
Experience-Based Resource Allocation for Remaining
Time Optimization

Alessandro Padella1, Felix Mannhardt2, Francesco Vinci1, Massimiliano de Leoni1,
and Irene Vanderfeesten3

University of Padua, Padua, Italy
alessandro.padella@phd.unipd.it

deleoni@math.unipd.it
francesco.vinci.1@phd.unipd.it

Eindhoven University of Technology, Eindhoven, The Netherlands
f.mannhardt@tue.nl

KU Leuven, 3000 Leuven, Belgium
irene.vanderfeesten@kuleuven.be

Abstract. Prescriptive process analytics aims to suggest interventions for those
process instances that are predicted to not achieve a satisfactory outcome. Typi-
cal interventions are recommending a task to be performed by a specific resource.
State-of-the-art prescriptive resource allocation techniques typically propose in-
terventions that allocate the best-fitting resources at a given time. This may result
in those resources to become more skilled at the task over time whereas other
less experienced resource are rarely allocated. In the long run, such system may
result in a unbalanced situation in which some expert resources are overloaded
with very high workload and the less experienced resource are assigned fewer
tasks and fail to improve. This paper proposes an approach for resource allo-
cation to process instances that aims at a more balanced workload distribution
among the resources, even if this means slightly lower process improvements in
the short term. Experiments on event logs related to two real processes show that
we indeed achieve a more balanced workload distribution, which often yields an
overall higher improvement of the whole set of running process instances.

Keywords: Process Prescriptive Analytics · Resource Allocation · Recommender
Systems · Machine Learning · Workload Distribution

1 Introduction

Process mining aims to discover and improve processes, on the basis of the analysis of
a process’ transactional data that record how single executions have been carried out.
Within the realm of process mining, prescriptive process analytics focuses on running
process executions and tries to recover the “risky” executions that, otherwise, are pre-
dicted to achieve unsatisfactory outcomes (high costs, poor customer satisfactions, etc.).
In prescriptive process analytics, the system advises interventions at run-time, typically
in the form of suggesting given resources to perform certain recovery activities.

Prescriptive process analytics is currently gaining momentum, and several approaches
have been proposed over the years (cf. survey by Kubrak et al. [18]). While a large body

2 Padella et. al

of research has mainly focused on suggesting the next activity to work on, some works
also consider the resource availability and optimize the resource assignment to these
recovery activities (see Sect. 2).

In this paper, we want to move forward from the literature that just focuses on
allocating the best-fitting resources to activities for selected running process executions.
In many situations, there is a clear correlation between the performances of activities by
resources and the experience of the resources themselves. When recommending based
on the historical data on resource performance, this yields to a vicious cycle in which the
best-fitting resources are always assigned activities, and they thus become even more
experienced and better performing. A harmful consequence of such recommendations
may be that the less experienced resources are never given the chance to gain experience
and become better at performing recovery activities: they are always being kept aside.
Note how this uneven distribution of activity work is intrinsically unfair because some
resources are largely idle, while others are heavily overloaded, increasing the queue of
the activities that they have to perform, thus ultimately negatively affecting the overall
process performances. Considering such fairness problems in performance analysis has
been advocated previously [1].

The paper aims to introduce an approach that balances the necessity for process ex-
ecutions to be improved at their best, on the one hand, and the long-term goal to enlarge
the repertoire of experienced resources, on the other hand. The BPR best practices dis-
cussed in [27, 9] already advised to ”consider to broaden the skills of resources” (i.e.
generalist vs specialist profiles) to improve flexibility during process execution and to
have a better utilization of resources. Pika et al. suggested that analysis of resource be-
haviours may provide insights for effective human resource development strategies, and
resource and process performance improvement [24]. Vanderfeesten and Grefen also
acknowledge the importance of periodically allocating difficult tasks to train resources
and enlarge their experience with different tasks [29]. This long-term goal is overlooked
by the predictive-analytics literature, briefly discussed above and in Sect. 2, but it can
potentially bring clear benefits for the organization to which the process belongs.

Currently, our approach described in Sect. 4 focuses on prescribing which activities
to perform on risky cases and to which resources to assign them, with the aim to reduce
the remaining time to the conclusion of process executions. However, the approach can
be easily extended to other KPIs. Specifically, the approach leverages on building a
machine-learning model that estimates the remaining time together with considering
the learning curve of resources. This model is then used to recommend the process
executions on which to work as next, the activities to carry out for them, and the set of
resources to whom to allocate these activities.

Experiments reported in Sect. 5 were conducted for two real-life processes, for
which transactional data with suitable resource information was available. One focuses
on an Italian banking institution, and another refers to a Dutch financial institution. For
the latter, a concept-drift was present: therefore, we conducted experiments with the
portion of transition data before and after the drift, leading to two alternative processes.
The results show that our approach indeed leads to a better workload distribution, which
typically translate to reducing the remaining time to complete process executions. The

Experience-Based Resource Allocation for Remaining Time Optimization 3

latter illustrates how allowing resources to gain experience may provide a long-term
general benefit for the organization in which the process is being executed.

2 Related Works

Advanced dynamic resource allocation in business process management has recently
gained increased attention. Several authors have identified additional information about
the (human) resources that may be employed to prioritize specific resources and to en-
hance allocation decisions [29, 3, 26, 7]. Additional information on a worker’s expertise
[4], preferences [5, 31], and abilities [10] can be incorporated in allocation decisions.

Also, experience is mentioned as one of the additional factors to take into account
[3, 26, 11]. Experience indicates the working time since a resource joined the enterprise,
reflecting the familiarity of resources with the enterprise [30]. It is often measured in
number of days or years on the job [7, 24, 31], although [16, 15] propose that experience
may be measured through (i) resumé-like metrics such as ‘number of years on the job’,
‘total time employed’, ‘number of jobs/functions’, ‘number of organizations’, and (ii)
metrics based on historical task execution data from process-aware information systems
such as ‘number of times performing a task’, ‘task success/failure rate’, and ‘task va-
riety’. Also [11] define experience as ’the number of times an employee has executed
a work item, been involved in a case, and interacted with others’, and Kim et al [17]
considered for instance ’the number of work items’, ’the number of cases for which at
least one work item executed’ and ’the number of unique tasks executed’. In this paper
we adopt this second perspective focusing on historical task execution data and analyse
the development of a worker’s experience in terms of time needed to execute the task.

Some of the existing works on advanced dynamic resource allocation propose to
collect this additional information based on historical process execution data (i.e., event
logs) [4, 31]. Ly et al. focus on staff assignment rules [21], Huang et al. mine association
rules, and resource behavior (preference, availability, competence and cooperation) [12,
13], Kumar et al. discover collaboration patterns [19], Pika et al. propose to mine actor
profiles including expertise and experience [24], and Kim et al. provide a framework for
extracting features from event logs capturing resource experiences, such as frequency,
performance and busyness, for predictive process monitoring [17]. In this paper, we
also use historical data but derive a more complex understanding of experience.

There are many approaches to optimize resource allocation decisions using vari-
ous computation and artificial intelligence techniques, ranging from heuristics, to linear
programming and genetic algorithms [26, 14]. In some of these algorithms, a worker’s
experience (or sometimes called past performance) is used to make allocation recom-
mendations [4, 31, 17]. However, most of these approaches focus on a local optimization
decision, i.e. finding the best matching resource for a specific task without considering
the other running process instances that also need to be optimized [14]. The works re-
ported in [28, 22] try to go beyond and globally optimize the resource allocation for
all process instances that require recovery interventions. They still aim to optimize the
outcome of the running process instances, overlooking the problems related to (i) a fair
work distribution and (ii) facilitating the acquisition of the experience by the resources.
The solution presented in this paper addresses these gaps.

4 Padella et. al

3 Preliminaries

The starting point for amy process mining technique is an event log. An event log is
a multiset of traces. A trace is a sequence of events, each describing the life-cycle of
a particular process instance (i.e. a case) in terms of the activities executed by certain
resources at a specific timestamps together with the process attributes manipulated.

Definition 1 (Events). Let A be the set of process activities. Let T ⊂ N be the set of
possible timestamps. Let R be the set of possible resources. Let V be the set of process
attributes. LetWV be a function that assigns a domainWV(x) to each process attribute
x ∈ V . LetW = ∪x∈VWV(x). An event is a tuple (a, t, r, v) ∈ A × T ×R × (V /→ W)
where a is the event activity, t the timestamp associated to the event, r the resource
that performs it, and v is a partial function assigning values to process attributes with
v(x) ∈WV(x).1

A trace is a sequence of events. When attributes are given the same assignment the same
event can occur in different traces. Since full traces can also appear multiple time, we
define an event log with a function that assigns unique trace identifiers to traces.

Definition 2 (Traces & Event Logs). Let E = A × T ×R × (V /→W) be the universe
of events. Let I be the universe of the case identifiers. Let a trace σ be a sequence of
events, i.e. σ ∈ E∗. An event-log L is here modeled as a function that, given an identifier
id of a log trace, returns the sequence of events related to the process instance with the
identifier id, i.e. L ∶ I → E∗.

Given an event e = (a, t, r, v), we use the following shortcuts: act(e) = a, time(e) = t,
res(e) = r and var(e) = v. Given a trace σ = ⟨e1, . . . , en⟩, prefix(σ) denotes the set
of all prefixes of σ, including σ: prefix(σ)={⟨⟩, ⟨e1⟩ , ⟨e1, e2⟩ , . . . , ⟨e1, . . . , en⟩}.

In developing our technique, it is imperative to delineate the goal of our recommen-
dation. We focus on minimizing the remaining time of a trace. It can be defined as a
function over a given trace ⟨e1, . . . , en⟩ = σ ∈ E∗ and a timestamp t ∈ N that returns the
difference between the last timestamp related to σ, and the given timestamp t. We use
the notationRtime(σ, t) = time(en)− t in the remainder. Note that the remaining time
is assumed to be computed a posteriori when the execution is completed and leaves a
complete trail of the timestamps for a certain trace σ.

Hereafter, we assume that the technique provides recommendations in a fixed times-
tamp tsys for traces σ′ that are not considered as completed at that timestamp, i.e.
running traces. With an abuse of notation, we indicate Rtime(σ′, tsys) = Rtime(σ′),
namely the remaining time value for the running trace σ′, given the timestamp tsys
in which the recommendation is delivered. This is to simplify notation by assuming
that the recommendations are provided for the (running) traces of a log as in a real-life
deployment in an organisation.

To understand which cases are risky and need recommendations, we first want to un-
derstand which running process instances are leading to a high remaining time. Towards
this goal, we define the Ranking function that takes as input an event log L ∶ I → E∗,

1 A timestamp could, e.g., be represented as UNIX epoch.

Experience-Based Resource Allocation for Remaining Time Optimization 5

Fig. 1: Overview of the proposed approach.

consisting of running traces, and generates an output sequence of trace indices, i.e., a
ranking, in descending order based on the remaining execution time.

Definition 3 (Ranking function). Let I be the universe of case identifiers. Let E∗ the
possible traces and L ∶ I → E∗ an associated event log. Let Rtime ∶ E∗ × N → N
the corresponding remaining time function. The Ranking function Rank ∶ F (I,E∗) →
(I ×N)∗, given an event log with ∣I ∣ = n identifiers, returns a list of pairs

{(id1,Rtime(L(id1)), . . . , (idn,Rtime(L(idn)))}

sorted decreasing byRtime.2

To lighten the notation, we refer to (idi,Rtime(L(idi)) as (idi,Rtime(idi)). Indeed,
we can generate such ranking by applying the remaining time function to every, still
running, trace of the event log.

4 An Approach for Experience Based Resource Allocation

We introduce a technique to recommend resources which activity to perform next and
on which running trace while taking into account their experience and the overall work-
load distribution. As motivated earlier, always allocating the most experienced resource
for each process instance without considering the workload distribution and the chang-
ing experience of resources in performing tasks leads to more frequently allocating
work to already experienced resources. Such uneven and unfair distribution of work
has two harmful consequences. In the short term, the most experienced resources are
overloaded, increasing the queue of tasks they have to perform and leaving other re-
sources idle. In the long run, it may induce a vicious circle: already experienced re-
sources will further improve their skills and be faster in performing tasks but risk being
overloadedMeanwhile, the less utilized resources fail to gain experience and will not be
recommended by the system in the future since they are considered not competitive.

Our work’s principal aim is to enhance the efficiency of overall system efficiency by
proposing suitable activities and resources to reduce the aggregate remaining time of the
(running) traces. Figure 1 depicts our approach. First, we get a ranking of traces based

2 F (I,E∗) is the space of the functions from the set of identifiers I to the set of traces E∗.

6 Padella et. al

on the Ranking Function obtained from an event log. Then, using an Oracle function
learned from the resource experience encoded in the event log, we derive an initial Rec-
ommendation Profile taking into account the ranking. This provides a possible activity
and resource allocation for each running trace. To balance the allocation, we define a
time-workload coefficient and use it to generate a sequence of increasingly better pro-
files respecting all the desired aspects. Finally, a recommendation based on the best
generated Recommendation Profiles is provided.

To realize such a system, we first define the Task Duration function, which predicts
the time a given resource needs to accomplish a certain task in a given process state.

Definition 4 (Task Duration Function). Let A be the set of process activities. Let R
be the set of the possible resources. Let L ∶ I → E∗ be an event log defined over
a set I of identifiers. The Task Duration function λ ∶ I × A × R × N → N returns
a value λ(id, a, r, t), representing the amount of time units needed by the resource r
for executing the activity a as next, for the trace L(id) = ⟨e1, . . . , ei⟩, starting at the
timestamp time(ei) + t.

We omit a, id, and r from λ(id, a, r, t) and use λt when they are clear from context.
Given a suitable Task Duration function λ, we can vary the input value t to see how

the output values of the function change based on the experience gained throughout
the whole process. Using this function as a starting point, it is possible to define the
Experience Based Oracle on which the system is based. This function returns the
remaining time for a running trace given the next activities and resources along with
the expected execution times of the resources for the associated task at different future
time units. In fact, varying the input t of the function λ, in a set of p future timestamps,
provides an overview of the different execution times in the different timestamps. This
results in a curve representing how the given resource will improve/worsen its efficiency
during the time, resulting in mapping the experience that they gain.

Definition 5 (Experience Based Oracle). Let E be the universe of events and σ ∈ E∗
a (running) trace belonging to it, A the set of possible activities, R the set of the
available resources. Let I be the set of trace identifiers. Let Rtime ∶ E∗ × N → N
the remaining time function, and λ ∶ I × A × R × N → N the Task Duration func-
tion. The Experience Based Oracle is a function ψ ∶ I → 2(A×R×N×N

p) such that
ψ(id) returns {(a1, r1, rtime 1, λ⃗1), . . . , (am, rm, rtime m, λ⃗m)} with m ≤ ∣R∣, indi-
cating that activity ai is recommended and, if performed by ri, will lead to a total
remaining time rtime i = Rtime(idi) for the input trace, and the resource ri will take
λ⃗i = (λ(id, ai, ri, ti1), . . . , λ(id, ai, ri, tip)) time units for performing the activity ai
starting in p different timestamps. Also, ∀i, j ∈ {1, . . . ,m} , ri = rj ⇐⇒ i = j,
meaning that a resource can only be recommended once.

Table 1 provides an illustrative example of the output generated by the Experience
Based Oracle ψ on a running trace. As shown, if the organization were to follow the
recommendation in the second row, which allocates resource User 56 to perform
O Returned, then the remaining time is 45 days. Additionally, considering the ex-
perience of the resource the projected execution times for the allocated task is 5 days

Experience-Based Resource Allocation for Remaining Time Optimization 7

Table 1: Example of output of the Experience-Based Oracle (ψ) for a specific trace
identifier. In the first 3 columns, activities, resource and remaining times are shown.
The rightmost three columns indicate the execution times for the given resources to
perform the associated activity if starting it in 24, 120 and 480 hours, respectively.

Activity Resource Rtime λ24 λ120 λ480

O Returned User 119 38d 2d 3h 2d 2d
O Returned User 56 45d 5d 2h 5d 2h 3d 5h
A Submitted User 1 46d 5d 6h 4d 4h 4d 2h
O Create Offer User 13 48d 12d 2h 12d 2h 10d 5h

and 2 hours if the recommendation is initiated within 24 or 120 hours after the time tsys
in which the system is and 3 days and 5 hours if commenced after 480 hours after it.

Such Experience Based Oracle Function ψ has been implemented in several ways,
(cf. Section 2), but none of the algorithms has integrated it with the Task Duration
Function. We opted to use the prescriptive-analytics proposal discussed in [23], by ex-
panding it to incorporate the λ function. This approach employs a Transition System
to propose alternatives for the subsequent activity recommendation, ensuring that the
suggested activities are coherent and feasible.

The Experience Based Oracle function provides an overview of the possible recom-
mendations for a given trace. However, our approach aims to provide recommendations
that consider both the state of the system and how it will evolve, and not the single dis-
tinct traces. To take into account all of these aspects, the Profile concept in [22] has been
extended, incorporating the execution time values from the function λ and generating it
with a different algorithm. This results in the definition of Recommendation Profile.

Definition 6 (Recommendation Profile). Let I the set of trace identifiers, A the set
of activities, R the set of resources, Rtime the remaining time function and λ ∶ I ×
A ×R × N → N the Task Duration function. A Recommendation Profile is a set P ⊂
(I × A × R × N × Np) defined as a set of tuples (id, a, r, rtime, λ⃗), in which every
running instance corresponding to the case identifier id is recommended to be assigned
to a resource r and to perform the activity a, leading to a remaining time of rtime.
Furthermore, the recommendations are associated with p execution times if starting in
different timestamps after the last event, represented by the values in λ⃗ ∈ Np.

The definition of a Recommendation Profile encompasses all the aspects addressed in
this paper. In fact, the first part ef each vector (id, a, r, rtime) includes recommenda-
tions associated with corresponding remaining times if the recommendation is followed,
while the last p elements of each tuple report the expected time for the resources to com-
plete the corresponding task starting in different time units after the last event occurred.

4.1 Profiles Generation

The generation of a Recommendation Profile Pinput starts with an event log L ∶ I → E∗
defined on a set of n trace identifiers in I. Initially, the Ranking Function Rank ∶

8 Padella et. al

Fig. 2: Profile generation procedure. On the top left corner, a tabular example of the
output of Rank(L). Then, for the first two trace identifiers, ψ is evaluated. From the
respective outputs, the element with the lowestRtime is added to the Profile Pinput.

F (I,E∗) → I × E∗, defined in Section 3, is first applied to the log, obtaining the
output {(id1,Rtime 1), . . . , (idn,Rtime n)}, then, for every element (idi,Rtime i) ∈
Rank(L), 3 steps are iterated:

1. The Experience Based Oracle ψ is applied, resulting in

ψ(idi) = {(ai1, ri1,Rtime i1, λ⃗i1), . . . , (aim, rim,Rtime im, λ⃗im)}.

2. From the output of the ψ, the k̂ − th element (aik̂, rik̂,Rtime ik̂, λ⃗ik̂) with k̂ such
thatRtime ik̂ =mink=1,...,m({Rtimeik}) is picked.

3. Then, the element (idi, aik̂, rik̂,Rtime ik̂, λ⃗ik̂) is added to the profile Pinput.

This procedure allows the generation of a Recommendation Profile that optimises only
the remaining time, not considering other aspects like the workload distribution or
the experience that resources gain. The example in Figure 2 depicts the creation of a
Recommendation Profile Pinput. On the top left, the output of the Ranking Function
Rank is depicted: it associates the first 3 running traces identifiers App 34, App 12
and App 36 to their respective remaining time values 289d, 331d and 410d, sorted
descending. Then, for the first trace identifier App 34, the function ψ(App 34) is eval-
uated, resulting in output with multiple resources and activities, with the vector λ⃗ =
(λ24, λ48, λ72) containing the execution times if executing the activity in 24, 48 or
72 hours. From this, the tuple (O Returned,User 119,38d,2d 3h,2d,2d 1h) is cho-
sen because it is the one that leads to the lowest value of Rtime. Finally, the tuple
(App 34,O Returned,User 119,38d,2d3h,2d,2d 1h) is added to the Profile. The
same procedure is iterated with the other trace identifier values of Rank(L).

This method associates the most experienced resources with their best activity, with
running traces leading to the lowest remaining times. The first profile starts with the
values obtained from the Ranking function’s output. However, it only aims to optimise
the remaining time without considering the distribution of work among the resources.
To enhance this allocation with considering the workload distribution, we define the
Time-Workload CoefficientW of a profile:

W(P) = C1 ∗ mean
i=1,...,n

(Rtime i) +C2 ∗ mean
j=1,...,p

(std
i=1,...,n

(λ⃗ij)) +C3 ∗ (1 − #res
∣R∣)

Experience-Based Resource Allocation for Remaining Time Optimization 9

This coefficient allows us to evaluate the quality of a Recommendation Profile under
both short-term efficiency and workload perspectives. The coefficient assessing a pro-
file is partitioned into three terms each weighted by a corresponding Ci coefficient to
facilitate an equal contribution of all three components. The first term computes the
mean of the remaining timesRtime i in the Recommendation Profile. The second term
considers all the standard deviations given an expected time j and takes the average of
them. This value represents the average standard deviation of the execution times of the
resources. The third term denotes the count of inactive resources within the profile.

We use the standard deviation here since it indicates how much the values of the
vector spread from the mean. In our case, low values represent that the time required
for resources to complete the task is consistent and not widely dispersed from the av-
erage time. The count of inactive resources is considered to prevent scenarios where
only a few resources are recommended. It is noteworthy that a lower Time-Workload
coefficient value indicates a more desirable Recommendation Profile. Specifically, our
objective is to minimize the remaining time, maintaining a low standard deviation in
resource workload distribution while having a limited number of inactive resources.

4.2 Generation of Profiles Sequence

Starting from the single generated Recommendation Profile, we aim to generate a se-
quence S of optimal Recommendation Profiles with regard to the just defined time-
workload coefficient. Then, the recommendation for resource-task allocation is pro-
vided from these optimal profiles with a minimal time-workload coefficient.

Given a starting profile Pinput, and a sequence of Recommendation Profiles ini-
tialized as S = {(Pinput,W(Pinput))}, we use the following procedure to generate
multiple optimal recommendation profiles:

1. For the profile Pinput the Time-Workload coefficientW(Pinput) is evaluated.
2. A random number k ∈ {1, . . . , n} is extracted.
3. For the k − th element (idk, ak, rk,Rtime k, λ⃗k) of the profile Pinput, the Experi-

ence Based Oracle ψ(idk) = is evaluated.
4. From the output

ψ(idk) = {(ak1, rk1,Rtime k1, λ⃗k1), . . . , (akm, rkm,Rtime km,
⃗λkm)},

a random element at index k̂ ∈ {1, . . . ,m} is extracted.
5. A new profile Poutput is created:

Poutput = Pinput∪{(idk, akk̂, rkk̂,Rtime kk̂, λ⃗kk̂)}∖{(idk, ak, rk,Rtime k, λ⃗k)}.

6. ThenW(Poutput) is evaluated and S = S ∪ {(Poutput,W(Poutput))} updated.
7. Then, S is sorted increasing by the values of Time-Workload Coefficient W of

every Recommendation Profile.
8. Finally, the procedure is repeated using as input the profile with the lower Time-

Workload coefficient between Pinput and Poutput.
9. The procedure stops after n iterations in whichW(Pinput) ≤W(Poutput).3

3 In our implementation, n is set equal to 200.

10 Padella et. al

Fig. 3: Generation of Recommendations Profiles. The input Recommendation Profile
Pinput is in the top-left corner. The element with id = App 34 is randomly picked, and
the associated output of ψ is represented below. From it, a random element is drawn,
and a new Recommendation Profile Poutput is generated, replacing the value with id =
App 34 with them. Finally, the S is updated, and the procedure is iterated.

An example of the procedure is depicted in Figure 3. The profile Pinput is initially
taken as input, then, the 2nd element (App 12,O Sent,User 17,23d,14h,14h,12h)
is randomly drawn and for the corresponding trace identifier App 12 the Experience
Based Oracle ψ(App 34) is evaluated. Thereafter, the third element of the output of
ψ(App 34), i.e. (A V alidating,User 2,32d,7h,12h,13h), is randomly picked to
generate the profile Poutput replacing the values of the previous one. Finally, Poutput

is added to the sequence S, and the profile with the lower value of the Time-Workload
Coefficient is used as input for another iteration of the same process.

4.3 Recommendation of Activity-Resource Pairs

Often, due to the possible organizational constraints, it is desirable not directly to pick
the best profile but to return the top-k profiles from the sequence S. Therefore, for every
active trace in the set I, the system proposes k alternatives for each trace identifier idi in
the set I. We build a recommendation set Sidi = {(aidi 1, ridi 1), . . . , (aidi k, ridi k)},
with k different recommendation pairs. The initial profile P0 ∈ S initiates the first pair
in the recommendation sequence. Specifically, the elements of the first pair of every
Sid i, i.e. (aidi 1, ridi 1), are the activity ai and the resource ri from the corresponding
element in P0, i.e. (idi, ai, ri,Rtimei , λ⃗i) ∈ P0.

Then, for every profile Pj ∈ S , if the pair (ai, ri) in the element with identifier
idi, i.e. (idi, ai, ri,Rtime i, λ⃗i) ∈ Pj is not in Sidi , it is added to the profile, if not,
the j + 1-th element is checked, till the set of Sidi has k elements. This procedure
enables the recommendation of the best k pairs of activity and resource belonging to
the Recommendation Profiles with the best Time-Workload coefficient.

The procedure starts by ranking traces in descending order of remaining time. Sub-
sequently, it involves the utilization of functions λ and ψ to generate an initial recom-
mendation profile Pinput. Subsequently, additional profiles are generated through an
algorithm aimed at consistently improving profiles and minimizing the Time-Workload

Experience-Based Resource Allocation for Remaining Time Optimization 11

CoefficientW . Ultimately, for a given trace identifier, k distinct activity-resource pairs
are allocated from the profile with the lowestW .

5 Evaluation

We evaluate the efficacy of our approach in achieving a balanced resource allocation
while improving process performance and compare it to a state-of-the-art benchmark
system. In the benchmark system recommendations do not consider the resource expe-
rience, i.e., recommendations are solely based on assigning the most suitable activity to
the most proficient resource without balancing resource utilization.

To evaluate the recommendations provided, we compare execution times obtained
via simulations of the process and those times measured in the reality. Specifically,
we leverage a Business Process Simulation (BPS) approach [8] to simulate process in-
stances in which our recommendations are implemented and compare those with con-
tinuations of the traces in reality, i.e., from the event log.

5.1 Processes and Datasets

The approach has been evaluated with two different processes for which we could obtain
suitable event logs with rich information on the resource perspective: Bank Account
Closure (BAC), a process of an Italian bank institution that deals with the closures of
bank accounts; BPIC17AO, the subprocess for the application-relevant (A) and offer-
relevant activities (O) in the 2017 BPI Challenge event data, a log of a loan application
process from a Dutch financial institution.

Adams et al. [2] found a concept-drift in the BPIC17AO event log: an increase in
the workload of resources at week 22 led to a decrease in the service times at week
28 [2]. Since, our approach assumes a process log without concept drift we parti-
tioned the BPIC17AO event log into two sublogs: one containing traces before week 22,
namely BPIC17AO-before, and the other containing those after the 28th week, namely
BPIC17AO-after. This allows us to experiment across three distinct datasets.

5.2 Experimental Setup

The approach has been implemented in Python using Catboost [25] for training the
oracle and task duration functions.4 The traces were encoded using the same procedure
described in [23], with the time units required by the specified resource as the dependent
variable, thereby formulating an equivalent regression problem. In line with common
supervised learning practice, we divided the event log L extracting a training and a test
event log, Lcomp and Lrun, respectively. To extract the training log we compute the
earliest time tsplit such that 70% of the identifiers related to traces of L are completed.
This allows us to define Lcomp as the set of traces of L completed at time tsplit, and
consequently, defineLrun asL∖Lcomp. The traces of test logLrun are truncated to a set
Ltrunc, namely the set of prefixes, that is obtained from Lrun by removing every event

4 https://github.com/Pado123/rbranch

12 Padella et. al

with a timestamp larger than tsplit: Ltrunc only contains the events occurred before
time tsplit. This procedure tries to mimic the reality at time tsplit and was used in [23].

The Task Duration Function, and consequently the whole system, was trained on
Lcomp, employing cross-validation for the tuning of the hyper-parameters.

We use Ltrunc for generating the set of recommendations to be evaluated. Without
access to the process for an A/B test, and since Lrun does not consider the recommen-
dation, we leverage a BPS model emulate the effect of recommendations to some of the
system behavior that needs to be considered for a fair and accurate evaluation.

We implemented a simulator5 based on a Petri net model of the process and a set of
simulation parameters computed through analysis on the original event log:

Control-flow perspective. The Petri net models were discovered using the Inductive
Miner, and later manually altered to increase the fitness.

Resource perspective. We identified the pool of resources grouping them into roles,
and then, we determined the activities associated with each roles, leveraging on the
technique proposed by Burattin et al. in [6].

Working calendars. We assigned the roles working schedules by analyzing the daily
hours and the weekly days in which each role performs some activity.

Inter-arrival time. We computed the inter-arrival times between process executions,
i.e., the differences between the start timestamps of two subsequent traces. Then,
comparing with various probability distributions, we find the most suitable distri-
bution, retaining the one that minimizes the Earth Mover Distance metric [8].

Activity-duration distributions. For each process’ activity and allowed resource, we
used the event log to determine the best fitting distribution of the activity durations.

Branching probabilities. Employing the technique proposed by de Leoni et al. [20],
we computed transition weights used for determining the likelihood of executing
an activity at a process state.

By focusing on different process perspectives (resource, temporal and control flow), we
aim to obtain accurate and sufficiently precise simulations for fair evaluation.

The simulator is initialized by setting the resource work queues at time tsplit as
observed for the process in the event log, to mimic the actual state at timestamp tsplit.
In particular, the simulation model was used for each trace σ ∈ Ltrunc to evaluate the
effect of the recommendation. The trace σ was replayed on the simulation model, so
as to take the process state (namely the marking) to that after σ: for the reached state,
the recommendation was made occur in the simulation model and hence replayed, and
then the continuation till the final state was simulated for a statistically significant and
sufficient number of times. As mentioned in Section 4, the potential activity recommen-
dations were ranked, and the highest ranked recommendation allowed by the simulation
model was made occur. In fact, the system might potentially - although seldom - rec-
ommend to perform an activity that does not make sense in reality (at least as far as the
simulation model goes). Even if very rarely, it might be the case that no recommenda-
tion is allowed by the simulation model: in this case, no recommendation was followed
by the process’ running instance under analysis.

5 https://github.com/franvinci/RecsSysBPSEvaluator

Experience-Based Resource Allocation for Remaining Time Optimization 13

As mentioned above, we decide to maximize the fitness to minimize the chances for
a recommendation not to be replayable by the model. In fact, the Petri-net models for
the BPIC17AO-before and BPIC17AO-after process, which are identical (the concept
drift refers to the resource and time perspectives), reach a score of 0.88 in fitness, where
the BAC process Petri net model has even a fitness of 0.96. Of course, fitness and pre-
cision are oftentimes contrasting: indeed, precision was 0.61 and 0.84. This however
poses very limited consequences on the simulation-model accuracy, because the infre-
quent branches, which cause a precision reduction, would also be associated with low
probabilities of occurring, proportionally to the frequency.

Ultimately, we conducted simulations of process instances incorporating these rec-
ommendations, resulting in individual process traces for each prefix, obtaining a set of
simulated traces Lsim. Subsequently, we compared the performance metrics derived
from these simulations with those obtained from real-world measurements.

5.3 Experimental Results

Given the set of test prefixes Ltrunc at the split time tsplit, we computed the time
required to conclude each prefix p ∈ Ltrunc using simulations. In fact, our recommen-
dations can only influence events occurring after tsplit. Hereafter, we define the trace
obtained via simulation from the prefix p ∈ Ltrunc as σsim

p ∈ Lsim, while the trace ob-
served in reality as σreal

p ∈ Lrun. We computed the remaining timeRtime(σsim
p , tsplit),

as defined in Section 3, and we compare it with Rtime(σreal
p , tsplit) for each pre-

fix p ∈ Ltrunc. Particularly, the comparison is based on the difference between the
values observed in reality and those obtained via simulation for each prefix p, i.e.
Rtime(σreal

p , tsplit) −Rtime(σsim
p , tsplit). Therefore, positive values in these compar-

isons indicate the improvement due to adopting recommendations, in fact our goal is
to minimize the remaining time. Finally, the evaluation is based on the global improve-
ment computed as the sum of improvements for each test trace in terms of time units,
i.e. ∑p∈Ltrunc (Rtime(σreal

p , tsplit) −Rtime(σsim
p , tsplit)).

We also assess the relative improvement wrt. the remaining time observed in the
test log is computed as the ratio between the total improvement and the sum of the
remaining times observed in reality.

To address the stochasticity inherent in simulations, we conducted simulations ten
times for each of the three processes. Table 2 shows the final results. The reported val-
ues represent the average results obtained across each simulation, with their respective
standard deviations in the parenthesis.

Table 2 also reports on the percentage of feasible recommendations within the sim-
ulation model, as discussed in Section 5.2. We compare the results obtained by our tech-
nique, labelled as Workload Distribution, with those obtained by a benchmark method,
labelled as Benchmark, where recommendations are assigning the most suitable activity
to the most proficient resource, without regarding for balanced resource utilization.

The results show that our approach leads to better performance, decreasing the re-
maining time to complete a trace with respect to what happened in the reality. We out-
perform the benchmark in 2 out of 3 cases and results show that always assigning tasks
to the best performing resource can result in long queues and increased remaining times.

14 Padella et. al

Dataset Method Tot. Impr. Relative Tot. Impr. Feasible Recs

BAC
Workload Dist.

5028.96 h

(1150.18 h)
0.07

(0.02) 95.63%

Benchmark
2156.77 h

(2236.04 h)
0.03

(0.04) 96.03%

BPIC17AO-before
Workload Dist.

123050.14 h

(5841.34 h)
0.36

(0.02) 95.69%

Benchmark
111754.49 h

(4117.23 h)
0.33

(0.01) 81.43%

BPIC17AO-after
Workload Dist.

20568.03 h

(5058.91 h)
0.06

(0.01) 90.71%

Benchmark
82575.09 h

(6317.67 h)
0.24

(0.02) 72.55%

Table 2: Total improvement (in hours) and relative total improvement averaged over
ten simulations comparing our approach (Workload Distribution) to the benchmark ap-
proach (Benchmark). The standard deviation is reported in parenthesis and the percent-
age of feasible recommendations for the simulation is shown in the last column.

In the BPIC17AO-after dataset, our recommendation system shows less improve-
ment compared to the benchmark. The variation in outcomes compared to BPIC17AO-
before is probably due to the concept-drift, since a difference in the workload of re-
sources has been observed [2]. However, our method provides more suitable recom-
mendations, showing an higher percentage of feasible recommendations compared to
those obtained from the benchmark one. In fact, recommending the most efficient ac-
tivity performed by the most efficient resource can lead to recommendations that might
be optimal, but not feasible in practice: e.g. a resource may not execute some task, or
an activity may not be performed in a certain process state.

Figures 4 show the rolling average standard deviation of cumulative resources work-
ing times (in hours), i.e. the time spent performing tasks. Lower values indicate a better
balancing in resource allocation. In fact, a low value means that the deviation from the
mean for the resource working times are similar, and hence, the resources have similar
working times. The results align with our goal to achieve a better balance in the re-
source utilization. Moreover, while our approach shows a relatively lower improvement
for the BPIC17AO-after dataset compared to the benchmark, Figure 4c reveals that
using our recommendations leads to enhanced balance and stable resource utilization.
BPIC17AO datasets show a constant standard deviation of cumulative working hours
across resources per timestamp, indicating no alterations in resource utilization during
that time frame. However, we can notice higher values for the BPIC17AO-after dataset
attributed to the workload of resources concept drift [2]. Moreover, shifts observed at
the time split using recommendations are due to the sudden changes in them.

Table 3 presents the average coefficient of variation for each activity based on how
many times each resource executed it. The coefficient of variation was selected to en-
sure comparability across different logs, as using the standard deviation would be in-
fluenced by the differing number of traces. The findings clearly indicate that the bench-
mark approach improves workload distribution by balancing the frequency with which
a resource executes specific tasks.

Experience-Based Resource Allocation for Remaining Time Optimization 15

(a) BAC dataset.

(b) BPIC17AO-before dataset. (c) BPIC17AO-after dataset.

Fig. 4: Rolling average standard deviation of cumulative resource working times (hours)
over ten simulations. Lower values indicate a better balancing in the resource utilization.

Case Study Reality Benchmark Workload Distribution
BAC 1.31 0.50 0.43

BPIC17AO-before 1.72 0.57 0.45
BPIC17AO-after 1.72 0.51 0.45

Table 3: Average coefficient of variation computed for each activity based on how many
times the different resources execute that activity. Lower values indicate a more bal-
anced workload distribution among resources.

6 Conclusion

Recommending the next activity and the best-fitting resource for a running process
instance to reduce the remaining time until completion is a core task in prescriptive
process analytics. The approach proposed in this paper focuses on improving the re-
maining time and takes into account resources’ experience and workload when recom-
mending a suitable resource allocation for cases in which an intervention is required.
Compared to a benchmark approach, which only allocates resource based on predicted
performance, our experiments on event data from two real-life processes on simulation
models indicate that the proposed approach leads to a more balanced workload that typ-
ically translate to a lower overall remaining time. Beyond an overall improvement of the
performance indicator, our work can also be seen through the lens of fairness towards
individual resources. Resources should be neither overloaded nor never chosen. Tasks

16 Padella et. al

are allocated tasks based on the idea to reduce the standard deviation of time it takes any
resource to perform and activity and distributing workload. Future work could explore
applying the proposed approach using other performance indicators, such as total cost.

As most work on prescriptive process analysis, we could not use an A/B test for our
evaluation. This limits the validity of our results based on the accuracy of the simulation
model. In the future, we envision to use the top-k recommendations as a catalogue of
tasks to choose as next for the resources leaving them the autonomy to select tasks as
in [22] while being still optimized with respect to resource experience and workload dis-
tribution, accommodating organizational flexibility and efficiency in task assignment.

Acknowledgements. A large share of this work was conducted during a visit of Mr.
Padella at TU/e, which was partly supported by EU through the Erasmus-Mundus
BDMA program. The work of Dr. Mannhardt was partially supported by Smart Journey
Mining, a project funded by the Research Council of Norway (grant no. 312198).

References

1. van der Aalst, W.M.P.: Responsible data science: Using event data in a “people friendly”
manner. In: 18th International Conference on Enterprise Information Systems, ICEIS 2016,
Proceedings (2016)

2. Adams, J.N., van Zelst, S.J., Quack, L., Hausmann, K., van der Aalst, W.M.P., Rose, T.: A
framework for explainable concept drift detection in process mining. In: 19th International
Conference on Business Process Management, BPM 2021, Proceedings (2021)

3. Arias, M., Munoz-Gama, J., Sepúlveda, M.: Towards a taxonomy of human resource allo-
cation criteria. In: 16th International Conference on Business Process Management, BPM
2018, Proceedings (2018)

4. Arias, M., Rojas, E., Munoz-Gama, J., Sepúlveda, M.: A framework for recommending re-
source allocation based on process mining. In: 13th International Conference on Business
Process Management, BPM 2015, Proceedings (2015)

5. Bidar, R., ter Hofstede, A., Sindhgatta, R., Ouyang, C.: Preference-based resource and task
allocation in business process automation. In: On the Move to Meaningful Internet Systems:
OTM 2019 Conferences, Proceedings (2019)

6. Burattin, A., Sperduti, A., Veluscek, M.: Business models enhancement through discovery of
roles. In: 2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM),
Proceedings (2013)

7. Cabanillas, C., Garcı́a, J., Resinas, M., Ruiz, D., Mendling, J., Ruiz-Cortés, A.: Priority-
based human resource allocation in business processes. Service-Oriented Computing (2013)

8. Chapela-Campa, D., Benchekroun, I., Baron, O., Dumas, M., Krass, D., Senderovich, A.:
Can i trust my simulation model? measuring the quality of business process simulation mod-
els. In: 21th International Conference on Business Process Management, BPM 2023, Pro-
ceedings (2023)

9. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.: Fundamentals of business process man-
agement. Springer (2018)

10. Erasmus, J., Vanderfeesten, I., Traganos, K., Jie-A-Looi, X., Kleingeld, A., Grefen, P.: A
method to enable ability-based human resource allocation in business process management
systems. In: The Practice of Enterprise Modeling (POEM), Proceedings (2018)

11. Goel, K., Fehrer, T., Röglinger, M., Wynn, M.T.: Not here, but there: Human resource alloca-
tion patterns. In: 21th Business Process Management Conference, BPM 2023, Proceedings
(2023)

Experience-Based Resource Allocation for Remaining Time Optimization 17

12. Huang, Z., Lu, X., Duan, H.: Mining association rules to support resource allocation in busi-
ness process management. Expert Systems with Applications 38 (2011)

13. Huang, Z., Lu, X., Duan, H.: Resource behavior measure and application in business process
management. Expert Systems with Applications 39 (2012)

14. Ihde, S., Pufahl, L., Völker, M., Goel, A., Weske, M.: A framework for modeling and exe-
cuting task-specific resource allocations in business processes. Computing 104 (2022)

15. Kabicher-Fuchs, S., Mangler, J., Rinderle-Ma, S.: Experience breeding in process-aware in-
formation systems. In: 25th International Conference in Advanced Information Systems En-
gineering, CAiSE 2013 (2013)

16. Kabicher-Fuchs, S., Rinderle-Ma, S.: Work experience in pais – concepts, measurements and
potentials. In: 24th International Conference in Advanced Information Systems Engineering,
CAiSE 2012, Proceedings (2012)

17. Kim, J., Comuzzi, M., Dumas, M., Maggi, F.M., Teinemaa, I.: Encoding resource experience
for predictive process monitoring. Decision Support Systems 153 (2022)

18. Kubrak, K., Milani, F., Nolte, A., Dumas, M.: Prescriptive process monitoring: Quo vadis?
PeerJ Computer Science (2022)

19. Kumar, A., Dijkman, R., Song, M.: Optimal resource assignment in workflows for maximiz-
ing cooperation. In: 11th International Conference on Business Process Management, BPM
2013, Proceedings (2013)

20. de Leoni, M., Vinci, F., Leemans, S.J.J., Mannhardt, F.: Investigating the influence of data-
aware process states on activity probabilities in simulation models: Does accuracy improve?
In: 21th International Conference on Business Process Management, BPM 2023, Proceed-
ings (2023)

21. Ly, L.T., Rinderle, S., Dadam, P., Reichert, M.: Mining staff assignment rules from event-
based data. In: 3rd International Conference on Business Process Management, BPM 2005
Workshops, Proceedings (2005)

22. Padella, A., de Leoni, M.: Resource allocation in recommender systems for global kpi im-
provement. In: 21th International Conference on Business Process Management, BPM 2023,
Proceedings (2023)

23. Padella, A., de Leoni, M., Dogan, O., Galanti, R.: Explainable process prescriptive analytics.
In: 4th International Conference on Process Mining, ICPM 2022 (2022)

24. Pika, A., Leyer, M., Wynn, M.T., Fidge, C.J., ter Hofstede, A.H.M., van der Aalst, W.M.P.:
Mining resource profiles from event logs. ACM Transactions on Management Information
Systems (2017)

25. Prokhorenkova, L.O., Gusev, G., Vorobev, A., Dorogush, A.V., Gulin, A.: Catboost: unbiased
boosting with categorical features. In: NeurIPS (2018)

26. Pufahl, L., Ihde, S., Stiehle, F., Weske, M., Weber, I.: Automatic resource allocation in busi-
ness processes: A systematic literature survey. ArXiv (2021)

27. Reijers, H.A., Mansar, S.L.: Best practices in business process redesign: an overview and
qualitative evaluation of successful redesign heuristics. Omega 33(4) (2005)

28. Shoush, M., Dumas, M.: When to intervene? prescriptive process monitoring under uncer-
tainty and resource constraints. In: 20th International Conference on Business Process Man-
agement, BPM 2022, Proceedings (2022)

29. Vanderfeesten, I.T.P., Grefen, P.: Advanced dynamic role resolution in business processes.
In: 27th Conference on Advanced Information Systems Engineering (CAiSE) Workshops,
Proceedings (2015)

30. Zhao, W., Pu, S., Jiang, D.: A human resource allocation method for business processes using
team faultlines. Applied Intelligence (2020)

31. Zhao, W., Yang, L., Liu, H., Wu, R.: The optimization of resource allocation based on process
mining. In: Advanced Intelligent Computing Theories and Applications (2015)

