
Explainable Process Prescriptive Analytics
Alessandro Padella*, Massimiliano de Leoni*, Onur Dogan+, Riccardo Galanti †*

* University of Padua, Padua, Italy,+Izmir Bakiracy University, Izmir, Türkiye, † IBM, Bologna, Italy
Email : alessandro.padella@phd.unipd.it, deleoni@math.unipd.it,

onur.dogan@bakircay.edu.tr, riccardo.galanti@ibm.com

Abstract—Process-aware Recommender systems (PAR sys-
tems) are information systems that aim to monitor process
executions, predict their outcome, and recommend effective
interventions to have better ends. Recent literature puts for-
ward proposals of PAR systems that return valuable, practical
recommendations. However, recommendations without sensible
explanations prevent process owners from feeling engaged in the
decision process or understanding why these interventions should
be carried out. Therefore, the risk of process owners do not trust
the PAR system and overlook these recommendations is high.
This paper proposes a framework to accompany recommenda-
tions with sensible explanations based on the process behavior,
the intrinsic characteristics, and the context in which the process
is carried on. The paper illustrates the potential relevance of these
explanations for process owners in two use cases.

Index Terms—Process Mining, Prescriptive Analytics, Recom-
mender Systems, Explainability, Process Improvement

I. INTRODUCTION

Process-aware Recommender systems (hereafter shortened
as PAR systems) are a specific class of Information Systems
that aim to predict how process instances are going to evolve,
and to recommend the corrective activities to recover the
instances with higher risk not to achieve the expected out-
come [1]. Outcomes are defined in terms of process-specific
Key Performance Indicators (KPIs), such as costs, execution
times, or customer satisfaction.

Conceptually, a PAR system can be seen by two constituent
blocks: Predictive Monitoring, and Prescriptive Analytics. The
former aims at the prediction aspects, whereas the latter
focuses on recommending the corrective activities.

Recent literature has put forward a number of proposals
of prescriptive analytics. However, these do not provide ex-
planations of the reasons that led the systems to propose the
suggested recommendations [2], [3].

However, recommendations without sensible explanations
prevent process actors from feeling engaged in the decision
process of the recommendations, and from understanding the
rationale behind. In this scenario, process actors tend to not
follow recommendations, which are based on data, but rather
to enact contingency actions that are subjective and, thus, can
even potentially worsen the KPI outcome [1].

This papers proposes a framework to extend PAR systems
with explanations that provide process actors with the rationale
behind the choice of the recommended activities. Explanations
are based on process-related characteristics, such as the values
of process variables (e.g., the customer is requesting a loan
of 70 KC), the activities performed in process (e.g., the

loan assessment has already been repeated twice), or the
resources that performed activities (e.g., the loan application
was validated by Alex, who is a manager).

Our framework for the explanation of the selected recom-
mendations leverages on current state of the art of Explainable
AI, specifically on the game-theory approach of the Shapley
Value (cf. Section III-C). The proposed framework is inde-
pendent of the machine- or deep-learning technique that is
employed to generate the recommendation. However, we aim
to instantiate the framework to prove its effectiveness. There-
fore, we extended the PAR system proposed in [2] with our
explanation framework, using gradient boosting on decision
trees as machine-learning model for generating predictions and
recommendations.

Experiments were run on two real-life datasets, which
referred to instances of one process in an Italian bank, and one
at Volvo Belgium. The experiments first confirmed the quality
of recommendations to improve the KPIs of interest in relevant
process instances, then illustrated the typical shapes of the
accordant explanations generated by our framework proposal.

II. RELATED WORKS

Literature has largely focused on predicting the future
outcome of process instances [4], [5], [6]. A recent body of
research is being focused on recommend which activities to
work on as next, to improve process’ KPIs of interest, or to
suggest the most common continuations [2], [3], [7], [8].

In parallel, several research works focused on explaining the
reasons of these predictions and the affecting factors, using
approaches based on Shapley values [9], attention mecha-
nisms [10], or based on counter facts [11].

However, no works exist that provide an explanation of the
recommendations, in addition to the rationale of the predicted
KPI values. Note that explaining predictions is certainly dif-
ferent than explaining recommendation: while explaining the
predictions focuses on every aspect that significantly affects
the expected process’ outcome, explaining the recommenda-
tions should solely focus on those aspects whose negative
impact on the KPI values is much more mitigated by the
recommendations than by other actions. Last, we did consider
to use attention mechanisms [12] because they require neural
networks, while we employ random-forest models. Further-
more, attention mechanisms are disputed whether or not they
are always correlated to feature importance [13].

© 2022 IEEE. Pre-print copy of the manuscript published in the Proceedings of the
2022 4th International Conference on Process Mining (ICPM 2022), ISBN 979-8-3503-9714-7

III. PRELIMINARIES

A. Process Predictive Analytics

In this section, we discuss the typical techniques adopted
to train a predictive and recommendation model starting with
business processes.

The starting point for a prediction system is an event log.
An event log is a multiset of traces. Each trace is a sequence
of events, each describing the life-cycle of a particular process
instance (i.e. a case) in terms of the activities executed and
the process attributes manipulated. An attribute can be given
a value ⊥ indicating uncertainty whether or not a value was
assigned to an attribute by an event and what this value was.

Definition III.1 (Events). Let A be the set of process’
activities. Let T the set of possible timestamps and let V
the set of process attributes. Let WV be a function that
assigns a domain WV(x) to each process attribute x ∈ V .
Let W = ∪x∈VWV(x) ∪ ⊥. An event is a tuple (a, t, v) ∈
A × T × (V ̸→ W) where a is the event activity, v is a
partial function assigning values to process attributes with
v(x) ∈ WV(x), and t its timestamp.

A trace is a sequence of events, the same event can
potentially occur in different traces, namely attributes are
given the same assignment in different traces. This means that
potentially the entire same trace can appear multiple times.
This motivates why an event log is to be defined as a multiset
of traces:1

Definition III.2 (Traces & Event Logs). : Let E = A× T ×
(V ↛ W) be the universe of events. A trace σ is a sequence
of events, i.e. σ ∈ E∗. An event-log L is a multiset of traces,
i.e. L ⊂ B (E∗).

Given an event e = (a, t, v), the remainder uses the
following shortcuts: activity(e) = a, time(e) = t and
variables(e) = v. Also, given a trace σ = ⟨e1, . . . , en⟩,
prefix(σ) denotes the set of all prefixes of σ, including σ:
{⟨⟩, ⟨e1⟩ , ⟨e1, e2⟩ , . . . , ⟨e1, . . . , en⟩}. For building our recom-
mender system, we need to define what we aim to optimize,
i.e. the goal of our recommendation: hereafter this is named
Key Performance Indicator (KPI), and depends on the specific
process domain.

Definition III.3 (KPI Function). Let E be the universe of
events. A Key Performance Indicator (KPI) is a function
K : E∗ ×N → R such that, given a (prefix of a) trace σ ∈ E∗

and an integer 1 ≤ i ≤ |σ|,2 K(σ, i) returns the KPI value of
σ after the occurrence of the first i events.

As it will be clear later, we need to assume KPI values to
be numerical in order for the explanations of the recommen-
dations to be computed. Therefore img(K) is the set of all
possible KPI values. With an abuse of notation, we indicate
K(σ) = K(σ, |σ|), namely the KPI value after the occurrence
of events in trace σ. Please note that the KPI values can also

1B(X) indicates the set of all multisets with the elements in set X .
2Given a trace σ, |σ| indicates the number of events in σ.

belong to the set of timestamps, being them easily associable
to numbers. Since our goal is to optimize a KPI, depending
on the business requirements and on the KPI’s type, we define
⊐K as follows: given two values a, b ∈ R, we refer to a ⊐K b
meaning that a is better than b for K’s definition. Note that our
KPI definition is assumed to be computed a posteriori, when
the execution is completed and leaves a complete trail as a
certain trace σ. In many cases, the KPI value is updated after
the occurrence of each event, i.e. after each activity execution.
We aim to be generic and account for all relevant domains.
Given a trace σ = ⟨e1, . . . , en⟩ that records a complete process
execution, the followings are example of two potential KPI
definitions:

• Total Time. Given a σ’s prefix of i events, Ktotal(σ, i)
measures the difference between the timestamp of the last
future event of the trace and the timestamp of the first
event (i.e. time(en)− time(e1)), In this case, a ⊐K b if
and only if a < b, meaning it is desiderable to minimize
the time.

• Activity Occurrence. It measures if a certain activity
is going to eventually occur in the future, such as an
activity Open Loan in a loan-application process. The
corresponding KPI definition for the occurrence of an
activity a is Koccur a(σ, i), which is equal to 1 if the
activity a occurs in ⟨ei+1, . . . , en⟩, 0 otherwise. Here,
⊐K depends on whether or not it is desirable for the
activity to happen.

We can now define the prediction problem on logs as follows.

Definition III.4 (Prediction Problem on Event Logs). Let L
be an event log that records the execution of a given process,
for which a KPI K is defined. Let σ′ = ⟨e1, . . . , ek⟩ ∈ L be
the trace of a running case, which eventually will complete as
σT = ⟨e1, . . . , ek, ek+1, . . . , en⟩. The prediction problem can
be formulated as forecasting the value of K(σT , i) for all k <
i ≤ n.

In the process mining literature, this problem has been faced
with different machine learning models [4], [14], [15], [16],
[17], [18], [5], [6], [9]. We approach the problem by estimating
a function ΦK : X1× . . .×Xm → R which for an incomplete
trace σ′, forecasts the values of the KPI K. Therefore, a
KPI definition K is necessary as input with the constraint
img(K) ⊂ R. Afterwards, each prediction technique requires
the definition of the domain X1 × . . . × Xm and a trace-
to-instance encoding function ρL : E∗ → X1 × . . . × Xm,
which maps each (prefix of a) trace σ in an vector ρL(σ) ∈
X1 × . . . × Xm of m elements that can be of different
nature, such as a process attribute, a timestamp, or the number
of executions of an activity in σ. The prediction model is
trained off-line via a dataset D that is created from an event
log L ⊂ B(E∗) as follows: each prefix σp of each trace
σ ∈ L generates one distinct item in D consisting of a pair
(x, y) ∈ (X1 × . . . × Xm × img(K)) where x = ρL(σ

p)
and y = K(σ, |σp| + 1). The results is an oracle function
ΦK : X1 × . . . × Xm → R such as given a trace σ and any

σp ∈ prefix(σ), ΦK(ρL(σ
p)) returns the predicted KPI value

K(σ, |σp|+ 1).
To keep the notation simple, we are going to refer

to ΦK(ρL(σ)) as ΦK(σ). Our framework is independent
from the employed predictive model; however, we had
to instantiate the framework to prove its effectiveness. In
the implementation and experiments, we use the Catboost
method [19], [9]. It is a high-performance open source
framework for gradient boosting on decision trees. In the
domain of Catboost learning, the definition of the trace-to-
instance encoding function also considers the history of each
prefix of σ. It is done by considering the number of times
that each activity has been performed. Consequently, before
defining the trace-to-instance encoding function, we define
the function ρaggrA (⟨e1, . . . , en⟩). Here, for each activity
a ∈ A, one dimension exists in ρaggrA (σ) : E∗ → (N)|A|

that takes on a value equal to the number of events
e ∈ σ that refer to a (i.e. such that activity(e) = a).
The function ρ is then defined as: ρL(⟨e1, . . . , en⟩) =

ρaggrA (⟨e1, . . . , en⟩)
⊕

activity(en)
⊕
v∈V

variables(v)(en)
3.

When the event log L on which ρ depends is evident from
the context, we omit the subscript L.

B. Generating Recommendations

A process aware recommender-system aims to recommend
the k-top best next activities to improve the relevant KPI.
However, these activities need to be valid from a domain
viewpoint. We avoid the strong assumption that a process
model exists that prescribes how process instances must be
executed. We also assume an activity to be valid in a certain
process state if it has been previously observed in other
executions for the same state.This requires to provide a state-
representation function.

Definition III.5 (State-representation function). Let σ be a
trace, and R a set of the possible representations. The function
lstate : E∗ → R that for each (prefix of a) trace returns the
state, is called state-representation function.

The determination of the activities allowed after the occur-
rence of a sequence of events requires to build a Transition
System where nodes are the state observed in the log and arcs
are activities observed in those states [20].

Definition III.6 (Transition system). Let lstate be a state-
representation function, L an event log and E its set of events.
A transition system abstracting L is a tuple TSL = (S, T) ⊆
R× (R× E ×R) where

• S = ∪σ∈L ∪σ′∈ prefix (σ) l
state (σ′)

• T = {(lstate (σ′) , e, lstate (σ′ ⊕ ⟨e⟩)) s.t. ∃σ ∈ L : σ′ ⊕
⟨e⟩ ∈ prefix(σ)}

Fig 1 shows an example of a transition system in accordance
with Def. III.6. It has been built on an event log Lex =

3Considering
⊕

as the concatenation of vectors e.g.
[1, 3,′ request created′]

⊕
[2, T rue] = [1, 3,′ request created′, 2, T rue]

e

d

d

fg

c

b

c

f

a

d

<> <a>

<a,c> <a,c,d> <a,c,d,f>

<a,b>
<a,b,c>

<a,b,c,d>

<a,b,c,e>

<a,b,c,f><a,b,c,g>

Fig. 1: Transition system for the example log

{⟨a, b, c, d⟩, ⟨a, b, c, e⟩, ⟨a, b, c, f⟩, ⟨a, b, c, g⟩, ⟨a, c, d, f⟩}4,
using a sequence-based state-representation function
lstatesq (⟨e1, . . . , en⟩) = ⟨activity(e1), . . . , activity(en)⟩.
Through this function, the state of a (prefix of a) trace
is identified with its ordered list of activities. For the
example with Lex, the set of possible states is thus
S = {⟨a, b, c, d⟩, ⟨a, b, c, e⟩, ⟨a, b, c, f⟩, ⟨a, b, c, g⟩, ⟨a, c, d, f⟩,
⟨a, c, d⟩, ⟨a, b, c⟩, ⟨a, b⟩, ⟨a, c⟩, ⟨a⟩}. Transitions systems are
built by the recommender system to determine, based on
the history, which activities are allowed after observing a
sequence of activities. The transition system can naturally be
extremely large and not intelligable, but this poses no threat
because they are used internally and never shown to process’
actors.

Let us assume a process instance that leaves a trail of events
as per trace σR = ⟨e1, . . . , ek⟩. The trace is running: new
activity executions are still expected before completion. We
want to recommend the best next activities that optimizes a
KPI K. Let us assume a transition system TSL = (SL, TL)
and an oracle function ΦK, both constructed from an event log
L. We aim to recommend what to do next for σR. First, we
build the set of next possible activities AσR

that are allowed
to occur after observing the events in σR, assuming those
coincide with what observed in L and thus modelled by TSL:
AσR

= {activity(e) : ∃ (lstate (σ′) , e, lstate (σ′ ⊕ ⟨e⟩)) ∈ T}.
Then for every activity in a ∈ AσR

, we evaluate the expected
KPI of σR ⊕ a using the oracle function (i.e. ΦK(σ

′ ⊕ a)).
Here and later, σ ⊕ a indicates the trace σ extended with an
event (a, t,B) where t is the timestamp of the last event in
σ, and B : V → {⊥} with B(v) = ⊥ for all the v in V
that do not depend directly on a, and therefore cannot be
inferred with certainty by just knowing a. The definition of
B reflects the uncertainty on the values that are going to be
assigned to attributes through the execution of activity a. As
many other predictive methods, Catboost is able to interpret
and deal with these missing values, namely attributes whose
value is unknown.

This procedure associates each activity with the correspond-
ing expected KPI value, establishing a ranking of possible next
activities, if the KPI value is related to total execution time,

4Here, for simplicity, events are just referred to through the activity name.

Possible next activity Expected total time
d 311h 32min
e 404h 10min
f 261h 56min
g 467h 1min

TABLE I: Ranking for a given trace σ′ = ⟨a, b, c⟩. In this example, relative to the log
L described in the transition system in Fig1, the KPI is the total time, and so we aim
to minimize it (⊐K assumes the value of the < operator). For this, we are going to
recommend f, d and e, in this order of preference (k is assumed to be set to 3).

the ranking may be as in Tab I. From it, we can recommend
the first k best activities (with k customizable), namely those
associated with the best expected KPI values.5.

We conclude observing that some activities are seldom ob-
served after the execution of certain activities, and considered
outliers. We tackle this in the construction of the transition
system through the definition of a frequency threshold t: if a
certain arc is traversed less than t time while replaying a trace,
it is removed. Analysts can set this threshold.

C. Explanation of Prediction Models

Several prediction models, including Catboost, are black
boxes, making it difficult to explain the predictions, namely to
highlight the features mostly influencing the predictions and,
consequently, the recommendations. Explaining predictions
and recommendations is essential to build user trust in the
models. The remainder briefly summarizes the basic concepts
behind the framework for prediction, that has been introduced
in [9]. In the remainder, we take this framework as starting
point to explain recommendation. The framework leverages
on the Shapley Values [21], which is a game theory approach
to fairly distribute the payout among the players that have
collaborated in a cooperative game. The assumption is that
the features from an instance correspond to the players, and
the payout is the difference between the prediction made
by the predictive model and the average prediction (also
called base value). Intuitively, given a predicted instance, the
Shapley Value of a feature expresses how much the feature
value contributes to vary the model prediction from the base
value [22]:

Definition III.7 (Shapley Value). Let F = {f1, . . . , fm} be
the set of features used by the oracle function ΦK : X1× . . .×
Xm → R to predict a KPI K. The Shapley value for feature
fi which assumes value xi ∈ Xi is defined as:

ψi =
∑

F ′⊆F\{fi}
|F ′|!(m−|F ′|−1)!

m! (val (F ′ ∪ {fi})− val(F ′))

where val(F ′) is the so-called payout for only using the set
of feature values in F ′ ⊂ F in making the prediction.6

Note that Shapley values can only be computed when the
KPI values are defined over a numerical domain. Intuitively,
the formula in Definition III.7 evaluates the effect of incorpo-
rating the value xi ∈ Xi of the feature fi into any possible

5See https://catboost.ai/en/docs/concepts/algorithm-missing-values-processing
6Value val(F) is the prediction for feature values in set F that are

marginalized over features that are not included in set F . See Sect. 9.5.3.1 in
[22] for further details

subset of the feature values considered for prediction. In the
equation, set F runs over all possible subsets of feature values,
the term val (F ′ ∪ {fi})−val(F ′) corresponds to the marginal
value of adding the feature fi which assumes value xi in
the prediction using only the set of feature values in F ,

and the term
|F ′|!(m−|F ′|−1)!

m! corresponds to all the possible
permutations with subset size |F ′|, to weight different sets in
the formula. This way, all possible subsets of attributes are
considered, and the corresponding effect is used to compute
the Shapley Value of xi. The starting point for the explainable
framework is the trace-to-instance encoding function ρ : E∗ →
X1 × . . . × Xm (cf. Section III-A), and a event log L. Let
us recall that given a trace σ = ⟨e1, . . . , en⟩ ∈ E∗ and its
relative encoding ρ(σ) = [x1, . . . , xm], each feature fi has an
associated value xi. As mentioned in Section III-A, a feature
fi can be of different nature, such as a process attribute, a
timestamp, or the number of executions of an activity in σ.
When applied for prediction explanations, the Shapley values
for a trace σ are computed over tuple ρ(σ) = [x1, . . . , xm],
thus resulting in a tuple of Shapley values Ψ = [ψ1, . . . , ψm],
with ψi being the Shapley value of feature fi that assumes
the value xi. In accordance with the Shapley values theory,
the explanation of ψi is as follows: since feature fi = xi, the
KPI prediction deviates ψi units from the average KPI value
of the event-log traces.

Definition III.8 (Shap Function). Let σ be a (prefix of a)
trace of an event log and ΦK : X1 × . . . × Xm → R the
oracle function trained as defined in III-A. We can define the
SHAP function ΨΦK : E∗ → Rm as the vector of Shapley
associated to prediction ΦK(σ).

In the remainder, we use ΦK(σ)[fi] to refer to the Shapley
value of feature fi which assumes a certain value xi ∈ Xi,
which is the i-th entry of the vector ρ(σ) ∈ X1 × . . .×Xm.

IV. A FRAMEWORK FOR EXPLAINING RECOMMENDATIONS

Our recommendations are given choosing the activity that
has the best KPI predicted between all the possible next
activities reported in the transition system. We now aim to
use the Shapley values theory to provide an explanation of the
reason why we suggest that activity. The proposed framework
leverages on comparing the difference between the Shapley
values of the features before and after the recommendation.
This allows the user to receive explanations to understand how
the contribution of each variable would change following or
not the recommendation that we are providing. Given an event
log L, a (prefix of a) running trace σ′ ∈ L, and one of their
next-activity recommended arec as in III-B, we first evaluate
the vector of its associated Shapley values ΨK(σ

′), using the
SHAP function as described in III.8. We then compute the
vector ∆(σ′, arec) of the element-wise difference between
ΨK(σ

′) and ΨK(σ
′ ⊕ arec), namely between the Shapley

values before and after executing arec:

∆(σ′, arec) = ΨK(σ
′)−ΨK(σ

′ ⊕ arec) (1)

Reminding that Aσ′ is the set of possible next activities and
ΦK : X1, . . . , Xm → R the oracle function. Let us assume,
without loss of generality, that the ⊐K operator is equal to <,
i.e. we aim to decrease the KPI, a similar discussion could
be carried out if ⊐K is equal to >. We have two possible
scenarios :

1) It is possible to improve the KPI performing one of the
activities in Aσ′ . So ∃a ∈ Aσ′ s.t. ΦK(σ

′) > ΦK(σ
′ ⊕

a), and arec is therefore the activity that provides the
largest KPI’s improvement.

2) It is not possible to improve the KPI performing one of
the activities in Aσ′ , namely ∄a ∈ Aσ′ s.t. ΦK(σ

′) >
ΦK(σ

′ ⊕ a). In this case, the provided recommendation
arec is the activity that worsens the KPI the least.

Explaining recommendation is especially relevant for the first
scenario, namely when the recommended activity is predicted
to improve (decrease, in the example) the KPI values. In this
case, we take the dimensions of vector ∆(σ′, arec) associated
with the top-k larger values, namely the Shapley values
that decrease the most after executing arec. Let us assume
feature fi to be one of the features for which the Shapley
values increase the most. The associated explanation can be
interpreted as follows: “The execution of recommendation arec
reduces the influence of feature fi = xi of a quantity equal to
∆(σ′, arec)[fi]”. As an example, let us consider that the KPI
is a total time of a process execution, with lower values to be
better. If ∆(σ′, Send Letter)[Customer Type = Gold] =
200, the performance of activity Send Letter after σ′, it is
expected to reduce the influence of Customer Type = Gold
on the total time of 200 time units (e.g., hours).

Each recommendation should be associated with at least
one explanation, namely at least one feature fi for which
∆(σ′, arec)[fi] > 0. Theorem IV.2 below guarantees that it is
always the case. The proof requires one intermediate lemma:

Lemma IV.1 (Disequation’s properties). Given a, b ∈ Rm, if∑m
i=1 ai >

∑m
i=1 bi there exists at least a j ∈ {1, . . . ,m},

such that aj > bj

Proof. Suppose by contradiction that

∀i ∈ {1, . . . ,m} ai ≤ bi

Applying then the summation for all i ∈ {1, . . . ,m} ai ≤ bi,
we get the hypothesis falsified, and then the thesis.

The theorem of the presence of at least one explanation can
now be formulated and proven:

Theorem IV.2. Let σ1, σ2 ∈ E∗ two different traces, ΦK :
X1 × . . .×Xm → R be the oracle function and ΨΦK : E∗ →
Rm be the associated SHAP function. If ΦK(σ1) > ΦK(σ2),
then exists at least an i ∈ {1, . . . ,m} such that ΨΦK(σ1)[fi] >
ΨΦK(σ2)[fi]

Proof. Let ΦK(X)) the average value (a.k.a. base value) for
the prediction of elements belonging to the domain set X .
From [22] we know that the sum of the elements of the

Shapley Values vector is equal to the difference between its
relative predicted value and the base value, analitically

m∑
i=1

ΨΦK(σ)[fi] + ΦK(X)) = ΦK(σ) ∀σ ∈ E∗ (2)

Applying this formula to both σ1 and σ2 we obtain the system
m∑
i=1

ΨΦK(σ1)[fi] + ΦK(X)) = ΦK(σ1)

m∑
i=1

ΨΦK(σ2)[fi] + ΦK(X)) = ΦK(σ2)

. (3)

By subtracting the second from the first equation we obtain

ΦK(σ1)− ΦK(σ2) =

m∑
i=1

ΨK(σ1)[fi]−
m∑
i=1

ΨK(σ2)[fi]

Since ΦK(σ1) > ΦK(σ2) by hypothesis, we get that ΦK(σ1)−
ΦK(σ2) > 0, and so

m∑
i=1

ΨK(σ1)[fi] >

m∑
i=1

ΨK(σ2)[fi]

Then, applying the lemma IV.1, we obtain that exists at least
a feature fj for which ΨΦK(σ1)[fj] > ΨΦK(σ2)[fj]

This ensures that at least a value exists for which we can
provide the change in Shapley value as an explanation, and it is
the one at the j−th entry. It is also important to note that since
the theorem also holds when inverting both the inequalities, we
can apply the same procedure if ⊐K operator is equal to > (i.e.
we aim to maximize the KPI) and providing as explanations
the features with lower ∆(σ′, arec) associated.

The discussion above corresponds to the scenario where
there is a recommendation that predicts to improve on the KPI.
In the alternative scenario where there is no recommendation
for KPI improvement, we do not have formal guarantee that
an explanation exists. The framework’s implementation builds
on the work by Galanti et al. [9] to train the oracle function
ΦK, leveraging also the libraries Pandas and NumPy. The
explanations are provided using the library provided by Shap,
in its framework dedicated to CatBoost7. The code is avail-
able on GitHub at https://github.com/Pado123/
explainable-prescriptive-analytics.

V. INTRODUCTION TO USE CASES AND
RECOMMENDATION RESULTS

Although the paper’s focus is on the explanations of the
recommendations, it is clear that explanations only make sense
for sensible recommendations that can positively affect the
process’ KPIs. Section V-A discusses how the event log has
been split in a training log, which is used to build the Catboost
model and the transition system, and in test log, used for
evaluation. This section concludes by illustrating the test-log
usage to assess the quality of recommendations. Section V-B
presents the considered case studies, while Section V-C reports
on the evaluation of the recommendations’ quality.

7https://catboost.ai/en/docs/concepts/shap-values

Fig. 2: The orange and blue lines represent the number of
completed and active traces, respectively. The vertical red bar
is the timestamp t when the 65% of traces have completed.

A. Definition of the Training and Test logs and Evaluation of
Recommendation

The starting point for an evaluation is an event log L. From
this, we first extract the training log Lcomp, used to train the
recommender system as a whole, namely the oracle function
and the transition system. Then, we create the test log Lrun

of the running cases on which the system is evaluated.
To extract the training log Lcomp ⊂ L and test log Lrun ⊆

L \ Lcomp, we compute the earliest time t in which 65% of
the traces of L are completed, see, e.g. the example in Fig 2.
Then, we compute the time tsplit ≥ t with the largest number
of running cases. This allows us to define Lcomp as the set of
traces of L completed at time tsplit, and Lrun as the set of
traces of L running at time tsplit.

The traces of test log Lrun are truncated to a set Ltrunc

that is obtained from Lrun by removing every event with a
timestamp larger than tsplit: Ltrunc only contains the events
occurred before time tsplit. This procedure tries to mimic the
reality at time tsplit.

The accuracy of recommending the activity a for the run-
ning trace σ′ ∈ Ltrunc is evaluated as the average KPI of
traces similar to σ′ ⊕ a, belonging to Lrun:

acc(a, σ′) = avgσ∈Lsim
a,σ′

K(σ) (4)

where

Lsim
a,σ′ = {σ ∈ Lrun : ∃σp ∈ prefix(σ) ∧ lstatesq (σp) = lstatesq (σ′ ⊕ a)}

And lstatesq is the sequence state-representation function (cf.
Section III-B).

B. Use cases

The validity of our approach was assess using two different
event logs with their associated use case. The first is so called
Bank Account Closure (BAC), a log referring to a process
of an Italian Bank Institution that deals with the closures
of bank accounts. From the bank’s information system, we
extracted an event log with 212,721 events containing 15
different activities and 32,429 completed traces, divided in

Use Case Accuracy when best recommendations are
∆not followed followed

Occurrence of activity PLR 0.96 0.34 64.4%
Total Time for the VINST process 484h 46min 441h 14min 9.4%

TABLE II: The accuracy when executions are left to be
carried without influencing the outcome with recommendation,
versus the scenario when the best recommendation is always
followed. The KPI value of the first is given as probability of
occurrence, while the second is the actual time value. Activity
PLR is a shortcut name for Pending Liquidation Request

22,013 for train and 10,286 for test. Each trace is associated
with an attribute, Closure Type, which encodes the type of
procedure that is carried out for the specific account holder,
and the Closure Reason, namely the reason triggering the
closure’s request. For this case, we aim to avoid the occurrence
of the activity Pending Liquidation Request. The KPI value
can be 1 or 0 if the activity occurs or not, while the oracle
function ΦK is represented by the probability of the activity
occurring (i.e. ΦK(σ) ∈ [0, 1]). Note that one wants to
reduce the activity-occurrence probability: the activity Pending
Liquidation Request is considered as rework, thus being an
inefficiency in time and costs.

The second log was used by the BPI challenge in 20138.
It is provided by Volvo Belgium and contains events from an
incident and problem management system called VINST. We
extracted 7,456 completed traces and 64,975 events. It contains
13 different activities. In selecting traces from the log to obtain
training and test, we generate a training log of 5,103 traces and
a test log of 2,236 traces. For this case we aim to decreasing
the total execution time, the KPI value and the oracle function
are respectively the total time and its expected value.

C. Evaluation results

Table II reports on the results that we obtained using the
recommender system. In the first column, the use cases are
reported. The second and third column reports on the accuracy
(cf. Equation 4) when recommendations are or are not fol-
lowed, respectively. Given a trace σ′, the recommendation ac-
curacy acc(a, σ′) is computed for the activity a that is the top
recommended activity. Conversely, the non-recommendation
accuracy acc(a′, σ′) is computed for the activity a′ that follows
in the trace σ of which σ′ is prefix. Last columns highlights the
percentage improvement between and the second and the third
column, computed as ∆ = (1 − followed/not followed) ∗
100% with followed and not followed being the accuracy
when recommendations are followed or not followed. Results
show a sensitive improvement for both of cases, especially
for the minimization of the occurrence of the rework activity
Pending Liquidation Request. Further investigation is out of
scope of this paper: we only aimed to illustrate the validity
of the recommendations on which explanations are computed.
The latter is the novel contribution of the paper.

8https://www.win.tue.nl/bpi/doku.php?id=2013:challenge

Fig. 3: Example of output for the PAR system with recom-
mendation for the KPI value related to the (undesired) oc-
currence of activity Pending Liquidation Request. Explanation
label #ACTIVITY=actname=actnumber means that the
activity named ”act name” happened ”act number” times

Fig. 4: Example of the procedure followed for providing
recommendations and explanations for the KPI value ”Total
time” for VINST process. The x-axis scale of the bar chart is
in hours.

VI. PROVISION AND DISPLAY OF EXPLANATIONS

Figure 3 shows how explanations are expected for our PAR
system, for the use case of the process of Bank Account
Closure, namely aiming to minimize the occurrence activity
Pending Liquidation Request. The outcome is a list that, for
each running case, illustrates the expected KPI value when
both no or the best recommendation is followed. Figure 3
illustrates an excerpt of this list with two running cases: for
the first case, 20185005985, the probability of the occurrence
of activity Pending Liquidation Request is 91% (namely, the
KPI value is 0.91), while the probability drops to 42% if
the best recommended activity would be performed. For case
20185005985, it is possible to significantly reduce the proba-
bility. When the process actor decides to intervene and focuses
on the specific case, a list of potential recommendations is
offered, each with the expected KPI value (see table in the
middle of Figure 3). Let us assume that the process actor
opts to perform the second best recommended activity, circled
in red in figure, namely that reducing the probability of the
occurrence of Pending Liquidation Request to 52%. In fact, the
actor might have reasons based on aspects not modelled in the
process to not choose the recommendation that minimizes the
probability (e.g., the activity requires accesses to systems that
are currently in maintenance). When the recommendation is
selected, the explanations are provided in form of bars (see
bottom of Figure 3):

• Currently the fact that activity Service closure Request
with BO responsibility has been executed twice con-
tributes to an increase of probabilities of the undesired
activity to occur of ca. 15% (value 0.15), the execution
of Evaluating Request (the recommendation) will nullify
this contribution. In fact, the double occurrence of activity
becomes a positive contribution to a reduction of the
activity occurrence.

• The reason for bank account closure is unknown con-
tributes to an increase of ca. 41% of the probability of the
undesired activity to occur. The recommendation activity
is able to partly mitigate this contribution, which lowers
to ca. 38%.

• Similarly to the point above, the recommendation activity
allows mitigating the negative probability contribution to
the occurrence of the undesired activity from an original
value of ca. 45% to ca. 11%.

This form of explanation is in line with the frameworks
for Explainable AI of black-box models (cf. Section II). In
accordance with these frameworks, we also aim to pinpoint the
individual contribution of each of the different process’ fea-
tures to the predicted KPI value, but with the notable difference
that we want to just focus on those features whose influence
on the KPI values can be largely impacted by performing
a recommendation activity. In fact, we are not interested in
returning explanations for those features that have a large
impact on the KPI values but that the recommendations cannot
influence. Note that, for the specific example in question,
the pairwise sum of the difference of the Shapley’s values

of these three explanations is around accounting for ca. 48%
of the positive contribution to reducing the KPI value (recall
that the overall expected KPI value improvement with the
recommendation is of ca. 52%). These are indeed the first three
more relevant explanations. Others possibly exist, but with a
smaller impact on reducing the probability for the activity to
occur.

Figure 4 shows a similar output for the VINST process
(cf. Section V-B) when one aims to minimize the KPI of
the total execution time. The recommendation of activity
Assigned for case 1-529067006 allows the total execution
time to be reduced from 712 hours and 43 minutes to 487
hours and 24 minutes. Four explanations are present, and
the most significant (i.e. enabling a larger decrease of the
total time) is Product=PROD542: performing the activity
Assigned allows one to mitigate the negative impact on KPI
related to the product being PROD542 from almost 400 hours
to ca. 280 hours.

VII. CONCLUSIONS AND FURTHER DIRECTIONS

Existing research on PAR systems has focused on providing
recommendations that can bring executions back on track.
However, recent literature has overlooked the problem of
ensuring that process actors feel engaged, trust these recom-
mendations, and consequently follow them. Engagement and
trust pass through combining recommendations with under-
standable explanations for process actors.

This paper is the first attempt to report on a framework to
explain process’ recommendation. As discussed, the explana-
tions are given in terms of values of process characteristics
that process actors would understand. In particular, the expla-
nations focus on those characteristics that affect the process’
outcome, and whose negative influence can be mitigated by
the recommendations.

Explaining the given recommendations is beneficial to gain
a better insight into how the performance of certain activities
in a given process’ state can influence the relevant KPI.
This provides further insights for process actors into how to
improve the process executions.

The paper showcases how explanations would look in two
use cases related to real-life processes. As future work, the
utmost priority will be given to assess the framework with
real process actors, thus determining whether the shape in
which explanations are given is insightful and increases the
trust of the suggested recommendation. The intuition seems
to support this, but the definitive answer can only be given
through an extensive user study. In parallel, we aim to more
objectively verify the validity of the explanations against the
quality criteria for Explainable AI introduced in literature (see,
e.g. [23]).

Acknowledgement. The PhD. scholarship of Mr. Padella is partly
funded by IBM Italy, and by the BMCS Doctoral Program, University
of Padua. This research is also supported by the Department of
Mathematics, University of Padua, through the BIRD project “Data-
driven Business Process Improvement” (code BIRD215924/21).

REFERENCES

[1] M. Dees, M. de Leoni, W. M. P. van der Aalst, and H. A. Reijers, “What
if process predictions are not followed by good recommendations?” in
Proceedings of the Industry Forum at BPM 2019, ser. CEUR Workshop
Proceedings, vol. 2428. CEUR-WS.org, 2019.

[2] M. de Leoni, M. Dees, and L. Reulink, “Design and evaluation of a
process-aware recommender system based on prescriptive analytics,” in
2020 2nd International Conference on Process Mining (ICPM), 2020.

[3] S. Weinzierl, S. Dunzer, S. Zilker, and M. Matzner, “Prescriptive
business process monitoring for recommending next best actions,” in
Business Process Management Forum, 2020.

[4] A. E. Márquez-Chamorro, M. Resinas, and A. Ruiz-Cortés, “Predictive
monitoring of business processes: A survey,” IEEE Transaction on
Services Computing, vol. 11, no. 6, 2018.

[5] L. Lin, L. Wen, and J. Wang, MM-Pred: A Deep Predictive Model for
Multi-attribute Event Sequence. SIAM, 05 2019.

[6] M. Camargo, M. Dumas, and O. González-Rojas, Learning Accurate
LSTM Models of Business Processes. Springer, 07 2019.

[7] A. Metzger, T. Kley, and A. Palm, “Triggering proactive business process
adaptations via online reinforcement learning,” in Business Process
Management. Cham: Springer International Publishing, 2020.

[8] Z. D. Bozorgi, I. Teinemaa, M. Dumas, M. L. Rosa, and A. Polyvyanyy,
“Prescriptive process monitoring for cost-aware cycle time reduction,”
in 2021 3rd International Conference on Process Mining (ICPM), 2021.

[9] R. Galanti, B. Coma-Puig, M. de Leoni, J. Carmona, and N. Navarin,
“Explainable predictive process monitoring,” in Proceedings of the 2nd
International Conference on Process Mining (ICPM 2020). IEEE, 2020.

[10] R. Sindhgatta, C. Moreira, C. Ouyang, and A. Barros, “Exploring
interpretable predictive models for business processes,” in Proceedings
of BPM 2020. Springer, 2020.

[11] T.-H. Huang, A. Metzger, and K. Pohl, “Counterfactual explanations for
predictive business process monitoring,” in Proceedings of EMCIS 2021.
Springer, 2022.

[12] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” in The 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[13] J. Sarthak and B. C. Wallace, “Attention is not explanation,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies. Association for Computational Linguistics, 2019.

[14] G. Park and M. Song, “Prediction-based resource allocation using LSTM
and minimum cost and maximum flow algorithm,” in Proceedings of
the International Conference on Process Mining, ICPM 2019, Aachen,
Germany, 2019. IEEE, 2019.

[15] N. Tax, I. Verenich, M. La Rosa, and M. Dumas, “Predictive business
process monitoring with LSTM neural networks,” in Proceedings of
the 29th International Conference on Advanced Information Systems
Engineering (CAiSE 2017), vol. 10253. Springer, 2017.

[16] N. Navarin, B. Vincenzi, M. Polato, and A. Sperduti, “LSTM networks
for data-aware remaining time prediction of business process instances,”
in Proceedings of the IEEE Symposium Series on Computational Intel-
ligence (SSCI 2017), 2017.

[17] M. Polato, A. Sperduti, A. Burattin, and M. de Leoni, “Time and activity
sequence prediction of business process instances,” Computing, vol. 100,
no. 9, Sep 2018.

[18] I. Verenich, M. Dumas, M. La Rosa, F. Maggi, and I. Teinemaa, “Survey
and cross-benchmark comparison of remaining time prediction methods
in business process monitoring,” ACM Transactions on Intelligent Sys-
tems and Technology, vol. 10, 07 2019.

[19] A. V. Dorogush, V. Ershov, and A. Gulin, “Catboost: gradient boosting
with categorical features support,” in Proceedings of the Workshop on
ML Systems at NIPS 2017, 2017.

[20] W. M. P. van der Aalst, Process Mining: Data Science in Action. Berlin:
Springer-Verlag, 2011.

[21] L. S. Shapley, A value for n-person games. RAND Corporation, 1953,
vol. 2, no. 28.

[22] C. Molnar, Interpretable Machine Learning, 2022, Available online at
https://christophm.github.io/interpretable-ml-book/.

[23] H. Löfström, K. Hammar, and U. Johansson, “A meta survey of quality
evaluation criteria in explanation methods,” in Proceedings of CAiSE
Forum 2022, ser. LNBIP, vol. 452. Springer, 2022.

