed approach also supports the Aggregated History Encoding, associ-
ated with the ρaggr trace-to-instance encoding function, as the LLM can predict future
values independently of the specific encoding. This flexibility allows the framework to
adapt to different encoding strategies.

4.2 Context-Based Prompting Technique for LLMs in Predictive Process
Monitoring

In this paper, an LLM is defined as a function that takes as input a string and returns a
string containing the predicted value (cf. Definition 3). This Section uses the traces that
have been encoded using a trace-to-instance encoding function ρ and incorporates them
generating an input suitable for an LLM. In essence we define a prompting technique
that allows the model to generate total time predictions along with corresponding rea-
soning procedure, starting from the encoded traces. The prompting technique is divided
into seven key parts, also reported in the Example 1:

– Initial instruction and Header: The LLM is introduced to the task with the prompt:
“You are an expert in process mining and machine learning. Your task is to predict
the ‘Total Time’ of process instances based on event logs of activities, where each
process instance is a sequence of activities.” (Lines 1-2)

– Attributes and Encoding description: Contextual information specific to the pro-
cess is provided, and the trace-to-instance encoding function is described (ρseq in
the example). (Lines 4-12)

– Output and Reasoning format specification: The expected structure for predicted
values is defined. (Lines 14-22 and 29-35)

– Running Trace Format Specification: The format for describing a running trace
is specified to the model. (Lines 24-27)

– Domain-specific background information: Additional details about the process
from which the data have been extracted. (Lines 37-38)

– Example Data Provision: Encoded data are provided as example to the model.
(Lines 39-45)

– Running Trace Provision: The running trace is provided in the same format as the
examples, with a custom last activity referred as “Running”, as described at lines
24-27. (Lines 47-50)
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Although the proposed encoding is general and applicable to various use cases,
certain information within these seven components must be specified by the process
analyst and may be optionally removed.

1 You are an expert in process mining and machine learning. Your task is to predict the ’total time’ of

2 process instances based on event logs, as each process instance is a sequence of activities.

3

4 A event log is a collection of traces, where each trace represents a process instance.

5 Each trace is mapped as a sequence of activities and integers representing the minutes since the start

6 of the process.

7 The log is represented as a python list containing one dictionary for each trace. Included in it are:

8 - the key "ApplicationType", representing the type of application

9 - the key "RequestedAmount", representing the total amount of euros requested in the loan application.

10 - the key "ActTimeSeq", which value is a list of [activity, cumulative elapsed minutes]

11 - The key "total_time", which value is the total execution time in minutes from the start of the activity,

12 that is the value to predict.

13

14 All interactions will be structured in the following way, with the appropriate values filled in.

15

16 [[ ## reasoning ## ]]

17 {your step-by-step reasoning}

18

19 [[ ## answer ## ]]

20 {your predicted total time as an integer}

21

22 [[ ## completed ## ]]

23

24 In adhering to this structure, your objective is to analyze the event log, and apply reasoning to predict

25 the total time for a new case. This case belongs to a not-yet-completed process instance, represented by the

26 label "Running" in "ActTimeSeq", indicating that more activities are expected before reaching the conclusion

27 of the process instance.

28

29 Ensure to articulate each step of your thought process in the reasoning field, detailing how you identify

30 relationships with past cases and leverage your intuition about the meaning of activities to arrive at the

31 solution. The answer should be the final prediction of the total time for the given process instance.

32 Respond with the corresponding output fields, starting with the field [[ ## reasoning ## ]],

33 then [[ ## answer ## ]], and then ending with the marker for [[ ## completed ## ]].

34

35 Your task is to learn from them and predict the ’total time’ values for that traces.

36

37 The process deals with a loan application process from a Dutch financial institution. It has been provided

38 in the Business Process Intelligence (BPI) challenge in 2017.

39 The following list shows some completed example cases with their total times:

40

41 {"ApplicationType": "New credit", "RequestedAmount": 5000.0, "ActTimeSeq": [["W_Complete application", 11],

42 ["W_Call after offers", 1464], ["W_Call after offers", 7486]], "total_time": "7486"}

43 {"ApplicationType": "New credit", "RequestedAmount": 15000.0, "ActTimeSeq": [["W_Complete application", 13],

44 ["W_Call after offers", 14], ["W_Validate application", 4328], ["W_Validate application", 8792]],

45 "total_time": "8792"}

46

47 Now predict the total time for this new uncompleted case, considering that the case is still running:

48

49 {"Application_1000386745": {"ApplicationType": "New credit", "RequestedAmount": 18000.0,

50 "ActTimeSeq": [["W_Complete application", 2], ["W_Call after offers", 8571], ["Running"]]}

Example 1: Prompting technique example for a loan application process (Bpi17). Lines
that have to be provided by the process analyst are marked in bold. In the example, only
2 training traces are provided due to space limitation.

In Example 1 they have been highlighted in bold. They are specifically, (i) the
domain-specific background information (Lines 37-38) and (ii) the description of the
global attributes (Lines 8-9), as they contain contextual details specific to the process
under study. Notably, these informations are optional and can be excluded if necessary.
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The remaining sections of the prompt are designed to be generic and can be applied to
any event log without modification.

This modularity ensures that the framework can be associated with any encoding
function and eventually be customized with details about the single process, while min-
imizing the effort needed for customization when applying the LLM to different process
datasets.

5 Evaluation and Results

We assess the effectiveness of our approach in generating accurate predictions using a
limited-size training set and comparing its performance against a state-of-the-art bench-
mark across five distinct case studies. To ensure a robust evaluation, we repeatedly sam-
pled a limited number of traces, trained both a benchmark model and the LLMs on these
samples, and conducted multiple experimental runs. The remainder of this section is
organized as follows: The case studies are reported in Section 5.1, while Section 5.2 re-
ports on the experimental setup, dealing with the implementation and the metrics used.
Section 5.3 deals with the results and the associated comments. Finally, an example of
the LLM’s output in terms of values and reasoning is reported in Section 5.4.

5.1 Case Studies

The validity of the approaches was assessed using five different processes, for which
accordant event logs are available:

Bpi12: This process has been used by the BPI challenge in 20127, it contains 8,616
traces, 6 different activities and 1 global attribute: Requested_Amount.

Bac: A process referring to a process of a Bank Institution that deals with the closures
of bank accounts. It contains 32,429 completed traces, 15 different activities and 2
global attributes: Closure_Type, and Closure_Reason.8

Hospital: This process has been provided by an hospital emergency department. The
log is made of 37,945 completed traces, contains 46 different activities and 3 global
attributes, that are Triage_Color,Triage_Access and Patient_Age.

Purchasing: A process provided as part of the Fluxicon Disco tool and it is related
to a purchase-to-pay (P2P) system, it is synthetic and generated from a model not
available to the authors.9 The extracted event log has 608 traces. It contains 21
different activities and no global attributes.

Bpi17: The subprocess for the workflow-relevant in the 2017 BPI Challenge event data,
and it is provided by the same financial institution that provides the log employed
in Bpi12. It contains 30,276 completed traces, 8 different activities and 2 global
attributes that are the Loan_Goal, and the Requested_Amount.

7https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
8https://github.com/IBM/processmining/tree/main/Datasets_usecases
9https://fluxicon.com/
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Table 1: Summary statistics of the considered case studies.
Case Study Completed Traces Activities Global Attributes Mean Total Time
Bpi12 8,616 6 Requested_Amount 19,680 min
Bac 32,429 15 Closure_Type, Closure_Reason 23,615 min
Hospital 37,945 46 Triage_Color, Triage_Access, Patient_Age 188 min
Purchasing 608 21 - 115,015 min
Bpi17 30,276 8 Loan_Goal, Requested_Amount 30,240 min

Note that the Hospital process is not publicly available, due to legal constraints. This
also means that a pre-trained LLM cannot have seen them in any form for building
a-priori knowledge, although it has likely seen event logs of similar processes, which
are supposedly beneficial for generating predictions. This ensures that our model has
been tested on both publicly available and non-publicly available event logs, preventing
eventual data leakage scenarios.

A summary of case studies, associated with the mean total time of each trace, is
reported in Table 1.

5.2 Experimental Setup

The whole approach has been implemented in Python and the code is publicly avail-
able.10 For developing the Total Time function, any choice of LLM is valid, and we
resorted to Gemini 2.0 Flash Thinking: a state-of-the-art LLM developed by Google
DeepMind1. The model is built on a multimodal architecture designed for advanced
natural language understanding and generation. This specific model has been chosen
due to its status as the most powerful and freely available LLM at the time of submis-
sion. As the development of LLMs progresses, we anticipate that the performances of
upcoming models using our method will likely see improvements. For the purpose of
setting a benchmark for prediction, we employed Catboost [21], a state-of-the-art model
predictor based on machine learning on decision trees, which has been shown to surpass
existing prediction frameworks [25].

Consistently with standard supervised learning practices, we divided the event log
L into training and test, Lcomp and Lrun, respectively. To extract the training log we
compute the earliest time tsplit such that 80% of the identifiers related to traces of L
are completed. This allows us to define Lcomp as the set of traces of L completed at
time tsplit, and consequently, define Lrun as L\Lcomp. The traces of the test log Lrun

are truncated to a set Ltrunc, namely the set of prefixes, that is obtained from Lrun

by removing every event with a timestamp larger than tsplit: Ltrunc only contains the
events that occurred before time tsplit. This procedure tries to mimic the reality at time
tsplit and it is in line with the principles introduced in [36]. The system is trained on
Lcomp, the predictions are produced for Ltrunc and tested using its completed form,
Lrun. Furthermore, to ensure a robust generalization across various process instances
and a more balanced comparison with the LLM, we randomly picked 10% of traces and
used them as a validation set Lvalid to apply a Cross-Validation approach to optimize
the following parameters of Catboost: learning_rate, tree_depth, training_iterations.

10https://github.com/Pado123/gui_xrecs_presc_analytics

https://github.com/Pado123/gui_xrecs_presc_analytics
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The traces were encoded using two different trace-to-instance encoding functions:

– ρaggr, the Aggregated History encoding function that proven to be the best option
for Catboost (cf. [10]) and introduced in Section 3.

– ρseq , the Sequential encoding function introduced in Section 4.1.

The results have been reported in terms of Mean Absolute Error (MAE), defined as
the mean of the absolute differences between the true values and the predicted values.

This metric is widely used because it allows more interpretability, retaining the
original unit of measurement, that for this work is minutes. Furthermore, Section 5.1
presents each case study along with the mean total time, providing an indication of the
typical trace length in relation to the MAE.

As highlighted in Section 4.1, the proposed prompting technique includes a com-
ponent that the process analyst must configure for each case study. This is optional and
can be excluded if desired. Therefore, we report results for both scenarios: when this
part that has to be provided by process analyst is included and when it is omitted.

In addition, due to the fact that the proposed encoding function ρseq produces a
string as output, we were unable to test Catboost using this encoding.

To test the model’s ability to maintain accuracy with a reduced training set, we
evaluated its performance by progressively shrinking the training data. Specifically, we
reduced the number of traces to 100, 10, and 2. This experiment allowed us to assess the
model’s robustness and accuracy when exposed to increasingly sparse datasets, simulat-
ing real-world scenarios where training data may be limited or incomplete. To mitigate
the effects of statistical variation due to sampling, experiments have been repeated 20
times, and the reported results represent the mean and standard deviation of these runs,
in order to highlight not only the value of MAE but also the possible uncertainty related
to the statistical sampling.

5.3 Predictions Results

Table 2 reports the results of the experiments for the different case studies, along with
the results from the Catboost banchmark, for which the relevant hyperparameters have
been optimized. Results are reported when the training sets are composed of 2, 10,
and 100 traces. The column Model indicates the predictive model: the benchmark as
well as the LLM using the encodings based on aggregated history ρaggr and the whole
trace ρseq when both the context is and is not used. Recall that, by context, we mean
the context-specific background information and the description of global attributes (cf.
Section 4.2). For completeness, the table also reports on the result of the benchmark
when the whole training log has been used, whose size is reported in column # Train
Traces in terms of the amount of traces. Mean and median values of the each test log are
also have been used naïve predictors with the aim to provide a baseline, and results are
reported. Recall that, for each process, predictive model, and size of the training set (e.g.
100 traces), the experiments have been repeated 20 times and taken different samples of
the same size (e.g. 100 traces), as discussed in Section 5.2. The cell numbers represent
the mean across the 20 experiments, with the standard deviation indicated after the
± symbol, except in the case of the benchmark on the full log, where the sampling
procedure was not performed.
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Table 2: Accuracy results in terms of Mean Absolute Error (minutes). For each case
study and reduced train set, the lower MAE are highlighted in bold.

Process Predictive Model Full log 100 Traces 10 Traces 2 Traces Mean Median # Train Traces

Bpi12

Benchmark 6,846 9,394 ± 114 10,811 ± 111 11,594 ± 3,819

LLM ρaggr + Context - 398 ± 440 406 ± 428 400 ± 425

LLM ρseq + Context - 7,258 ± 878 8,450 ± 1,402 7,549 ± 2,049 9,373 9,374 6,892
LLM ρaggr - 8,001 ± 2,024 10,205 ± 328 11,067± 2,560

LLM ρseq - 5,328 ± 1,368 5,557 ± 1,696 5,622 ± 1,607

Bac

Benchmark 2,647 6,393 ± 387 8,181 ± 1,633 9,634 ± 1,929

LLM ρaggr + Context - 7,731 ± 1,471 9,481 ± 1,407 12,045 ± 2,302

LLM ρseq + Context - 2,510 ± 471 6,066 ± 920 6,741 ± 2,692 6,172 5,998 25,901
LLM ρaggr - 4,894 ± 1,685 8,517 ± 1,218 14,008± 1,539

LLM ρseq - 2,500 ± 836 5,419 1,098 5,725 ± 1,273

Hospital

Benchmark 253 254 ± 1 266 ± 11 277 ± 24

LLM ρaggr + Context - 433 ± 418 406 ± 428 400 ± 425

LLM ρseq + Context - 87 ± 28 98 ± 29 87 ± 30 326 254 30,212
LLM ρaggr - 401 ± 416 410 ± 431 389 ± 389

LLM ρseq - 86 ± 29 92 ± 23 91 ± 32

Purchasing

Benchmark 19,639 26,682 ± 697 56,589 ± 1,733 70,607 ± 4,648

LLM ρaggr + Context - 46,902 ± 8,299 50,774 ± 12,891 56,277 ± 4,205

LLM ρseq + Context - 12,081 ± 2,925 14,015 ± 1,651 14,475 ± 4,141 52,377 45,650 486
LLM ρaggr - 37,899± 3,657 42,225 ± 3,237 56,127± 6,740

LLM ρseq - 11,767± 2,339 12,593 ± 2,722 12,071± 3,466

Bpi17

Benchmark 9,729 12,565 ± 43 13,166 ± 783 16,701 ± 4,729

LLM ρaggr + Context - 13,638 ± 3,302 12,732 ± 3,189 14,425 ± 4,011

LLM ρseq + Context - 8,032 ± 1,338 8,734 ± 1,930 8,787 ± 1,928 13,189 12,617 24,221
LLM ρaggr - 11,185± 3,005 11,043 ± 2,736 14,722± 2,958

LLM ρseq - 6,931 ± 2,605 6,993 ± 2,491 7,656 ± 3,107

Our LLM-based framework for predictive process monitoring always outperforms
the benchmark. Except for the Bpi12 case study, the ρseq encoding function outper-
forms the aggregated history ρaggr encoding function. This shows that, when Gemini
is provided with more information for the predictive task, it is generally capable of dis-
cerning the information that is relevant for the specific case study, where an aggregated
history imposes – generally wrongly – on the information that is relevant. This is far
from being obvious: the feature engineering and the choice of the right aggregation is
usually relevant for accuracy when predictive process monitoring is performed using
Machine- and Deep-Learning predictors [28]. Remarkably, the context does not seem
relevant in all case studies when the ρseq encoding function is employed, except for the
Bpi12 process: the results with and without context are basically equivalent, namely the
boundaries set by the standard deviations lie within the same intervals. This is likely due
to the fact that the name of the global attributes and/or of the process activities allowed
the LLM to derive the context from the pre-trained knowledge. Therefore, the results
seem to suggest that the context is particularly relevant in non-conventional settings.

Interestingly, the Gemini predictive accuracy remains remarkably consistent whether
it receives two or one hundred traces as input, with the exception of the Bac case study.
The reason for this discrepancy in Bac is unclear. However, the general observation is
that relying solely on two traces might not consistently yield a reliable predictive model.
Also, our Gemini framework notably achieves higher accuracy with less than 100 traces,
if compared with the Catboost benchmark trained on the whole event dataset. This su-
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perior performance is observed across all case studies, though the results for Bac are
less definitive.

5.4 Example of Reasoning to Achieve Predictions

The Gemini’s output is not limited to returning the predicted value: Gemini also reports
on the reasoning put in place to conclude the prediction. This is in fact a form of expla-
nation of the predictions, although user studies would be necessary to assess whether
they are indeed comprehensible by non-LLM and non-AI experts.

1 [[ ## reasoning ## ]]

2 The new case is for a ’New credit’ application with a ’RequestedAmount’ of 18000. The process instance

3 has executed activities ’W_Complete application’ and ’W_Call after offers’.

4 The process is currently ’Running’.

5 To predict the total time, we will look at historical cases with similar characteristics.

6
7 1. Filter for similar Application Type and Requested Amount:

8 We focus on cases with ’ApplicationType’ as ’New credit’ and ’RequestedAmount’

9 in a range around 18000.0 (e.g., 10000.0 to 25000.0) to find comparable instances.

10
11 2. Identify relevant historical cases:

12 From the provided log, we select the cases that match ’New credit’ application

13 type and have ’RequestedAmount’ within the range of 10000.0 to 25000.0.

14 We list their total times:

15 10000.0: 9713, 10000.0: 18803, 11500.0: 4771, 12000.0: 18924, 12000.0: 8102,

16 13000.0: 6645, 13000.0: 21550, 14000.0: 9713, 15000.0: 8049, 15000.0: 17011

17
18 3. Calculate the median total time:

19 To get a robust estimate and reduce the impact of outliers,

20 we calculate the median

21 of these total times.

22 Sorted total times: 4771, 5299, 5975, 5975, 6645, 6645, 7432, 8049, 8102, 9713, 9713,

23 12991, 13056, 17011, 17434, 18803, 18924, 19826, 21550, 71762.

24 Since there are 20 values, the median is the average of the 10th and 11th sorted values,

25 which are 9713 and 9713. Median = (9713 + 9713) / 2 = 9713.

26
27 4. Predict total time:

28 We use the median total time of the similar historical cases as our prediction

29 for the new running case.

30
31 [[ ## answer ## ]]

32 9713

33 [[ ## completed ## ]]

Example 2: LLM’s output and reasoning returned after the prompting technique exam-
ple for a loan application process.

Nonetheless, it is a valuable addition to this paper to report and comment on an
instance of the prediction’s reasoning given as output by Gemini. To do so, Example 2
reports the output returned by the LLM for Example 1.

The output is returned at the end (see line 32 of Example 2). The reasoning of this
example is as follows: Gemini has focused on the traces of the provided training log in
which for which the ’ApplicationType’ is of type ‘New credit’ and the request amount is
in the range of 10000 to 25000 (see lines 7-9). This leads to 20 traces (see lines 15-16),
for which the median value is computed (see lines 24-25), which is used as predicted
value (see explanations given at lines 28 and 29).
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This reasoning certainly provides a valid explanation of the reasoning behind why
this prediction is provided. However, this is only an example of the reasoning proce-
dure performed by Gemini, and we observed that the output prompt can vary on the
basis of the context and the number of training traces provided. Effort is necessary to
homogenize the output prompt, and to steer towards a solution that is more explainable
for process stakeholders. The latter still requires a research investigation that involves
users and multiple analysis. We aim to move towards this direction as future work.

The given reasoning explains the prediction, but it is only an example of the rea-
soning procedure that is performed by Gemini, which changes with context and data.
To improve explainability for process stakeholders, a more consistent and standardize
output is necessary. This requires in-depth research involving user studies and varied
analytical methods, a direction we intend to explore as future work.

6 Conclusions

This research introduces a novel Predictive Process Monitoring (PPM) framework that
leverages on the capabilities of Large Language Models (LLMs) to overcome the chal-
lenge of limited data. Traditional PPM techniques rely on Machine- and Deep-Learning,
which notoriously struggle with small datasets. LLMs have the capability to use the pre-
trained knowledge to generalize even when small-scale event logs are provided.

With the premises above, this paper reports on our contribution to design a PPM
framework that is based on LLMs. Two alternative prompts have been leveraged to en-
code the training sets and the contextual information. The framework has been imple-
mented in Python, using Gemini as LLM, which has shown to be the best performing
on different benchmarks among those freely available. Experiments have shown that
our LLM-based framework enables making accurate predictions with small-scale event
logs that are composed by less than 100 traces, with significant accuracy improvements
with respect to standard methods from the PPM literature.

Section 5.4 has already reported that our future work will certainly focus on the
output prompt generated by LLMs, aiming at its standardization and at its consequent
use as explanation method. However, this requires user studies to evaluate alternatives
and assess their benefits. While this research focuses on predictive process monitoring,
a natural extension is to move toward recommender systems where not only are pre-
dictions given but also corrective actions are provided to recover the executions that
are predicted to not achieve a satisfactory outcome. In this paper, the outcome is only
defined in terms of duration of process executions, but KPIs can generally be of differ-
ent natures (costs, customer satisfaction, etc.): a natural extension is indeed to extend
our predictive framework towards KPIs that are others than execution duration. Finally,
an interesting direction of future work is also related to investigating zero-prompting
techniques, where the predictive model is provided with no specific examples, in line
with the goal of this work to provide a more adaptable and scalable framework.
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