
Resource Allocation in Recommender Systems for
Global KPI Improvement

Alessandro Padella and Massimiliano de Leoni

University of Padua, Padua, Italy
alessandro.padella@phd.unipd.it

deleoni@math.unipd.it

Abstract. Process-aware Recommender systems are information systems de-
signed to monitor the execution of processes, predict their outcomes, and suggest
effective interventions to achieve better results, with respect to reference KPIs
(Key Performance Indicators). Interventions typically consist of suggesting an
activity to be assigned to a certain resource. State of the art typically proposes
interventions for single cases in isolation. However, since resources are shared
among cases, this might impact the effectiveness of the available interventions
for other cases that would require one. As result, the overall KPI improvement
is partially hampered. This paper proposes an approach to assign resources to
needed cases, aiming to improve the overall KPI values for all cases together,
namely the summation of KPI values for all cases. Experiments conducted on
two real-life case studies illustrate that globally considering all needing cases to-
gether allows a better global KPI improvement, compared with a more greedy
approach where interventions are proposed one after the other.

Keywords: Process Improvement · Process Prescriptive Analytics · Recommender
Systems · Resource Allocation · Resource Experience

1 Introduction

Process-aware Recommender Systems are a class of information system that aims to
monitor whether executions are predicting to achieve the expected goals, and, whenever
this is not the case, they propose interventions to try to take those executions back on
track. In literature interventions are typically based on advising what activity to perform
as next, possibly paired with a suggestion of the resource that will carry it out (see
Section 2).

However, resources are shared among all running process instances, a.k.a. cases, and
typically they can carry on one activity a time. As a result, if the interventions (activity
and resource) are determined for each instance without considering the other instances
that also require intervention, the overall effectiveness, namely for all instances that
require interventions, is limited. For instance, if one process instance P1 is assigned a
resource R1, R1 cannot work a different instance P2 that requires intervention. It might
be the case that it is more beneficial to assign a different resource R2 to P1, because
R2 can work almost as good for P1, and let R1 work on P2, for which no resource
exists that is almost equally good. This consideration illustrates how the decision of the
interventions is a global decision for all running cases.

2 Alessandro Padella and Massimiliano de Leoni

Section 2 reports how literature does not propose approaches for resource alloca-
tions to cases with the aim of improving the whole set of process instances. This paper
proposes an approach to overtake this limitation. In our paper, the achievement of the
goal is measured through a measurable Key Performance Indicator (KPI): cases associ-
ated with values outside the acceptable range are considered worth of an intervention.
The problem that we tackle is clearly an optimization problem: given the likely process’
scenario of hundreds of resources and running cases, an exact solution is practically
unfeasible. We thus propose two greedy approaches, one faster and one slower, that
respectively provide a worse and better approximation.

In a nutshell, the idea is to create an initial resource profile, in which resources are
allocated to cases: each profile is associated with an expected overall KPI improve-
ment. The expected overall KPI improvement is computed, using machine-learning
techniques for prescriptive process analytics. Then, this initial profile is altered, by
changing resources allocated to cases, thus obtaining further profiles. At the end, a
number of resource profiles is generated, from which those with higher expected KPI
improvements are retained. The ultimate outcome is a set of resource profiles, which
are deemed valid to improve KPIs. In different resource profiles, the same resource
is assigned to a different case and intervention: resources are thus given a certain de-
gree of freedom on which case to pick up and work on as next. This is beneficial,
because a rigid resource-to-case imposition is against the principle of resource-aware
recommender systems [1], such as how the problem of task-to-resource assignments is
typically tackled in operation research.

The framework has been assessed on real-life case studies with processes with hun-
dreds of running cases and resources. This allowed us to perform a stress test on the
practical feasibility. The typical behavior of resources was simulated, on the basis of
behavior patterns observed in human-computer interaction literature. The results show
that our resource-allocation framework enables a significantly higher total KPI im-
provements, i.e. considering all running cases, if compared with scenarions in which
each case is recommended in isolation.

Section 2 discusses related works in the domain of prescriptive process analytics and
resource-aware recommender systems. Section 3 introduces the necessary background
concepts: event logs, KPI definitions, and process prescriptive analytics that consider
single cases in isolation. Section 4 puts forward our approach for resource allocation for
global KPI improvement, Section 5 reports on the evaluation setup and results, while
Section 6 concludes the paper, summarizing the contribution in our paper.

2 Related Works

Literature has focused on using recommender systems in business processes to improve
the future outcome of process instances. This has often been translated into being fo-
cused on recommending which activities to work on next to improve the process’ Key
Performance Indicators (KPIs) [2–4].

The growing interest in recommender systems for process mining has led the com-
munity to explore how to determine when to intervene with recommendations [5] and
whether an intervention is cost-wise worth [6]. A body of research has also focused on

Resource Allocation in Recommender Systems for Global KPI Improvement 3

ensuring that recommendation are well explained to human-resources [7], using Shap-
ley Values theory [8].

Moreover, several research works have focused on considering which resources
should perform specific activities in various contexts. Cabanillas et al. in [9, 10] propose
two approaches to define a language to equip BPMN models with complex resource-
allocation policies, as well as to discover those policies.

A few works focuses on suggesting a resource allocation for a set of activities that
need to be performed, without - though - focusing on recommending which activity to
perform. Zhao et al. in [11] provide a framework based on a system of convex equa-
tions that encode a system of constraints on time and cost. Huang et al. in [12] lever-
age on Reinforcement Learning to propose a resource-allocation algorithm based on a
Markov decision process. Park et al. in [13] integrate offline prediction model construc-
tion, using Long Short-Term Memory models to predict the next activity to perform
and, subsequently, employing a minimum-cost-and-maximum-flow algorithm to allo-
cate resources. Dumas et al. in [14] focus on recommending resource-activity pair, as
we aim here. However, they recommend for single cases in isolation, which was pre-
viously mentioned to provide a lower degree of overall KPI improvement , namely for
the whole set of running cases.

In conclusion, no previous research works have pursued the goal to provide an
global KPI improvements, while leaving a certain degree of freedom to resources on
which case (and activity) to work on as next.

3 Preliminaries

The starting point for a process mining-based system is an event log. An event log is a
multiset of traces. Each trace is a sequence of events, each describing the life-cycle of
a particular process instance (i.e. a case) in terms of the activities executed, resources
that execute it, and the process attributes manipulated.

Definition 1 (Events). Let A be the set of process activities. Let R be the set of possible
resources. Let V be the set of process attributes. Let WV be a function that assigns a
domain WV(x) to each process attribute x ∈ V . Let W = ∪x∈VWV(x). An event is
a tuple (a, r, v) ∈ A × R × (V ̸→ W) where a is the event activity, r the resource
that performs it and v is a partial function assigning values to process attributes with
v(x) ∈ WV(x).

A trace is a sequence of events. The same event can occur in different traces, namely
attributes are given the same assignment in different traces. This means that the entire
same trace can appear multiple times and motivates why an event log is to be defined
as a function which assigns a trace to a given identifier:

Definition 2 (Traces & Event Logs). : Let E = A×R× (V ↛ W) be the universe of
events. Let I be the universe of the case identifiers. A trace σ a sequence of events, i.e.
σ ∈ E∗. An event-log L is here modeled as a function that, given an identifier i of a log

4 Alessandro Padella and Massimiliano de Leoni

trace returns the sequence of events related to the process instance with the identifier i,
i.e. L : I → E∗.1

Given an event e = (a, r, v), the remainder uses the following shortcuts: activity(e) =
a, resource(e) = r and variables(e) = v. Also, given a trace σ = ⟨e1, . . . , en⟩,
prefix(σ) denotes the set of all prefixes of σ, including σ, namely
prefix(σ)={⟨⟩, ⟨e1⟩ , ⟨e1, e2⟩ , . . . , ⟨e1, . . . , en⟩}.

For building our recommender system, we need to define what we aim to optimize,
i.e. the goal of our recommendation: hereafter, this is named Key Performance Indicator
(KPI) and depends on the specific process domain.

Definition 3 (KPI Function). Let E be the universe of events. A Key Performance In-
dicator (KPI) is a function K : E∗×N → R such that, given a (prefix of a) trace σ ∈ E∗

and an integer 1 ≤ i ≤ |σ|,2 K(σ, i) returns the KPI value of σ after the occurrence of
the first i events.

Therefore img(K) is the set of all possible KPI values. With abuse of notation,
we indicate K(σ) = K(σ, |σ|), namely the KPI value after the occurrence of events
in trace σ. Note that our KPI definition is assumed to be computed a posteriori when
the execution is completed and leaves a complete trail as a certain trace σ. In many
cases, the KPI value is updated after the occurrence of each event, i.e. after each activity
execution. We aim to be generic and account for all relevant domains. Given a trace σ =
⟨e1, . . . , en⟩ that records a complete process execution, the followings are examples of
two potential KPI definitions:

– Total Time. We opted to consider the task in which the objective is to reduce the total
time. Given a σ’s prefix of i events, Ktotal(σ, i) measures the difference between
the timestamp of the trace’s last future event and the first event’s timestamp.

– Activity Occurrence. It measures if a certain activity is going to occur in the future,
such as an activity eventually Open Loan in a loan-application process. The corre-
sponding KPI definition for the occurrence of an activity a is Koccur a(σ, i), which
is equal to 1 if the activity a occurs in ⟨ei+1, . . . , en⟩, 0 otherwise.

The goal of the recommender system is to provide recommendations on both the
activities to be performed and the resources best suited to perform them, with the aim
of enhancing the final outcome of running process instances in terms of the identified
KPIs. To achieve this, a Prescriptive Analytics Oracle Function must be developed.
This function will enable the prediction of the KPIs of the final outcome of a running
process instance, and will identify the best activity to be performed and the most suit-
able resource to perform it.

Definition 4 (Prescriptive Analytics Oracle Function). Let E be the universe of events
and σ ∈ E∗ a (running) trace belonging to it, A the set of possible activities, K :
E∗ × N → R a KPI function and R the set of the possible resources. A Prescriptive

1 The operator * refers to the Kleene star: given a set A, A∗ contains all the possible finite
sequences of elements belonging to A

2 Given a trace σ, |σ| indicates the number of events in σ.

Resource Allocation in Recommender Systems for Global KPI Improvement 5

Activity Resource ∆

Back-Office
Adjustment
Requested

CE UO 208h
BOCSER 195h

BOC 112h
... ...

Table 1: Example of the output of the Prescriptive Analytics Oracle Function in a tab-
ular form, for a given trace when the KPI is the total time of a case. It provides the
recommended activity Back-Office Adjustment Requested associated with a set of pairs
of resources and delta in KPI. For instance, if the resource BOCSER executes an ad-
justment to the Back-Office, the expected total time of the procedure will decrease by
195 hours.

Analytics Oracle Function is a function ψ : E∗ ×K → A× 2(R×R) such that ψ(σ,K)
returns (a, {(r1, ∆1), . . . , (rm, ∆m)}) with m ≤ |R| to indicate that activity a is rec-
ommended and, if performed by ri, will lead to a ∆i improvement of KPI K. Also,
∀i, j ∈ {1, . . . ,m} , ri = rj ⇐⇒ i = j, meaning that a resource can only be
recommended once.

Since not all resources can perform the recommended activity a, the number m of
recommended resources does not necessarily coincide with the number |R| of all re-
sources [15]: also, some resources might not be available at a certain point for other
reasons, e.g. on holidays or on sick leave.

In the example in Table 1, the oracle function ψ takes as input the KPI function
as defined in Definition 3, with K modelling the KPI . For a certain trace, the recom-
mended activity is Back-office Adjustament Requested. The function also returns a set
of pairs (r,∆) to indicate that, if the activity is performed by resource r, the final KPI
is predicted to change by ∆. Concretely, if the activity Back-Office Adjustment Request
is performed, e.g, by CE UO, the total time will reduce by 208hours.

In the remainder, we will make use of a helper function maxψ,K(σ) that for each
(running) trace σ ∈ E∗ returns the maximum achievable improvement.

Definition 5 (Helper function). Let E be the universe of events. σ ∈ E∗ a (running)
trace belonging to it, and A the set of possible activities. Let ψ(σ,K) =
(a, {(r1, ∆1), . . . , (rm, ∆m)}) the Prescriptive Oracle Function. The Helper function
maxψ,K : E∗ → A×R is a function that returns a pair (a,∆) = (a,max({∆1, . . . ,∆m}))

The oracle function can be implemented in multiple ways, using several of the
prescriptive-analytics algorithms in literature (cf. Section 2). This paper does not aim
to propose any specific prescriptive-analytics algorithms. However, for the implementa-
tion and testing, we opted to use the prescriptive-analytics proposal discussed in in [7],
which has been extended to also return the pairs of resources and KPI’s deltas.3

3 Code available at https://github.com/Pado123/prescriptive_global_optimization

6 Alessandro Padella and Massimiliano de Leoni

4 Global Activity-Resource Allocation

The purpose of this paper is to provide resources with tailored recommendations regard-
ing which actions to take and to which process instance, while also allowing for a degree
of choice and autonomy. To achieve this goal, it is essential to establish a framework
that can generate interdependent recommendations while simultaneously accommodat-
ing the individual decision-making processes of the resources involved. It is important
to note that the best recommendation for a case, when viewed from the perspective of
optimising a specific KPI, may not necessarily be the best recommendation for that
case in the context of global optimisation. In the task of our work, the KPI to be opti-
mised is not pointwise: an individual case may get the best recommendation for him,
but this makes a resource busy and so unavailable for other cases that could improve
their KPI more. Hence, we want to optimise the sum of the KPIs for all resources and
cases on which they act, ensuring the single recommendations provided to resources
interact with each other without conflict. This leads to the definition of a Profile.

Definition 6 (Profile). Let L : I → E∗ be an event log, A the set of its possible
activities, and R the set of the possible resources. A profile P ⊂ (I × A ×R × R) is
defined as a set of tuples (i, a, r,∆) where for the (running) case with identifier i, the
activity a is to be assigned to the resource r for improving its expected KPI of ∆. There
is an additional constraints: there cannot be two tuples with the same case identifier or
the same resource.

A profile aims to allocate the set of available resources to a set of cases with the aim
of improving the overall KPI values for all running cases. The generation of a profile
is challenging: it is a combinatorial problem that would require one to potentially try
every combination of case ids, activities, and resources. This is practically unfeasible.
In Section 4.1, we illustrate a greedy algorithm to compute a profile.

The creation of a single profile is also poorly applicable in practice because it would
impose activities to resources, without considering external factors. The novelty of our
framework is also linked to providing process actors with some degree of freedom,
while still aiming to improve the overall KPI. This requires generating several profiles:
different profiles assign different resources to a certain resource. A resource can pick
one of the activities available for him/her in any of the generated profiles.

The resource’s choice naturally filters out profiles that are incompatible with the
choice made. The subsequent resource to choose will then have fewer profiles according
to which to choose. Section 4.2 illustrates how to generate the profiles additional to the
first.

4.1 Generation of the first profile

To create an initial profile P0, we first create a sequence ∆RANK ⊆ (I ×A×R)∗. It
can be constructed using the Helper function defined in Equation 5 as follows. First, we
build the set of triples (i1, a1, ∆1), . . . , (in, an, ∆n) =

⋃
i∈dom(L)(i,maxψ,K(L(i)),

which later are sorted descending by the third component, namely ∆1, . . . ,∆n. An
example of ∆RANK is given in the left-hand side table in Figure 1.

Resource Allocation in Recommender Systems for Global KPI Improvement 7

Id Activity Resource

DD-45678 Pending Liquidation Request BOCSER 93434 h

BB-23456 Pending Liquidation Request BOC 21944 h

CC-34567 Back-Office Adjustment Requested CE_UO 10433 h

...

Id Activity

DD-45678 Pending Liquidation Request

CC-34567 Back-Office Adjustment Requested

BB-23456 Pending Liquidation Request

... ...

93434 h

 85014 h

42543 h

...

Fig. 1: The table on the left is an example of tabular form of the ∆RANK sequence:
the columns shows the case ids, the recommended activities for the respective cases,
and the maximum KPI improvement. In this example, the employed KPI is the case
total time. The profile is obtained from ∆RANK by allocating resources to cases (see
the right-hand side table). Since the best resource cannot be assigned to every case, the
assigned resource might cause a drop in the KPI’s improvements.

The first profile P0 is obtained by extending ∆RANK with resources (cf. the
right-hand side table in Figure 1). To achieve this, we start from the first element
(i1, a1, ∆1) ∈ ∆RANK, i.e. the one with the greatest expected improvement. Then,
we evaluate ψ(L(i1),K) = (a1, {(r11, ∆1

1), . . . , (r
m
1 , ∆

m
1 })), with K be the KPI func-

tion of interest, and we associate resource r11 to (i1, a1, ∆1) the first pair (r1, ∆1), thus
resulting to add (i1, a1, r1, ∆

1
1) to the profile. Resource r1 is removed from the set R

of the resources available.
We then move to the second element (i2, a2, ∆2) ∈ ∆RANK, and evaluate

ψ(L(i2),K) = (a2, {(r12, ∆1
2), . . . , (r

q
2, ∆

q
2})). If {r12, . . . , r

q
2} ∩ R = ∅, no element

is added to profile P0 for instance i2. Otherwise, we look for the smallest j such that
rj2 ∈ R. Tuple (i2, a2, r

j
2, ∆

j
2) is added to profile P0. Note that ∆j

2 might be lower
that ∆2 because the allocated resource might not yield the maximum improvement: by
construction, it is only guaranteed that∆2 = ∆1

2. Resource rj2 is removed from R. This
procedure is repeated for every tuple in ∆RANK, as long as set R is not empty (i.e.
activities and cases can be allocated to resources).

4.2 Generation of Additional Profiles

The first profile P0 is certainly the valuable starting point, but it falls short in two
main aspects. It is generated considering the traces in the descending order of potential
improvements: it is in fact a greedy approach, which might still returned solutions rela-
tively far from the potential, optimal solution. Using approaches based on local search,
solution P0 is perturbed to obtain more solutions of profiles. As discussed, we want to
grant freedom to resources on the choice of which cases (and consequently activities)
to work on as next: therefore, all profiles generated by perturbation are retained.

Figure 2 illustrates how one profile P is perturbed into P ′: elements are visualized
in tabular form. Initially P ′ = P . The elements in P are sorted by descending values
of the KPI improvement (see column ∆KPI in figure). An element p = (i, a, r,∆)
is randomly selected from the sorted list according to to a geometric distribution with

8 Alessandro Padella and Massimiliano de Leoni

Id Act Res ΔKPI

...
i a r Δ
...
i a r' Δ

Randomly draw
from Geom(0.06)

Find best resource
for (i,a)

Evaluate the
new Δ' value

Use ΔRANK to find
the best available

case for r

Evaluate new
 Δ'' value

Id Act Res ΔKPI

...
i a r' Δ'
...
i'' a'' r Δ''

Fig. 2: A visual representation of the algorithm to perturb profiles. The right table de-
picts the original profile, while the left table shows the perturbed profile. A random
element p = (i, a, r,∆), according to a geometric distribution. The algorithm identifies
the best new resource r′ for the corresponding trace identifier i and activity a, resulting
in a new element p′ = (i, a, r′, ∆′) (indicated in red in the picture). The resource r′

is unassigned from the previous assignment: the element for r′ is thus removed from
the profile (i, a, r′, δ in figure). Resource r is free, and is given a different assignment
(element i′′, a′′, r,∆′′ in figure).

Fig. 3: Schematic of how profiles are generated via perturbation. Starting from the initial
profile P0, a number of perturbations are created (three for the example in figure),
namely: P1 0, P1 1 and P1 2. This is then repeated for each of the obtained profiles,
until a certain number of profiles are overall constructed. If a perturbation generates a
profile that has already been created, this is discarded.

p = 0.06. Let p = (i, a, r,∆) the selected element, with oracle function ψ(L(i),K) =
(a, {(r1, ∆1), . . . , (rm, ∆m}). Elem p is removed from P ′, while we add a certain p′ =
(i, a, r′, ∆′) such that, if r = r1, then r′ = r2 an ∆′ = ∆2, otherwise r′ = r1 and
∆′ = ∆1. Since every resource is assigned to the activity of some case, P contains
some element for r′: p = (i, a, r′,∆) ∈ P . Tuple p is removed from P ′. Resource r is
now free: we pick the top element (i′′, a′′, ∆′′) ∈ ∆RANK such that r is allowed to

Resource Allocation in Recommender Systems for Global KPI Improvement 9

execute a′′ and there is no element in the P ′ that refers to the case with id i′′. Element
(i′′, a′′, r,∆′′) is added to P ′.

In sum, the above procedure is able to perturb a profile and, thus, create a new one.
This is iterated, until a given target of profiles is created. This can be visualized as in
Figure 3: we started from the initial profile P0. A certain number of perturbations is
created from P0: profiles P1 0, P1 1 and P1 2 in figure with three perturbations. This is
then repeated for each of the obtained profiles. In general, two subsequent perturbations
can result in the original profiles; however, we discard the perturbed profiles that were
already previously obtained. This motivates why Figure 3 has a tree-like structure, in
place of a graph-like.

4.3 Assign Recommendations

Once we generate the entire set of profiles, we create a Profiles Ranking P , by sorting
them down by global KPI improvements (i.e., summing up the KPI improvements for
all elements in the profiles).

which is used to effectively provide recommendations to resources. In fact, in or-
ganizational reality, they receive the range of choices provided for them based on the
profile’s order in which the Profiles Ranking P has been sorted. At the end of the
assignment procedure, every resource r will have selected an activity a and a case
identifier i, resulting in a final set that, from this point onwards, we will refer to it
as Resource-task Assignment Set S ⊂ (I × A × R × R)|R| where R is the set of
available profiles.

Once the first resource r has to select its task, the profiles in P are scanned till 3
different pairs activity-identifier may be assigned to it. This allows the system to provide
the resource (at most) three different choices. Then r picks the case with identifier i, and
r executes the accordant activity a. At that time, we remove all profiles in the set P in
which the element (i, a, r,∆) is not present for some ∆. Then, the other resources can
pick activities in order according to the retained profiles. This procedure, called Exact
Assignment (EA), provides a certain degree of freedom to the first resources, which
can go quickly down as more and more resources pick cases for performance.

To overcome this problem, an alternative framework called Approximate Assign-
ment (AA) is proposed: the only difference is that no profile is removed from P . So
the resulting Resource-task Assignment Set S may not coincide to those of any pro-
file in P . On the Approximate Assignment procedure, when the first resource r makes
a choice of case with id i and activity a, no profile is removed from P . When the
second resource makes a choice, (s)he presented the three best options in P without
considering identifiers related to cases previously selected. Approximate assignment
thus provides further freedom of choice, at the cost of potentially a lower global KPI
improvement

5 Evaluation

The evaluation focuses on assessing the overall KPI improvements for two case stud-
ies (see Section 5.1). In particular, the comparison is done with respect to existing ap-
proaches, with specific emphasis on the work by Dumas et al. [14] where the framework

10 Alessandro Padella and Massimiliano de Leoni

exhibits a similar operational approach to that outlined within this documentation, al-
though lacking the provision of multiple profiles, thereby terminating at the first greedy
solution. We also focus on quantifying the degree of freedom, specifically assessing the
extent to which resources possess the ability to choose their task, even if limited to a
choice between two feasible options. This freedom’s degree is a novel of our approach
if compared with the state of the art. It indeed allows resources to pick among multiple
alternatives.

Section 5.2 details the procedure for partitioning event logs into a training log and
a test log. The training log is used to train the oracle function ψ, which plays a crucial
role in our proposed methodology. Meanwhile, the test log is employed to evaluate the
performance and effectiveness of our approach.

Subsequently, in Section 5.3, we discuss the assessment of recommendation qual-
ity and the level of resource autonomy achieved. Furthermore, Section 5.4 presents our
evaluation method, which involves comparing the outcomes to a real-world scenario.
Lastly, in Section 5.5, we analyze and interpret the results generated by our methodol-
ogy.

5.1 Introduction to Use Cases

The validity of our approach was assessed using two different event logs with their
associated use case. The first is so-called Bank Account Closure (BAC), a log referring
to an Italian Bank Institution process that deals with the closures of bank accounts.
From the bank’s information system, we extracted an event log containing 212,721
events containing 15 activities, 654 resources and 32,429 completed traces, divided into
14,593 for train and 17,836 for testing. For this log, we opted to consider the task in
which the objective is to reduce the execution time of the instances, i.e. the KPI function
K is equal to Total Time and the total number of generated profiles is 650,000.

The BPI challenge used the second log in 20134. It is provided by Volvo Belgium
and contains events from an incident and problem management system called VINST.
We extracted 7,456 completed traces and 64,975 events. It contains 13 different activ-
ities that can be accomplished with 649 resources. In selecting traces from the log for
training and testing, we get a training log of 3,355 traces and a test log of 4,101 traces.

For this case, we aim to avoid the occurrence of the activity Wait-User. The KPI
value can be 1 or 0 if the activity occurs or not, while the ∆ values related to the ora-
cle function are evaluated as the difference by the probability of the activity occurring
(i.e. ∆ ∈ [0, 1]). Note that one wants to reduce the activity-occurrence probability: the
activity Wait-User is considered detrimental in terms of time and customer satisfaction.
The total number of generated profiles is 140,000.

5.2 Train-Test Splitting Procedure

The starting point for an evaluation is an event log L. In this section, to lighten the
notation, we refer to dom(L) as L, and so referring to a log not as a function but as a set
of trace identifiers in its domain. We first extract the training log Lcomp for training the

4 https://www.win.tue.nl/bpi/doku.php?id=2013:challenge

Resource Allocation in Recommender Systems for Global KPI Improvement 11

oracle function and, consequently, the recommender system. Then, we aim at creating
the log Lrun used for testing our system. To extract the training log Lcomp ⊂ L we
compute the earliest time tsplit such that 45% of the identifiers related to traces of L
are completed. This allows us to define Lcomp as the set of traces of L completed at
time tsplit, and consequently, define Lrun as L \ Lcomp. The traces of Lrun are then
truncated to a set Ltrunc obtained from Lrun by maintaining only a random percentage
of events in each trace5, this has been done for simulating running instances to which
provide recommendations, using the set Lrun for the evaluation of them.

5.3 Evaluation Metrics

The accuracy of recommending the resource r performs the activity a for the running
case with identifier i′ ∈ dom(Ltrunc) is evaluated as the average KPI of traces similar
to it. Analytically, if L(i′) = σ′ and e such that activity(e) = a and resource(e) = r:

score(σ′, e) = avgσ∈Sim(σ′,e,Lrun)K(σ) (1)

where Sim(σ′, e,Lrun) is the set of traces similar to σ′ ⊕ ⟨e⟩, namely

Sim(⟨e′1, . . . , e′m⟩, e,Lrun) = {σ ∈ cod(Lrun) : ∃σp = ⟨e1, . . . , em+1⟩ ∈ prefix(σ),
(activity(em+1), resource(em+1)) = (activity(e), resource(e)),
activity(ei) = activity(e′i) ∀i ∈ {1, . . . ,m}}

The score of the recommended action a to a resource r performing the running
trace σ′ is so the average KPI of traces similar to σ′ for which the activity a has been
performed by the resource r. This procedure is similar to the one used by de Leoni et al.
in [2] and by Padella et al. in [7], adding the constraint about the recommended resource
r to the similarity concept.

Typically, in the machine learning literature, the dimension of the train set is larger
than the dimension of the test set. We chose this split ratio because using the accuracy
evaluation proposed in Equation 1, we evaluate a mean value on the output set of the
function Sim that embodies the constraints related to the resource and the activity: this
may lead to a small number of items on it, making the mean value evaluated statistically
not significant.

As already mentioned, we also aim to give resources freedom in choosing which
case and, consequently, activity to work on as next. Therefore, in our experiments, our
goal is also to measure the resource freedom, hereafter defined as the number of re-
sources that have given the freedom to choose the case to work on within a set that
contains at least two cases. On this aim, we introduce the concept of Freedom Score,
that is the ratio between the resources that had the possibility of choosing between at
least two case-activity options in our assignment procedure (cf. Section 4.3) and the
number of resources that can act on more than two running cases of Lrun. Analytically

Freedom Score(Assignment) = |{r∈S : r has chosen in Assignment}|
|{r∈S : r can act on more than one i∈ dom(Lrun)}| (2)

5 The random percentage p was drawn from a uniform distribution U [25, 75], repeating the
experiment for its stochastic validity.

12 Alessandro Padella and Massimiliano de Leoni

The purpose of this function is to assess the degree of freedom of choice afforded
to the resources by comparing it to the level of choice they typically have. A Freedom
Score of 100% indicates that resources are granted complete freedom, while a score of
0% corresponds to no freedom.

5.4 Evaluation Methodology

The assessment of the system was carried out by trying to replicate actual organizational
conditions. Therefore, we want to simulate how resources realistically interact with a
recommender system.

1. Not all resource work at the same time, due to various factors such as shifts, vaca-
tions or other circumstances. Therefore, a Bernoulli distribution with a parameter
of p = 0.75 is used to stochastically select a subset of resources: each individual
element in the complete set of resources has a 75% probability of being designated
as active and thus included in the subset.

2. Not all resources pick up a case to work on the same time, then we randomly
shuffled the list of resources obtained at point 1, generating random arrival orders
randomising the order in which resources pick their task.

3. Resources are provided with a ranking of cases allowed to work on, ordered by
expected KPI improvement. However, they do not necessarily pick the top element:
research in Human-Computer Interaction has demonstrated a consistent pattern of
user behavior when presented with a ranked list of options, as documented in [16].
In line with this study, we have adopted a stochastic resource selection behavior:
Specifically, the probabilities of selecting the first, second, and third options are
61%, 24%, and 15%, respectively.

Since the points 1-3 in the list above rely on sampling from distributions (e.g. the
Bernoulli distribution at point 1), the procedure has been repeated: we extracted 10
values from the Bernoulli distribution described at point 1 and, for each of these values,
the random shuffling has been done 10 times. It follows that, in total, we repeated the
evaluation 100 times.

The improvements by our framework has been evaluated by applying the formula in
Equation 1 to the recommendations provided to the traces relatives to the identifiers in
Ltrunc using the two assignment procedures defined in Section 4.3 and then comparing
this scores with the real process executions from Lrun.

5.5 Results Analysis

For each of the 10 subsets of existing resources obtained at point 1 of the evaluation
methodology (cf. Section 5.4), we computed the total number of potential profiles.
However, the time needed to compute them all is practically not feasible and hence we
use our framework to only generate up to 10% of them in experiments, with increments
of 1%.

Due to differences in the number of activities, resources, and cases in the logs,
the computational times varied. All the generations were executed on a workstation

Resource Allocation in Recommender Systems for Global KPI Improvement 13

Case Study Time needed Total number
of generated profiles

Total time on BAC 1h and 40min 650,000
Wait-User Occurrence on VINST 40min 140,000

Table 2: In the second column, the table presents the time values associated with the
generation of the complete Profiles Ranking P , representing approximately 10% of
the total number of profiles that the framework can generate. The third column displays
the absolute count of the generated profiles.

Fig. 4: Results related to the KPI improvement for both case studies and the two assign-
ment techniques. On the x-axis there is the percentage of the profile used for running the
two algorithms, while in the y-axis the average KPI improvement on the whole Lrun
evaluated as defined in Equation 2 is shown.

equipped with a 16-core AMD Ryzen 7 4700G processor unit and 16 GB RAM, which
were divided into 12 different threads. Table 2 shows for each case study, the time to
generate this 10% of profiles. This threshold represents a justifiable value since the tree
procedure described in the Section 4.2 follows a greedy approach: on it, profiles are ini-
tially generated in a stochastic manner and subsequently filtered to eliminate duplicates.
As the number of generated profiles augments, the likelihood of encountering new pro-
files decreases, leading to an exponential rise in the time required for generating new
profiles.

The experiments’ results in terms of KPI values are shown in Figure 4, which illus-
trates how the improvement is linked to the percentage of profiles that are generated, for
the BAC and VINST case studies, and using our two approaches to compute the set of
profiles. The results show that it is sufficient to generate few profiles to obtain significant
KPI improvements. For the case study of reducing total execution time on BAC, there
is no significant variation in outcomes between the Exact and Approximate assignment
techniques. In the conducted case study focusing on optimizing process performance in
the BAC system, we achieved an improvement of 58%. This improvement translates to

14 Alessandro Padella and Massimiliano de Leoni

Fig. 5: Results related to the freedom left to the resources for both case studies and the
two assignment techniques. On the x-axis there is the percentage of the profile used
for running the two algorithms, while on the y-axis the Freedom Score as defined in
Equation 2 is shown.

a reduction in the total execution time of all active traces from 179,430 hours to 76,873
hours. We successfully minimized the overall processing time by implementing the pro-
posed measures, leading to significant efficiency gains. Furthermore, our investigation
targeted the reduction of the Wait-User activity occurrences within the VINST dataset.
The initial analysis identified 631 traces in which this activity took place. Through the
implementation of optimized strategies, the occurrence of Wait-User decreased to 486
traces. This reduction highlights the effectiveness of the proposed approach in stream-
lining the process and minimizing potential bottlenecks associated with this specific
activity of 12%.

A larger number of profile generation may still remain relevant to allow resources
a larger degree of freedom to choose the case, and hence the intervention, to work on.
Figure 5 shows how the Freedom Score increases with larger number of profiles that
are generated. The algorithm for approximate assignments seem to consistently allow
larger freedom. It even achieves a Freedom Score of 90% after generating only 1% of
the profiles for the BAC case study.

The Approximate Assignment method was indeed designed to provide resources
with more freedom of choice, a goal successfully achieved in both case studies. The
approximate assignment was also able to achieve the same amount of KPI improvement
as the exact assignment: therefore, the Approximate-Assignemnt algorithm is certainly
preferable for the BAC case study. For the VINST case study, the Exact-Assignment
method provides results that are around 10% better than the Approximate-Assignment
method, which suggests the Exact Assignment method is preferable.

It follows that opting for the Exact-Assignment or for the Approximate-Assignment
method may depend on the case study. Therefore, the choice requires to conduct a
prior assessment based on training and testing phases, as conducted in the experiments
discussed in this paper.

Resource Allocation in Recommender Systems for Global KPI Improvement 15

Last but not least, we aim to compare our results with those obtained by the lat-
est advantages in prescriptive process analytics, and we have carried on a comparison
with respect to the approach by Dumas et al. [14]. The approach by Dumas et al. corre-
sponds to the scenario in which only the first profile is generated, analogously to what
discussed in Section 4.1. The conducted experiments have shown that the creation of
multiple profiles and their ranking provides a further improvement by 6.2% and 1.9%
for the VINST and BAC case studies, respectively. It is worthwhile noting here that
Dumas et al. use a different prescriptive-analytics oracle function. However, a fair com-
parison requires to use the same oracle function, to put aside any difference due to the
choice of the oracle function. This motivates why we use our oracle function in both
of scenarios, namely only using the first profile, or conversely leveraging on the profile
ranking.

6 Conclusions

Process-aware Recommendation systems are a class of information systems that pro-
vide support to process stakeholders to achieve better results for the running cases. The
module that suggests effective interventions is obviously the core module in this class
of systems. The intervention for a running case typically consists in suggesting a certain
activity to be performed as next, as well as the resource to which this activity should
be given for performance. Existing techniques propose interventions to single running
cases in isolation, making the choice of interventions local to single cases. However,
resources are shared among cases, and hence an allocation of resources and interven-
tions should be deal with as a global optimization problem, where all cases requiring
interventions are considered altogether.

This paper has put forward a framework that tackles the global optimization prob-
lem. It is clear that the complexity of the problem is NP-hard, and hence finding an op-
timal solution is intractable when hundreds of cases are running at the same time, and
also hundreds of resources are involved. We thus propose two approximated algorithms
that aim to find sub-optimal solutions. The algorithm returns a number of alternative
user profiles, each of which consists in a set of assignments of activities to resources,
with the constraint that a resource can only work on with a case within a profile. These
profiles are then ranked with the expected outcome improvement, measured in terms of
KPIs. Each resource is then offered the interventions ordered by descending ranking of
the profile of which those interventions are part.

Among the advantages of our proposal, it is worthwhile mentioning that, while most
of existing approaches impose an assignment of cases and activities to resources, we
provide process actors with a certain degree of freedom in choosing what to work on.
This freedom is clearly very beneficial in the context of recommender systems: vice
versa, imposing an assignment may potentially incur in the risk of having resources to
act on cases independently and regardless of the recommendations.

Experiments were conducted with two real-life case studies, emulating how humans
would pick offered interventions in an order list. This emulation was based on behav-
ioral models described in the human-computer interaction literature [16]. The results
illustrate a significant improvement with respect to frameworks that aim to improve the

16 Alessandro Padella and Massimiliano de Leoni

outcome of running cases in isolation. So did we compare with the approach by Dumas
et al. [14], which is the only approach that we found that is able to provide a global KPI
improvement: our framework provides a further improvement by 6.2 and 1.9 % for the
two case studies.

Acknowledgement. The PhD. scholarship of Mr. Padella is partly funded by IBM Italy,
and by the BMCS Doctoral Program, University of Padua. This research is also sup-
ported by the Department of Mathematics, University of Padua, through the BIRD
project “Data-driven Business Process Improvement” (code BIRD215924/21).

References

1. M. Comuzzi, “Ant-colony optimisation for path recommendation in business process execu-
tion,” Journal of Data Semantics, vol. 8, no. 2, pp. 113–128, 2019.

2. M. de Leoni, M. Dees, and L. Reulink, “Design and evaluation of a process-aware recom-
mender system based on prescriptive analytics,” in 2020 2nd International Conference on
Process Mining (ICPM), 2020.

3. S. Weinzierl, S. Dunzer, S. Zilker, and M. Matzner, “Prescriptive business process monitoring
for recommending next best actions,” in Business Process Management Forum, 2020.

4. A. Metzger, T. Kley, and A. Palm, “Triggering proactive business process adaptations via on-
line reinforcement learning,” in Business Process Management: 18th International Confer-
ence, BPM 2020, Seville, Spain, September 13–18, 2020, Proceedings. Berlin, Heidelberg:
Springer-Verlag, 2020, p. 273–290.

5. S. Fahrenkrog-Petersen, N. Tax, I. Teinemaa, M. Dumas, M. de Leoni, F. Maggi, and M. Wei-
dlich, “Fire now, fire later: alarm-based systems for prescriptive process monitoring,” Knowl-
edge and Information Systems, vol. 64, 02 2022.

6. Z. D. Bozorgi, I. Teinemaa, M. Dumas, M. L. Rosa, and A. Polyvyanyy, “Prescriptive process
monitoring for cost-aware cycle time reduction,” in 2021 3rd International Conference on
Process Mining (ICPM), 2021.

7. A. Padella, M. de Leoni, O. Dogan, and R. Galanti, “Explainable process prescriptive ana-
lytics,” in 2022 4th International Conference on Process Mining (ICPM), 2022, pp. 16–23.

8. L. S. Shapley, A value for n-person games. RAND Corporation, 1953, no. 28.
9. C. Cabanillas, S. Schönig, C. Sturm, and J. Mendling, “Mining expressive and executable

resource-aware imperative process models,” in Enterprise, Business-Process and Informa-
tion Systems Modeling, J. Gulden, I. Reinhartz-Berger, R. Schmidt, S. Guerreiro, W. Guédria,
and P. Bera, Eds. Cham: Springer International Publishing, 2018, pp. 3–18.

10. G. Havur and C. Cabanillas, “History-aware dynamic process fragmentation for risk-aware
resource allocation,” in On the Move to Meaningful Internet Systems: OTM 2019 Confer-
ences, H. Panetto, C. Debruyne, M. Hepp, D. Lewis, C. A. Ardagna, and R. Meersman, Eds.
Cham: Springer International Publishing, 2019.

11. W. Zhao, L. Yang, H. Liu, and R. Wu, “The optimization of resource allocation based on
process mining,” in Advanced Intelligent Computing Theories and Applications, D.-S. Huang
and K. Han, Eds. Cham: Springer International Publishing, 2015, pp. 341–353.

12. Z. Huang, W. van der Aalst, X. Lu, and H. Duan, “Reinforcement learning based resource
allocation in business process management,” Data & Knowledge Engineering, vol. 70, no. 1,
pp. 127–145, 2011. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0169023X1000114X

Resource Allocation in Recommender Systems for Global KPI Improvement 17

13. G. Park and M. Song, “Prediction-based resource allocation using lstm and minimum
cost and maximum flow algorithm,” in 2019 International Conference on Process Mining
(ICPM), 2019, pp. 121–128.

14. M. Shoush and M. Dumas, “When to intervene? prescriptive process monitoring under un-
certainty and resource constraints,” in Business Process Management Forum, C. Di Ciccio,
R. Dijkman, A. del Rı́o Ortega, and S. Rinderle-Ma, Eds. Cham: Springer International
Publishing, 2022, pp. 207–223.

15. M. de Leoni, Foundations of Process Enhancement. Cham: Springer International Publish-
ing, 2022, pp. 243–273.

16. T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay, “Accurately interpreting click-
through data as implicit feedback,” in Proceedings of the 28th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, ser. SIGIR ’05.
New York, NY, USA: Association for Computing Machinery, 2005, p. 154–161.

